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Abstract— We study the path-complete p-contraction proper-
ty for switched linear systems, which is a generalization of the
notion of positive systems. We show on examples that this prop-
erty is indeed useful for describing convergence properties, like
p-dominance, that classical positivity cannot handle. We then
provide a Converse Lyapunov Theorem, showing that, contrary
to positivity, any p-dominant switched system must possess the
path-complete p-contraction property with quadratic cones.

I. INTRODUCTION

Dynamical systems with a low-rank asymptotic behavior
generally allow for a simplified analysis of their dynamics.
For linear time-invariant (LTI) systems, this property, some-
times referred to as model order reduction, is well under-
stood: a LTI system is amenable to model order reduction if
it has p slow modes and n−p fast modes (typically, p� n).
By considering only the slow modes, we may reduce to the
analysis of a p-dimensional system that inherits most of the
asymptotic properties of the original system.

The seminal example of linear systems which have a low-
dimensional asymptotic behavior are positive systems, that
is, systems with a strictly invariant cone. By the Perron–
Frobenius Theorem, positive systems have a single dominant
eigenvector which is a 1-dimensional attractor for the system
[1]. p-dominant linear systems extend this property to p-
dimensional attractors by means of quadratic p-cones, that
is, cones that can be described as the set of points x such that
x>Px ≤ 0 where P is a symmetric matrix with p negative
eigenvalues and n − p positive eigenvalues [2]. As in the
case of positive systems, the existence of a strictly invariant
quadratic p-cone for the linear system implies that the system
has p dominant eigenvalues whose associated eigenspace is
thus a p-dimensional attractor for the system.

In recent papers, the above concepts have been generalized
to switched linear systems, that is, systems having several
operating modes, each of them described by a linear sys-
tem (or equivalently, linear systems with a time-dependent
transition matrix A(t) which can take only a finite number
of different values for every t). For instance, the notion
of positive system has been generalized to switched linear
systems in two independent works: in [3, 4], under the
name of “strictly invariant multicones”; and in [5], as “path-
complete positivity”. The first one uses non-convex cones and
the second one uses several cones with contraction proper-
ties driven by the transitions in an automaton representing
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the system. Switched linear systems with strictly invariant
multicones and path-positive switched linear systems enjoy
similar asymptotic properties as positive linear systems.

Using ideas from path-positivity and path-complete Lya-
punov theory [6], the recent paper [7] introduces a gener-
alization of p-dominance for switched linear systems, under
the name of path-complete p-dominance. Path-complete p-
dominant switched linear systems are characterized by the
existence of a family of quadratic p-cones which are con-
tracted into each other following some rules driven by an
automaton representing the system.

x>Pq1x ≤ 0
x>Pq2x ≤ 0Ai

The works [5] and [7] focus on giving a geometric charac-
terization of path-positive (resp. path-complete p-dominant)
systems while showing that this gives a sufficient condition
for the system to have a 1-dimensional (resp. p-dimensional)
asymptotic behavior. One advantage of this geometric char-
acterization is that it can be tested algorithmically thereby
providing a computable sufficient criterion for a system to
be asymptotically low-dimensional [5] (reps. [7]).

The aim of this paper is to further study the link between
the “behavioral” characterization (p-dimensional asymptotic
behavior) and the geometric characterization (existence of
a contracting family of quadratic p-cones) for p-dominant
switched linear systems. We already know form [7] that
the geometric characterization is a sufficient condition for
the behavioral one. In this paper, we prove the converse of
this result: if a switched linear system has a p-dimensional
asymptotic behavior, then there exists an automaton repre-
senting the system and a family of quadratic p-cones that
are contracted into each other following some rules driven
by this automaton. (The existence of such a family of cones
can be seen as a Lyapunov criterion for p-dominance, hence
the converse result is referred to as a Converse Lyapunov
Theorem for p-dominance.)

Breaking with the terminology introduced in [7], we will
use the term “p-dominant” to denote systems whose asymp-
totic behavior is p-dimensional while systems admitting a
family of quadratic p-cones that are contracted into each
other with respect to some automaton representing the system
will be referred to as “path-complete p-contracting systems”.
The main result of this paper can then be reformulated as



follows: a switched linear system system is p-dominant if and
only if it is path-complete p-contracting (Theorem 2). As a
corollary, we also deduce that the p-dominance property is
robust to system perturbations (Corollary 3).

The paper is organized as follows: in Section II, we discuss
the notions of p-dominance and path-complete p-contraction
for LTI and switched linear systems. Then, we present the
main result of the paper: the Converse Lyapunov Theorem for
p-dominance. The proof of the Converse Lyapunov Theorem
is provided in Section III. Finally, in Section IV, we illustrate
the implications of the theorem on a numerical example.

II. p-DOMINANT SYSTEMS

A. LTI systems

A linear time-invariant (LTI) system

x(t+ 1) = Ax(t), A ∈ Rn×n, (1)

is p-dominant if the eigenvalues of A satisfy

|λ1| ≥ |λ2| ≥ . . . ≥ |λp| > |λp+1| ≥ . . . ≥ |λn|. (2)

In this case, the state space can be decomposed as Rn =
H ⊕ V where H and V are the eigenspaces corresponding
respectively to the first p and last n − p eigenvalues of A
(obtained, e.g., from the Jordan form). For almost every
initial condition x0, the component xt,v of x(t) in V will
become negligible compared to the component xt,h in H:

|Atx0,v| ≤ Cλt|Atx0,h| ∀t ≥ 0 (3)

(assume x0,h 6= 0) for some C ≥ 0 and 0 ≤ λ < 1.
Using the Main Inertia Theorem [8, §13.2], the property

(2) can be formulated with a Linear Matrix Inequality (LMI)
involving the matrix A and a symmetric matrix S of fixed
inertia (the inertia of a symmetric matrix S is the triplet
(i−, i0, i+) where i−, i0 and i+ are the number of negative,
zero, and positive eigenvalues of S, respectively):

Proposition 1. A matrix A ∈ Rn×n satisfies (2) if and only
if there exist a symmetric matrix S with inertia (p, 0, n− p)
and a rate γ > 0 satisfying A>SA− γ2S ≺ 0.

Given S ∈ Rn×n symmetric with inertia (p, 0, n− p), we
define the quadratic p-cone K(S) = {x ∈ Rn : x>Sx ≤ 0}.
The degree p stands for the maximal dimension of a linear
subspace contained in K(S). The geometric interpretation of
Proposition 1 then reads as follows [7]: (1) is p-dominant if
and only if there exists a quadratic p-cone K(S) satisfying

A
(
K(S) \ {0}

)
⊆ intK(S) (4)

where intK(S) denotes the interior of K(S).

B. Switched linear systems

We extend the notion of p-dominance to switched linear
systems, that is, systems of the form

x(t+ 1) = Aw(t)x(t) (5)

where w is a function from Z to Σ = {1, . . . , N} and Ai ∈
Rn×n for every i ∈ Σ. The system is constrained if w is
restricted to some subset L ( ΣZ. In this case, L is called

the admissible language and Σ = {1, . . . , N} is called the
alphabet. Any w ∈ ΣZ is called a word over Σ. Observe that
a switched linear system is completely determined by the
ordered pair (M,L) where M = {Ai}i∈Σ is the indexed
set of transition matrices of (5).

The definition of p-dominance (see Definition 1 below) for
switched systems draws upon the behavioral characterization
(3) of p-dominant LTI systems. The following notation will
simplify the exposition: for w ∈ ΣZ and s < t, let

Aw(s, t) = Aw(t−1)Aw(t−2) · · ·Aw(s+1)Aw(s),

and Aw(s, t) = In if s = t. Thus, for all w ∈ L and x̄ ∈ Rn,
x(t) = Aw(s, t)x̄ is a solution (aka. trajectory or orbit) for
t ≥ s of (5) with input w and initial condition x(s) = x̄.

Definition 1. A switched linear system (M,L) is called
p-dominant if there exist 0 ≤ λ < 1 and C ≥ 1 such that,
for every w ∈ L, there exist two collections of subspaces

H̄w = {. . . , H−1, H0, H1, H2, . . .},
V̄w = {. . . , V−1, V0, V1, V2, . . .}

where Ht and Vt are respectively p-dimensional and (n−p)-
dimensional linear subspaces satisfying Rn = Ht ⊕ Vt for
every t ∈ Z, and such that (i) for every s ≤ t, Aw(s, t)Hs =
Ht (note the “equal”) and Aw(s, t)Vs ⊆ Vt, and (ii) for every
s ≤ t, every xv ∈ Vs \ {0} and every xh ∈ Hs \ {0},

|Aw(s, t)xv|
|xv|

≤ Cλt−s |Aw(s, t)xh|
|xh|

. (6)

The pair (H̄w, V̄w) in Definition 1 is called a dominated
invariant splitting for w. The interpretation of p-dominance
is that for every input w, the sequence of subspaces given
by H̄w defines a moving p-dimensional robust attractor for
the system. More precisely, for every w ∈ L and almost
every x(0) ∈ Rn, the component of x(t) in Vt will become
negligible compared to the component of x(t) in Ht as t→
∞. That (6) must be satisfied for every s ≤ t (or, at least,
for every 0 ≤ s ≤ t) is required for the robustness of the
attractor as demonstrated in Example 1 below.

Finally, in this paper, we have assumed that the input
signal w is backward and forward infinite. The backward
infinity assumption can be legitimated if we assume that the
system we are considering is running in continuous-stream
mode, i.e., we can assume that the system has started a long
time ago. This is also the appropriate setting to study periodic
input signals w. At the cost of adding very mild assumptions
on the admissible language (e.g., L is a shift-invariant), there
is no restriction in considering backward and forward infinite
words instead of forward infinite words (which would seem
more natural for the study of dynamical systems). However,
for simplicity and conciseness of the presentation, we will
focus on bi-infinite words in this paper.

Example 1. Define the 2× 2 diagonal matrices

A1 =

[
1

0

]
and A2 =

[
1

2

]
.

Consider the switched linear system with M = {A1, A2}
and L = X21 := {all the words that do not contain 21 as a



subword}. Hence, every sequences of matrices have one of
the following forms: (a) . . . A1A1 . . . A1 . . . , or (b) . . . A1A1

. . . A1A2 . . . A2A2 . . . , or (c) . . . A2A2 . . . A2 . . . .
In case (a), (6) is satisfied with Ht = R× {0} and Vt =

{0} × R for every t ∈ Z. In case (c), (6) is satisfied with
Ht = {0} × R and Vt = R× {0} for every t ∈ Z.

If we require that (6) must be satisfied only for s = 0 and
t ≥ 0, then case (b) satisfies (6) with Ht = R × {0} and
Vt = {0} × R (resp. Ht = {0} × R and Vt = R × {0}) if
w(0) = 1 (resp. w(0) = 2). However, when w(0) = 1, the
p-dimensional attractor Ht = R × {0} will not be robust,
as a small perturbation of the state of the system (from the
moment that w(t) = 2) will cause the system to converge to
{0} × R, and thus to diverge from Ht = R× {0}. /

Figure 1 shows the behavior of a 2-dominant switched
linear system whose trajectories are radially scaled to the unit
sphere. The 2-dominant behavior of the system is captured
by the convergence of all trajectories to a (time-varying) two-
dimensional plane.
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Fig. 1. Trajectories of a 2-dominant switched system from different initial
conditions and for a fixed signal w. Each red dot represents the projection
on the sphere of a trajectory x(·) at different times t.

C. Path-complete p-contracting switched linear systems

In the previous subsection, we have introduced the notion
of p-dominance which characterizes the asymptotic behavior
of switched linear systems. In this subsection, we describe

a

{1, 2}

Aut1 a b

1

2

2 Aut2

a b

1

2

Aut3

Fig. 2. Three automata with Σ = {1, 2} and Q = {a} (for Aut1)
or Q = {a, b} (for Aut2 and Aut3). Aut3 accepts every words with a
strict alternation of 1 and 2. Aut2 accepts every words that contains no
consecutive 1’s. Aut1 accepts every words on the alphabet {1, 2}. Indeed,
every word admissible for the Aut3 is also admissible for Aut1 and Aut2.

another feature, called the path-complete p-contraction prop-
erty, of switched linear systems that relies on the existence
of strictly invariant sets (in particular quadratic p-cones) for
the system. The main result of this paper is to show that the
two notions coincide (Theorem 2 below).

Definition 2. A finite-state automaton (or automaton for
short) Aut is a triplet (Q,Σ, δ) where Q is the (finite) set of
states, Σ = {1, . . . , N} is the alphabet and δ ⊆ Q×Σ×Q is
the set of admissible transitions. We will write q1

i→ q2 ∈ δ
if (q1, i, q2) ∈ δ. A word w ∈ ΣZ is admissible for Aut
if there exists a bi-infinite sequence of states {qt}t∈Z ⊆ Q
such that qt

w(t)→ qt+1 ∈ δ for every t ∈ Z. We say that the
automaton Aut is path-complete for the language L if every
word in L is admissible for Aut.

See Figure 2 for an illustration.
Definition 3 (Path-complete p-contracting). Let (M,L)

be a switched linear system.
a) We say that M is p-contracting with respect to the

automaton Aut = (Q,Σ, δ) if there exist (i) a set of
symmetric matrices {Sq}q∈Q ⊆ Rn×n with uniform
inertia In(Sq) = (p, 0, n − p) for every q ∈ Q, (ii) a
set of rates {γd}d∈δ ⊆ R>0, and (iii) an ε > 0 such
that for every transition q1

i→ q2 ∈ δ,

A>i Sq2Ai − γ2
dSq1 � −εI. (7)

b) We say that (M,L) is path-complete p-contracting if
there exists an automaton Aut that is path-complete
for L, and M is p-contracting with respect to Aut.

Similarly to (4) for LTI systems, (7) expresses that the
quadratic p-cone K(Sq1) is contracted into the quadratic p-
cone K(Sq2) by the linear mapping Ai, i.e.,

(7) ⇐⇒ Ai
[
K(Sq1) \ {0}

]
⊆ intK(Sq2).

See, e.g., [7, Proposition 2].
The main asset of the path-complete p-contraction crite-

rion is that, for a given automaton, the p-contractivity of the
system with respect to this automaton (Definition 3-a) can be
tested algorithmically with LMI techniques [7, §4]. The next
theorem states that the p-dominant switched linear systems
are exactly the ones that are path-complete p-contracting.
Hence, this gives an algorithmic framework to verify that a
system is p-dominant.

Theorem 2. A switched linear system (M,L) is p-
dominant if and only if it is path-complete p-contracting.

The “if” direction was proved in [7, Theorem 3]. The
proof combines ideas from p-dominance for continuous-time
systems [2, Theorem 1] and partial hyperbolicity [9]. The



“if” direction can be seen as a Lyapunov theorem for p-
dominance of switched linear systems as the p-dominance
of the system is guaranteed by the decrease of the functions
Vi(x) = x>Sqix. The difference with the classical Lyapunov
theory is that we have several Lyapunov functions Vi(x) and
these functions are not positive-definite. The proof of the
“only if” direction, called the Converse Lyapunov Theorem
for p-dominance analysis, is provided in the next section.

From the Converse Lyapunov Theorem, we deduce that the
p-dominance property is robust to small perturbations of the
system. More precisely, a switched linear system (M′,L′),
M′ = {A′1, . . . , A′N}, is said to be η-close to the switched
linear system (M,L), M = {A1, . . . , AN}, if L′ = L and
‖A′i −Ai‖ ≤ η for all 1 ≤ i ≤ N . Then, we have:

Corollary 3. Let (M,L) be a p-dominant switched linear
system. Then, there exists η > 0 such that every switched
linear system (M′,L′) that is η-close to (M,L) is also p-
dominant.

Proof: Using Theorem 2, if (M,L) is p-dominant, there
exist a path-complete automaton Aut, a family of symmetric
matrices Sq with inertia (p, 0, n − p), a set of rates γd > 0
and ε > 0 satisfying (7). Because the left-hand term of (7)
is continuous with respect to Ai, there is η > 0 such that
(A′i)

>Sq2(A′i) − γ2
dSq1 � − ε2I whenever ‖A′i − Ai‖ ≤ η.

Hence, we get that (M′,L′) is path-complete p-contracting
and thus p-dominant by Theorem 2.

III. PROOF OF THEOREM 2
Part 1: The dominated invariant splitting

Proposition 4. Let (M,L) be a p-dominant switched lin-
ear system. Then, the dominated invariant splitting (H̄w, V̄w)
in Definition 1 is unique for every w ∈ L.

The proof relies on the following observation:
Lemma 5. Let (M,L) and (H̄w, V̄w) be as above. Then,

for every s ≤ t, Aw(s, t)−1Vt ⊆ Vs (where A−1 denotes the
preimage by A).

Proof: Suppose x /∈ Vs. Then, x has a nonzero component
xh in Hs, and thus, from Aw(s, t)Hs = Ht (Definition 1),
Aw(s, t)x has a nonzero component in Ht (because Hs and
Ht have the same dimension). Thus, Aw(s, t)x /∈ Vt.

Proof of Proposition 4: Let (H̄w, V̄w) and (H̄ ′w, V̄
′
w) be

two dominated invariant splittings for w ∈ L, possibly with
different constants C 6= C ′ and λ 6= λ′ in (6).

First, suppose Vs 6= V ′s for some s ∈ Z. Then, there exists
x ∈ Vs such that x = y′+z′ with y′ ∈ H ′s\{0} and z′ ∈ V ′s .
Hence, by (6),

|Aw(s, t)x|
|Aw(s, t)y′| → 1 as t→∞

Similarly, starting from some point x′ = y+z with x′ ∈ V ′s ,
y ∈ Hs \ {0} and z ∈ Vs, we find that

|Aw(s, t)x′|
|Aw(s, t)y| → 1 as t→∞

Combining the two results above, we obtain

|Aw(s, t)x|
|Aw(s, t)y|

|Aw(s, t)x′|
|Aw(s, t)y′| → 1 as t→∞,

a contradiction with (6). Hence, Vs = V ′s for all s ∈ Z.
By considering orbits in backward time, and using the fact

that Aw(s, t) is bijective between Hs and Ht and Lemma 5,
a similar argument can be used to prove that Ht = H ′t. This
concludes the proof of Proposition 4.

In the proofs below, to avoid confusion, we will sometimes
denote the subspaces defined by (H̄w, V̄w)—the unique dom-
inated invariant splitting associated to w—by Hw

t and V wt
(instead of simply Ht and Vt). The following lemma shows
that the growth of Aw(s) = Aw(s, s + 1) on Hw

s cannot be
arbitrarily small.

Lemma 6. Let (M,L) be a p-dominant switched linear
system with dominated invariant splitting (H̄w, V̄w). There
exists η > 0 such that, for every w ∈ L and every s ∈ Z,

|Aw(s)x| ≥ η|x| ∀x ∈ Hw
s . (8)

Proof: Step 1: For a contradiction, suppose that for every
n ∈ Z>0, there exist wn ∈ L, sn ∈ Z and xn ∈ Hwn

sn such
that |xn| = 1 and |Awn(sn)xn| ≤ 1/n. From the uniqueness
of H̄w (Proposition 4), we may assume that sn = 0: indeed,
if wn has dominated invariant splitting (H̄wn

, V̄wn
) and w′n

is the word wn shifted by sn symbols, i.e., w′n(t) = wn(t+
sn), then Ht

w′
n = Hwn

t+sn , and thus, xn satisfies the same
properties as above with w′n and sn = 0.

Fix T ≤ 0 such that Cλ−T < 1
2 . From the finiteness of Σ,

we may assume (taking a subsequence if necessary) that there
exists w ∈ L such that for every n ∈ Z>0, wn(t) = w(t)
for t = T, . . . , 0. Denote A = Aw(T, 0) = Awn

(T, 0) and
A′ = Aw(T, 1) = Awn

(T, 1) = Awn(0)A for simplicity.
For each n, let x′n be the unique point in Hwn

T such that
xn = Ax′n. Because ‖A‖ is bounded, |x′n| is bounded from
below by some c > 0 for all n > 0.

Step 2: Define x′′n = x′n/|x′n|. Taking a subsequence if
necessary, we assume that x′′n converges to some x with |x| =
1. Since |A′x| = limn |A′x′′n| ≤ limn c

−1|Awn(0)xn| = 0 by
definition of xn, we have that x ∈ kerA′. From Lemma 5,
we have that kerA′ = Awn

(T, 1)−1{0} ⊆ V wn

T . It is also
clear that x′′n ∈ Hwn

T from its definition. From (6) and the
facts that x ∈ V wn

T , x′′n ∈ Hwn

T and Cλ−T < 1
2 , we have

that |Ax| ≤ 1
2 |Ax′′n|. Since |Ax| = limn |Ax′′n|, we finally

get that |Ax′′n| → 0 as n→∞.
Step 3: Thus, by (6), we have that, for every ε > 0, there

is an n such that |Ay| ≤ ε|y| for every y ∈ V wn

T . Since the
dimension of V wn

T is n − p and ε is arbitrary, this implies
that A has at least n−p zero singular values. Then, ImA has
dimension at most p, and thus, Hwn

0 = ImA independently
of n, contradicting the assumption that for every n there is
xn ∈ Hwn

0 such that |xn| = 1 and |Awn(0)xn| ≤ 1/n.

Part 2: Building of the path-complete automaton

We will use projection matrices to describe the dominated
invariant splittings (H̄w, V̄w). Given a decomposition Rn =
V wt ⊕Hw

t , we define the matrix Pwt ∈ Rn×n as the projection
on Hw

t parallel to V wt . (Note that Pwt determines V wt and
Hw
t completely since ImPwt = Hw

t and kerPwt = V wt .)
The invariance property translates as Aw(s, t) ◦ Pws = Pwt ◦
Aw(s, t), and the dimension condition as rankPwt = p.



Proposition 7. Let (M,L) be a p-dominant switched
linear system. There is M ≥ 0 such that ‖Pwt ‖ ≤ M for
every w ∈ L and every t ∈ Z.

Proof: Fix T ≥ 0 such that CλT < 1
2 and define M =

3 max {‖Aw(t, t+T )‖ : w ∈ L, t ∈ Z}/ηT where η is as in
Lemma 6. We claim that ‖Pwt ‖ ≤ M . Indeed, suppose for
a contradiction there exists x ∈ Rn with |x| = 1 and nx :=
|Pwt x| > M . Define y = Pwt x/nx and z = (Pwt x− x)/nx.
Then y ∈ Hw

t and |y| = 1; and z ∈ V wt and |z| ≤ 1 + 1/nx.
Let A = Aw(t, t + T ). From (6), |Az|/|Ay| ≤ 1

2 |z|/|y| ≤
1
2 (1 + 1/nx) ≤ 2

3 (because M ≥ 3, thus nx ≤ 1
3 ).

This implies that |A(y − z)| ≥ 1
3 |Ay| ≥ 1

3η
T (the latter

coming from Lemma 6). This is a contradiction with |y−z| =
1/nx < 1/M and ‖A‖ ≤ 1

3MηT , concluding the proof.
Proof of the “only if” direction of Theorem 2: To prove the

“only if” direction, we suppose that we have a p-dominant
switched system (M,L) with dominated invariant splittings
described by the projection matrices Pwt as above.

Step 1: Let T ≥ 1 be such that CλT < 1
4 and fix 0 < ζ <

3
10 . Let P = {Pwt : w ∈ L, t ∈ Z} and observe that P is a
relatively compact subset of Rn×n as it is a bounded subset
(Proposition 7) of a finite-dimensional vector space. Hence,
there is a finite set of rank-p projection operators {P1, . . . ,
P`} such that for every Pwt ∈ P , min1≤k≤`‖Pwt −Pk‖ ≤ ζ.
In other words, {P1, . . . , P`} is a ζ-covering of P .

Step 2: We build an automaton Aut∗ = (Q,ΣT , δ) and a
set of symmetric matrices as follows: we let Q = {1, . . . , `}
be the set of states of Aut∗, and for each q ∈ Q, we let

Sq = −P>q Pq + (I − Pq)>(I − Pq) = I − Pq − P>q . (9)

Clearly, Sq is symmetric. Moreover, Sq is negative definite
on ImPq and positive definite on kerPq . Hence, In(Sq) =
(p, 0, n − p) (by Courant–Fischer Theorem; see, e.g., [10]).
The alphabet of Aut∗ is ΣT , i.e., the set of words of length T
over Σ: w0w1 . . . wT−1 ∈ ΣT . Finally, we define the set δ ⊆
Q×ΣT ×Q of admissible transitions in Aut∗ as follows: for
every w ∈ ΣT , we let q1

w→ q2 ∈ δ if and only if A>wSq2Aw ≺
κ2Sq1 for some κ > 0 where Aw = Aw(T−1) · · ·Aw(0).

Let MT = {Aw : w ∈ ΣT }. By construction, MT is
p-contracting with respect to Aut∗. We will show that every
word w in L can be read as the juxtaposition of length-T
words obtain from a path in Aut∗: w = . . . ‖u−1‖u0‖u1‖ . . .
where . . .→ u−1 → u0 → u1 → . . . is a path in Aut∗:

Step 3: To show this, let w ∈ L and w = . . . ‖u−1‖u0‖
u1‖ . . . where ut = w(tT ) . . . w(tT + T − 1) ∈ ΣT . For
every t ∈ Z, let qt ∈ Q such that ‖PwtT − Pqt‖ ≤ ζ. We
claim that for every t ∈ Z, qt ut→ qt+1 ∈ δ. To show this, we
fix t and denote A = Aut = Aw(tT, tT + T ) for simplicity
of notation. Let x ∈ Rn, we will show that

x>Sqtx < 0 =⇒ x>A>Sqt+1
Ax < 0, (10)

and the fact that A>wSqt+1
Aut
≺ κ2Sqt for some κ > 0 will

follow from the S-Lemma (see, e.g., [11, §B.2]). Therefore,
decompose x = xh + xv where xh ∈ Hw

tT and xv ∈ V wtT .
Let y = Ax, yh = Axh, and yv = Axv . We use capital
letters Xh, Xv , Yh and Yv to denote the norm of the related
vectors. For instance, Xh = |xh|.

Since ‖PwtT − Pqt‖ ≤ ζ and ‖PwtT+T − Pqt+1‖ ≤ ζ, we
have, from the definition (9) of Sq , that

x>Sqtx < 0 =⇒ (1 + 2ζ)X2
h > (1− 2ζ)X2

v , and

(1− 2ζ)Y 2
h > (1 + 2ζ)Y 2

v =⇒ y>Sqt+1
y < 0.

We also have Yh/Yv ≥ 4Xh/Xv from (6) and the choice of
T . Whence,

Y 2
h

Y 2
v

≥ 16
1− 2ζ

1 + 2ζ
>

1 + 2ζ

1− 2ζ

where we have used ζ < 3
10 . This proves Step 3.

To conclude the proof, it remains to show that from Aut∗

we can build an automaton that is path-complete for L and
for which M is p-contracting. This can be done by splitting
each transition q1

u→ q2 ∈ δ (with u a length-T -word) into T
sub-transitions (one per symbol of u). We leave the details
of the proof (which is not difficult) to the reader.

IV. NUMERICAL EXAMPLE

As mentioned in Section II, the main asset of the path-
complete p-contraction criterion is that it can be efficiently
computed for a given automaton. The Converse Lyapunov
Theorem states that, provided that we consider large enough
automata, the p-dominance of a switched linear system can
always be verified using the path-complete p-contraction
criterion. In this section, we illustrate on a numerical ex-
ample the use of the criterion to prove the p-dominance
of a switched linear system. The example also shows that,
contrary to LTI systems, the p-dominance of switched linear
systems cannot be reduced to the contraction of a single
cone; showing thereby the necessity of resorting to non-
trivial path-complete automata.

Define the 3× 3 matrices

A1 = A2 = A3 =[
2 α α
0 1− α 0
0 0 1− α

]
,

[
1− α 0 0
α 2 α
0 0 1− α

]
,

[
1− α 0 0
0 1− α 0
α α 2

]
with α = 0.3. We want to analyze the 1-dominance of the
switched linear system (M,L) with M = {A1, A2, A3}
and L = {1, 2, 3}Z (unconstrained system). Therefore, we
consider the following two automata:

a

{1, 2, 3}

Aut1

a

bc

2 1

1

23

2
3

13

Aut2

which are both path-complete for L.
(M,L) is not 1-contracting with respect to Aut1 because,

otherwise, this would mean there exists a quadratic 1-cone
that is contracted by each Ai simultaneously. This can be
proved impossible with a reasoning on the eigenspaces of
the Ai’s, and the fact that a cone contracted by Ai must
contain only the dominant eigenvector Ai (see, e.g., [1]).



However, using the algorithmic framework described in
[7], we can show that (M,L) is 1-contracting with respect
to Aut2. Indeed, if we use the following rates

a

bc

γ2

γ2

γ1

γ1γ2

γ2

γ1

γ2
γ2

Aut2
γ1 = 1.2,

γ2 = 1.1,

then we find symmetric matrices Sa, Sb and Sc with inertia
(1, 0, 2) satisfying (7) with respect to the above automaton.
The quadratic 1-cones K(Sq) = {x>Sqx ≤ 0} associated to
these matrices are represented in Figure 3.

The system is thus path-complete 1-contracting, and from
Theorem 2, we conclude that it is 1-dominant. 1-dominance
of the system asserts the existence of a family of 1-
dimensional subspaces that will attract the trajectories of
the system. For normalized trajectories, this implies the
incremental stability property (trajectories converge to each
other but not necessarily to a fixed point) for every switching
signal w ∈ L, as shown in Figure 4.

x1

x2

x3 x>Sax ≤ 0

x1

x2

x3 x>Sbx ≤ 0

x1

x2

x3 x>Scx ≤ 0

Fig. 3. Quadratic 1-cones K(Sq).

V. CONCLUSIONS

The path-complete p-contraction property was introduced
in [7] as a sufficient condition for a switched linear system to
be p-dominant. p-dominance has received much attention in
dynamical systems (aka. partially hyperbolic systems [9,12])
and control theory [13], as it allows to operate model order
reduction on complex nonlinear systems. The advantage of
the path-complete p-contraction criterion is that it can be
efficiently verified with LMI techniques.

In the present paper, we have shown that the path-complete
p-contraction property is also a necessary condition for p-
dominance: if a switched linear system is p-dominant, then
there always exist an automaton and a set of quadratic p-
cones satisfying the p-contraction property. Moreover, we
have given numerical examples showing that it is sometimes
necessary to resort to non-trivial automata in order to prove
the p-dominance of a particular system; thereby showing the
importance of the “path-complete” part of the criterion.

As a further work, we plan to extend the path-complete
p-contraction criterion to nonlinear systems. One way to
do this would be to consider approximate bisimulations
(aka. abstractions) of the system (see, e.g., [14]), and to

Fig. 4. Trajectories from different initial conditions x = [x1, x2, x3]>,
for a periodic signal w = {1, 2, 3, 1, 2, 3, . . .} ∈ L. All trajectories quickly
converge to the same orbit, as predicted by 1-dominance.

build an abstract switched linear system from the bisim-
ulation. Therefrom, drawing upon the results we obtained
for switched linear systems, we plan to develop a similar
algorithmic framework for the dominance analysis of gen-
eral complex systems; with applications, e.g., in structural
stability (aka. robustness) analysis, model order reduction,
quantized control, etc.
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