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Abstract— Hyperbolicity is a cornerstone of nonlinear dyna-
mical systems theory. Hyperbolic dynamics are characterized
by the presence of expanding and contracting directions for
the derivative along the trajectories of the system. Hyper-
bolic dynamical systems enjoy many interesting properties
like structural stability, ergodicity, transitivity, etc. In this
paper, we describe a Hybrid Systems framework to compute
invariant sets with a hyperbolic structure for a given dynamical
system. The method relies on an abstraction (aka. symbolic
image or bisimulation) of the state space of the system, and
on path-complete ‘Lyapunov-like’ techniques to compute the
expanding and contracting directions for the derivative along
the trajectories of the system. The method is illustrated on a
numerical example: the Ikeda map for which an invariant set
with hyperbolic structure is computed using the framework.

I. INTRODUCTION

Dynamical systems encountered in real-world applications
are generally subject to modeling uncertainties and parameter
variation. The robustness or structural stability of a dynami-
cal system is the property that the qualitative behavior of the
system will not be affected by a small perturbation of the
model or a small change of parameters. A classical example
of robust property of dynamical systems are their hyperbolic
fixed points (number and location): it is well known from
bifurcation theory that a fixed point x can appear/disappear,
or become stable/unstable only if the Jacobian matrix Dfx =
f ′(x) at x has an eigenvalue on the unit circle (discrete-time
case) or on the imaginary axis (continuous-time case); in
other words, a bifurcation can only occur at non-hyperbolic
fixed points.

The concept of hyperbolicity was introduced in the 1960’s,
by Dmitri Anosov and Stephen Smale, as part of a general
effort to study dynamical systems that are structurally stable
not only at single fixed points but on more general subsets,
e.g., on their whole domain or on invariant sets. Invariant sets
with hyperbolic structure are characterized by the presence of
expanding and contracting directions for the derivative along
the trajectories of the system. Therefore, they generalize the
notion of hyperbolic fixed point—whose Jacobian matrix is
a linear operator with a stable (contracting) and an unstable
(expanding) eigenspace.

Hyperbolicity, which was first developed for flows and dif-
feomorphisms (i.e., smooth invertible discrete-time systems),
has rapidly become a cornerstone of dynamical systems
theory and finds applications in many different areas (e.g.,
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chaos, ergodic theory, entropy, structurally stability, etc.). For
instance, it can be shown that, under some mild assumptions
(e.g., Axiom A, or no-cycle condition, etc.), the structurally
stable dynamical systems are precisely the ones that are
hyperbolic on some distinguished sets (e.g., limit set, chain-
recurrent set, etc.). We refer the reader to [21], [9] for a
comprehensive survey of results related to hyperbolic flows
and diffeomorphisms. Hyperbolicity has been generalized in
several directions (e.g., with partial hyperbolicity, nonuni-
form hyperbolicity, hyperbolic endomorphisms) allowing one
to analyze a broader class of systems while retaining the
main features of hyperbolic dynamics [11], [2], [4], [17].

In recent years, hyperbolicity has also been successfully
applied in different areas of control theory (e.g., symbolic
control, quantized control, etc.). Indeed, the robustness of
hyperbolic dynamics to system perturbations makes them
particularly suitable for numerical simulation and verifica-
tion; see, e.g., [5]. Moreover, the existence of expanding
and contracting directions for the derivative can be used to
define a partition of the state space that is adapted to the
system (Markov Partition), or to estimate the entropy of the
system [6]. We refer the reader to [15] for a comprehensive
introduction to “hyperbolic control theory”.

Although the behavior of hyperbolic dynamical systems
is now well understood, the question of deciding whether a
dynamical system is hyperbolic or not remains a challenging
task, and to the best of the authors’ knowledge, only a
few results on the formal verification of hyperbolicity with
numerical methods are available in the literature. (See also
Subsection IV-D for related works.)

In this paper, we draw upon modern optimization and
control techniques to propose a novel approach for the
systematic verification of hyperbolicity of dynamical sys-
tems. Our framework combines ideas from symbolic control
(aka. bisimulation or abstraction approach) with algorithmic
techniques from path-complete Lyapunov theory [14], and
dominance [8], [3], to derive a new set of Linear Matrix
Inequalities for the characterization of hyperbolic dynamics.
This results in a sound algorithm for the automatic computa-
tion of invariant sets with hyperbolic structure for nonlinear
dynamical systems. In section V, we show on a numerical
example the efficiency of our approach.

The paper is organized as follows: in Section II, we
introduce the fundamental concepts related to hyperbolic
dynamics. In Section III, we introduce the quadratic cone
field criterion as a sufficient condition for a dynamical
system to have an invariant set with hyperbolic structure.
In Section IV, we provide an algorithmic framework for the



computation of the quadratic cone field criterion that relies
on an abstraction of the system and on LMIs. Finally, in
Section V, we illustrate the use of the algorithmic framework
on a numerical example.

II. HYPERBOLIC DYNAMICAL SYSTEMS

In this work, we consider a discrete-time dynamical sys-
tem

x(t+ 1) = f(x(t)), x ∈M,

where M ⊆ Rd and f : M →M is a continuous map. If D
is a subset of M , f(D) denotes its image {f(x) : x ∈ D}.
A subset D ⊆M is said to be invariant for f if f(D) = D.
If f : M → M is bijective and both f and f−1 are C1

functions, then we say that f is a diffeomorphism.
Let us now introduce the notion of hyperbolicity. There-

fore, we let ‖·‖ be any vector norm on Rd. The derivative
(aka. Jacobian matrix) of f at x is denoted by Dfx ∈ Rd×d.
If f is a diffeomorphism, note that, since (f ◦ f−1)(x) = x,
we have that Df−1x exists and is equal to (Dff−1(x))

−1. If
E ⊆ Rd, then Dfx(E) denotes its image by Dfx.

Definition 1. [21], [10]. Let f be a diffeomorphism, and
Λ ⊆M be an invariant set for f . Then, Λ is said to have a
hyperbolic structure for f (or f is hyperbolic on Λ) if (i) for
every x ∈M , there exists a splitting Rd = Eu

x ⊕ Es
x where

Eu
x and Es

x are linear subspaces; (ii) the splitting is invariant
under the action of the derivative: Dfx(Eu

x ) = Eu
f(x) and

Dfx(Es
x) = Es

f(x); and (iii) there exist 0 < λ < 1 and
C ≥ 1 independent of x such that, for every n ≥ 0,
• ‖Dfnx v‖ ≤ Cλn‖v‖ for every v ∈ Es

x;

• ‖Df−nx v‖ ≤ Cλn‖v‖ for every v ∈ Eu
x .

Remark 1. Properties (ii) and (iii) implies that the sub-
spaces Eu

x and Es
x in Definition 1 are unique and depend

continuously on x; see, e.g., Proposition 1.3.7 in [10]. This
implies, among other things, that the dimensions of Eu

x and
Es

x are constant on every connected components of Λ. /
As mentioned in the introduction, hyperbolic dynamics en-

joy many interesting properties in terms of structural stability
(aka. robustness to system perturbations). For instance, it was
shown by M. Hirsch and C. Pugh [13] that invariant sets with
a hyperbolic structure (for a given diffeomorphism) have the
same structural stability properties as hyperbolic fixed points.
We refer the reader to [21] for a comprehensive survey of
structural stability results related to hyperbolic dynamics.

Remark 2. The notion of hyperbolicity is generally defined
for the more general class of dynamical systems on smooth
Riemannian manifolds [21], [10]. For the sake of simplicity,
we have restricted ourselves to the case of M ⊆ Rd in
this paper. The reader will verify that, by means of atlases
and local coordinate systems (see, e.g., [16]), all the results
presented in this paper can be generalized to dynamical
systems defined on smooth Riemannian manifolds. /

Example 1 (The hyperbolic toral automorphism). A classi-
cal example of hyperbolic diffeomorphism is the hyperbolic
toral automorphism (aka. Arnold’s cat map):

f(x) = Ax mod 1, A =

[
2 1
1 1

]
, M = R2/Z2.

The eigenvalues of A are equal to λ± := (1 ±
√

5)/2. At
every x ∈ M , the derivative of fn is given by Dfnx = An.
The stable subspace Es

x in Definition 1 is then given by the
eigenspace associated to λ− ≈ −0.618 while the unstable
subspace Eu

x is given by the eigenspace associated to λ+ ≈
1.618. The diffeomorphism f is thus hyperbolic on its whole
domain. /

III. QUADRATIC CONE FIELD CRITERION

In this section, we introduce a sufficient condition for a
dynamical system to be hyperbolic on a given invariant set.
Connections of this criterion with other concepts from dy-
namical systems theory, like the Alekseev cone field criterion
or the notion of dominance for continuous-time systems and
linear systems, are discussed at the end of this section.

A. Description of the criterion

The criterion relies on the contraction property of a field
of quadratic cones defined at every point of the invariant set.
Quadratic cones are defined by means of symmetric matrices
with fixed inertia. (The inertia of a symmetric matrix S,
denoted by In(S), is the triplet (i−, i0, i+) where i−, i0 and
i+ are respectively the number of negative, zero, and positive
eigenvalues of S.) In the sequel, we let p be a fixed integer
in {1, . . . , d− 1}. We will say that S ∈ Rd×d is a p-matrix
if S is symmetric and has inertia (p, 0, d− p).

Definition 2. A field of p-matrices on Λ ⊆M is a function
Φ that associates a p-matrix Φx to each x ∈ Λ. Moreover,
we will assume that the field Φ is bounded, i.e., there is
K > 0 such that |v>Φxv| ≤ K‖v‖2 for every x ∈ Λ and
every v ∈ Rd.

Definition 3 (Quadratic cone field criterion). Let f : M →
M be a diffeomorphism, and Λ ⊆M be invariant for f . Let
Φ be a field of p-matrices on Λ. We say that f satisfies the
cone field criterion with respect to Φ (or that Φ is contracting
for f ) if there is ε > 0 such that, for every x ∈ Λ,

Df>x Φf(x)Dfx − Φx � −εI (1)

where I is the d× d identity matrix.
The geometric interpretation of Definition 3 is the follow-

ing. If we define Kx as the negative level set of Φx:

Kx = {v ∈ Rd : v>Φxv ≤ 0},

then it is not hard to see that Kx is a cone: that is, v ∈ Kx

implies that αv ∈ Kx for every α ≥ 0. Because it is defined
from a p-matrix, we call Kx a quadratic p-cone. In fact, p
is also equal to the maximal dimension of a linear subspace
contained in Kx (e.g., the eigenspace associated to the p
negative eigenvalues of Φx). Finally, (1) implies that {Kx}x
is forward invariant by Df , i.e., for every x ∈ Λ, Kx is
mapped by Dfx into Kf(x):

Dfx(Kx) ⊆ Kf(x).

Similarly, if we let Kc
x be the “dual cone” of Kx:

Kc
x = {v ∈ Rd : v>Φxv ≥ 0} = cl(Rd \ Kx),



then Kc
x is a quadratic (d − p)-cone. Moreover, (1) implies

that {Kc
x}x is backward invariant by Df , i.e., Kc

x is mapped
by Df−1x into the cone Kc

f−1(x):

Df−1x (Kc
x) ⊆ Kc

f−1(x). (2)

The following lemma on the minimal growth rate of the
derivative along trajectories in forward and backward time
is instrumental:

Lemma 1. Let f , Λ ⊆ M and Φ be as in Definition 3,
and {Kx}x and {Kc

x}x be as above. Then, there exist C ≥ 1
and µ > 1 such that, for every x ∈ Λ and every n ≥ 0,
• ‖Dfnx v‖ ≥ Cµn‖v‖ for every v ∈ Kx;

• ‖Df−nx v‖ ≥ Cµn‖v‖ for every v ∈ Kc
x.

Proof: First, let v ∈ Kx. Since Φ is bounded, (1) implies

v>Df>x Φf(x)Dfxv ≤ v>Φxv − ε‖v‖2

≤ v>Φxv + εK−1v>Φxv ≤ γv>Φxv

with 1 < γ ≤ 1 + εK−1. Thus, for n ≥ 0,

−K‖Dfnx v‖2 ≤ v>(Dfnx )>Φfn(x)Df
n
x v

≤ γn−1v>Df>x Φf(x)Dfxv

≤ γn−1(−ε‖v‖2x + v>Φxv) ≤ −εγn−1‖v‖2.

Now, let v ∈ Kc
x. With a similar reasoning, we find

v>(Df−1x )>Φf−1(x)Df
−1
x v ≥ γv>Φxv

with 1 < γ ≤ (1− εK−1)−1. Thus, if n ≥ 0,

K‖Df−nx v‖2 ≥ v>(Df−nx )>Φf−n(x)Df
−n
x v

≥ γn−1v>(Df−1x )>Φf−1(x)Df
−1
x v

≥ γn−1(ε‖v‖2x + v>Φxv) ≥ εγn−1‖v‖2.

It is now straightforward to conclude the proof.
The developments above lead to the following theorem

stating that the quadratic cone field criterion is a sufficient
condition for hyperbolicity:

Theorem 2. Let f : M → M be a diffeomorphism, and
let Λ ⊆ M be an invariant set for f . If there exists a field
of p-matrices defined on Λ that is contracting for f , then Λ
has a hyperbolic structure for f .

Proof: Let x ∈ Λ. We show the existence of the subspace
Es

x in Definition 1 (the proof of the existence of the subspace
Eu

x is similar by considering f−1 instead of f ). Define Es
x

as the set of vectors v ∈ Rd such that Dfnx v ∈ Kc
fn(x) for

every n ≥ 0. From (2) and the definition of Es
x, it is clear

that Es
x satisfies (ii) in Definition 1: Dfx(Es

x) = Es
f(x). The

main trick of the proof is to show that Es
x is a q-dimensional

subspace (where q = d− p for simplicity of notation).
To show this, first observe that Es

x is the intersection of
the sets Sn := Df−nfn(x)(K

c
fn(x)) for n ≥ 0. Now, (2) implies

that S1 ⊇ . . . ⊇ Sn ⊇ . . . . Moreover, each Sn includes a
q-dimensional subspace (because it is the linear image of a
quadratic q-cone). This implies that Es

x =
⋂

n Sn includes
a q-dimensional subspace (by compactness of the set of all
q-dimensional linear subspaces of Rd with respect to the

Grassmann metric). We will show in the last part of the
proof that Es

x is actually a q-dimensional linear subspace.
Before this, we show that Es

x satisfies the property (iii) of
Definition 1, i.e., that ‖Dfnx v‖ ≤ C ′λn‖v‖ for all v ∈ Es

x

and n ≥ 0. This is direct from the fact that, if v ∈ Es
x and

w = Dfnx v, then w ∈ Kc
fn(x) by definition of Es

x. Hence,
by Lemma 1, ‖v‖ = ‖Df−nx w‖ ≥ Cµn‖w‖. It suffices to
take C ′ = C−1 and λ = µ−1.

Finally, we show that Es
x is a q-dimensional subspace.

Therefore, let V s be a q-dimensional subspace included in
Es

x, and V u be a p-dimensional subspace included in Kx

(which is a quadratic p-cone). Assume that Es
x 6= V s. Then,

there exists v ∈ Es
x such that v = vs + vu with vs ∈ V s

and vu ∈ V u \ {0}. Then, Lemma 1 implies that ‖Dfnx (v−
vs)‖ = ‖Dfnx vu‖ ≥ Cµn‖vu‖ for all n ≥ 0. A contradiction
with the previous paragraph, and the fact that v − vs ∈ Es

x.
This concludes the proof of the theorem.

B. Connections with the literature

The quadratic cone field criterion has a strong connection
with the Alekseev cone field criterion introduced by V. Alek-
seev in 1968 [1]. Indeed, the proof of Theorem 2 is grounded
in the result that the Alekseev cone field criterion provides a
sufficient condition for a dynamical system to be hyperbolic
on a given invariant set; see, e.g., Theorem 2 in [19] or Theo-
rem 3.10 in [10]. However, whereas Alekseev only provides
definitions of properties, with no algorithms for verifying
these properties in a systematic way, our characterization of
hyberbolicity, on the other hand, is meant to be translated into
efficient algorithms via modern optimization techniques.

The use of symmetric matrices and Linear Matrix Inequali-
ties to express the contraction and expansion of the derivative
along the trajectories of the dynamical system is inspired
from the work on p-dominant continuous-time systems by
F. Forni and R. Sepulchre [8]. The novelty of our approach
is to increase the expressiveness by moving from a uniform
quadratic cone to a field of quadratic cones while providing
a computational framework for the computation of the cone
field. This requires the introduction of an abstraction of the
system and tools from path-complete Lyapunov theory, as
explained in Section IV.

Finally, the field of p-matrices Φx can be regarded as a
Finsler–Lyapunov function, that is, a “Lyapunov” function
acting on the augmented system (x, δx) 7→ (f(x), Dfxδx),
by defining the function V (x, δx) = δx>Φxδx on Λ × Rd.
Finsler–Lyapunov functions have been successfully applied
for the contraction (aka. incremental stability, or δ-ISS) anal-
ysis of nonlinear dynamical systems; see, e.g., [18], [7]. The
difference of our approach is that the functions V (x, δx) =
δx>Φxδx are not necessarily positive-definite (whereas this
is a requirement for contraction analysis), thereby allowing
for directions in which the system is expanding.

IV. COMPUTATIONAL FRAMEWORK

In this section, we describe an algorithmic framework for
computing a field of p-matrices Φx that is contracting for
a given dynamical system. By assuming that the field of



p-matrices is piecewise constant, the computation can be
reduced to the feasibility of a finite set of Linear Matrix
Inequalities. The restriction to a piecewise constant field is
performed by discretizing the state space into a finite set of
regions, as explained in the following subsection.

A. Abstraction of a dynamical system

In this subsection, f : M →M is a continuous map (not
necessarily diffeomorphic). A finite covering of Ω ⊆ M is
a finite collection M = {M1, . . . ,MN} of compact regions
Mi ⊆ M such that Ω ⊆

⋃
iMi. (In particular, this implies

that Ω is compact.)
Definition 4 (Abstraction, aka. Symbolic Image). An ab-

straction of the dynamical system f : M → M on Ω ⊆ M
is an ordered pair (M, E) where M = {M1, . . . ,MN} is a
finite covering of Ω, and E ⊆ {1, . . . , N}2 is a set of “edges”
satisfying: for every i, j ∈ {1, . . . , N}, f(Mi) ∩Mj 6= ∅
implies that (i, j) ∈ E.

If (M, E) is an abstraction, we denote by G = G(M, E)
the directed graph whose set of vertices is equal to {1, . . . ,
N}, and whose edges are defined by E: that is, there is an
edge i→ j in G if and only if (i, j) ∈ E. See Fig. 1 for an
illustration.

Fig. 1. Top: Abstraction of the Ikeda mapping (presented in Section V)
on Ω = [−1.1, 3.4] × [−1.5, 1.8]. The image of the region M12 (in
red) is represented in dark blue. The different regions that intersect the
image of M12 are represented in light blue. Bottom: Graph representing
the transitions (edges) between the different regions of the abstraction. The
outgoing edges from vertex 12 are highlighted in red.

Definition 5 (Recurrent vertex). A vertex v of a directed
graph G is called recurrent if there is a nontrivial (i.e.,
containing at least one edge) path from v to v in G. (See
Fig. 2 for an illustration.)

1

2

3

4 5

Fig. 2. Directed graph. The vertices 1, 2, 3, 5 are recurrent.

The next proposition allows one to compute an over- (or
outer-) approximation of the maximal invariant set contained
in Ω if one has an abstraction of f on Ω ⊆ M ; see, e.g.,
Theorem 44 in [20] for more details. The property in the
proposition will also be crucial in the proof of the correctness
of the algorithm (Theorem 6 below).

Proposition 3. Let (M, E) be an abstraction of f on Ω ⊆
M and let Λ ⊆ Ω be invariant for f . Then, for every vertex
i of G = G(M, E) such that Mi ∩ Λ 6= ∅, there exist two
recurrent vertices j1 and j2 such that there is a path from j1
to i in G and there is a path from i to j2 in G.

Proof: Let x ∈ Mi ∩ Λ 6= ∅. Then, fn(x) ∈ Λ for every
n ≥ 0. This implies that there exists a forward infinite path in
G starting from i. Since the number of vertices in G is finite,
there is at least one vertex that is visited twice along the path.
This vertex is recurrent. Similarly, because f(Λ) = Λ, for
every n ≥ 0 there is an xn ∈ Λ such that fn(xn) = x.
Hence, there exists a backward infinite path in G ending at
i, and for the same reasons as above, this backward path
must contain a recurrent vertex.

B. Computation of the quadratic cones

In this subsection, f : M → M is a diffeomorphism and
Λ ⊆M is a compact invariant set for f . We let (M, E) be an
abstraction of f on Λ. We assume that Mi∩Λ 6= ∅ for each
Mi ∈ M (otherwise it suffices to remove the regions with
Mi∩Λ = ∅). We will explain how to compute a contracting
field of p-matrices that is “adapted” to this abstraction.

Definition 6 (Path-complete contracting set of p-matrices).
Let f and (M, E) be as above. Let {S1, . . . , SN} ⊆ Rd×d,
with N = |M|, be a set of p-matrices. We say that {Si}i is
path-complete contracting with respect to f and (M, E) if,
for every (i, j) ∈ E and every x ∈Mi ∩ f−1(Mj),

Df>x SjDfx − Si ≺ 0. (3)

Theorem 4. Let f , Λ ⊆M and (M, E) be as above, and
suppose there exists a set of p-matrices {Si}i ⊆ Rd×d that
is path-complete contracting with respect to f and (M, E).
Then, f is hyperbolic on Λ.

Proof: We define a field of p-matrices Φ on Λ as follows:
for each x ∈ Λ, define Φx = Si(x) where i(x) is the smallest
integer i ∈ {1, . . . , |M|} such that x ∈ Mi. Because Dfx
is continuous in x, Mi ∩ f−1(Mj) is compact and the set
{Si}i is finite, we have that (i) Φ is bounded, and (ii) the
right-hand term of (3) can be replaced by −εI for ε > 0
small enough. This shows that Φ satisfies the hypothesis of
Theorem 2, concluding the proof of the theorem.

Condition (3) cannot be directly handled by a computer
because it involves an infinite number of LMIs. To overcome



this limitation, we assume that for every edge (i, j) ∈ E, we
have an approximation Āi,j of Dfx on Mi ∩ f−1(Mj):

Definition 7 (δ-approximation of Df ). Let f and (M, E)
be as above. For every edge (i, j) ∈ E, let Āi,j be a d × d
matrix. For δ > 0, we say that the family of matrices {Āi,j},
indexed by (i, j) ∈ E, is a δ-approximation of Df if, for
every (i, j) ∈ E and every x ∈Mi ∩ f−1(Mj),

‖Dfx − Āi,j‖2 ≤ δ min{‖Āi,j‖−12 , 1}.

where ‖·‖2 denotes the matrix spectral norm.
Now, let (M, E) and {Āi,j}(i,j)∈E be as in Definition 7,

and consider the following feasibility problem:

find Si ∈ Rd×d symmetric, ε ∈ R
subject to Ā>i,jSjĀi,j − Si � −εI , (i, j) ∈ E,

−I � Si � I , 1 ≤ i ≤ N ,
ε > 2δ + δ2.

(4)

The following theorem makes the link between Theorem 4
and the feasibility of (4). (Remember that In(S) denotes the
inertia of S.)

Theorem 5. Let δ > 0, and assume that {Āi,j}(i,j)∈E is
a δ-approximation of Df . If (4) admits a feasible solution
({Si}i, ε) with In(Si) = (p, 0, d− p) for every 1 ≤ i ≤ N ,
then {Si}i is path-complete contracting with respect to f
and (M, E); and thus f is hyperbolic on Λ.

Proof: Let x ∈ Mi ∩ f−1(Mj), and denote A = Āi,j for
simplicity of notation. By Definition 7, we have that Dfx =
A+ ∆ where ‖∆‖2 ≤ δ min{‖A‖−12 , 1}. Hence,

Df>x SjDfx − Si = A>SjA + ∆>SjA

+A>Sj∆ + ∆>Sj∆− Si

� −εI + ∆>SjA +A>Sj∆ + ∆>Sj∆

� −εI + 2‖∆‖2 ‖A‖2I + ‖∆‖22I
� −εI + 2δI + δ2I.

Thus, {Si}i satisfies (3).
Theorem 6 below states that the output of (4) can be used

to decide the existence of a path-complete contracting set of
matrices with respect to (M, E), although no constraints on
the inertia of the matrices {Si}i are formulated in (4). This
is in fact the main asset of the computational framework
as it allows one to use standard SDP solvers to compute a
path-complete contracting set of matrices.

Theorem 6. If (4) admits a feasible solution ({Si}i, ε)
with In(Si) = (p, 0, d− p) for every 1 ≤ i ≤ N , then every
feasible solution ({S′i}i, ε′) satisfies In(S′i) = (p, 0, d − p)
for all 1 ≤ i ≤ N .

Proof: The proof relies on the following result, sometimes
referred to as the Main Inertia Theorem, due to O. Taussky
[22] and R. Hill [12] (we do not provide a proof here):

Lemma 7 (Main Inertia Theorem). Let A ∈ Rd×d. There
exists a symmetric matrix S ∈ Rd×d satisfying A>SA−S ≺
0 if and only if A has no eigenvalues with |λ| = 1. Moreover,
in this case, S has inertia (r, 0, d−r), where r is the number
of eigenvalues of A with |λ| > 1.

Using Lemma 7, we will show this key property: “In(Si)
at the recurrent vertices i is uniquely determined by G =
G(M, E) and {Āi,j}.” This will imply that if (4) admits
a solution with In(Si) = (p, 0, d − p) for every 1 ≤ i ≤
N , then any other feasible solution ({S′i}i, ε′) will satisfy
In(S′i) = (p, 0, d− p) at the recurrent vertices i.

To show the above key property, let ({Si}i, ε) be a feasible
solution of (4). Let i ∈ {1, . . . , N} be a recurrent vertex, and
fix a path P : i = i0 → i1 → . . .→ ik = i from i to i in G.
Define AP = Āik−1,ik · · · Āi1,i2Āi0,i1 and observe that the
first set of constraints in (4) implies that A>PSiAP −Si ≺ 0.
Hence, by Theorem 7, we get that the inertia of Si is uniquely
determined by the eigenvalues of AP .

To complete the proof, it remains to show that In(S′i) =
(p, 0, d − p) also holds at the non-recurrent vertices. Using
Proposition 3, we would be done if we can show that: (a) “if
there is a path from i to j in G(M, E) and In(S′j) = (p,
0, d − p), then S′i has at least p negative eigenvalues”; and
(b) in the other direction: “if there is a path from j to i in
G(M, E) and In(S′j) = (p, 0, d − p), then S′i has at least
d − p positive eigenvalues.” For a proof of (a) and (b), we
refer the reader to Proposition 4 in [3].

C. Discussion of the algorithm

Putting together the results of Subsections IV-A and IV-B,
we discuss the completeness and computational complexity
of the algorithm.

1) Termination of the algorithm: The two parameters that
appear in the algorithm are the way the abstraction of Ω ⊆
M is built, and the choice of the Df -approximations Āi,j .
The first parameter will have an impact on how accurate the
outer-approximation of the maximal invariant set Λ in Ω will
be; and both parameters will influence the feasibility of (4).
Moreover, the existence of a path-complete contracting set of
p-matrices has been presented only as a sufficient criterion
for hyperbolicity (Theorem 4), so that nothing guarantees
that the algorithm will terminate in finite time.

However, it can be shown that the “path-complete con-
tracting set of p-matrices” criterion is asymptotically non-
conservative, meaning that, provided the accuracy of the
abstraction of Λ is good enough (this can be achieved, e.g.,
by reducing the size of the regions), there will always exist a
path-complete contracting set of p-matrices if f is hyperbolic
on Λ. (The proof is left for a further paper; we refer the
interested reader to [10] for related results on the sufficiency
and necessity of the Alekseev cone criterion.)

This implies that the algorithm is semi-complete. This
means that, if f is hyperbolic on its maximal invariant set
Λ contained in Ω ⊆ M , then by computing fine enough
abstractions of Ω, the algorithm will always be able to prove
that f is hyperbolic on an outer-approximation of Λ.

2) Computational complexity: The complexity of the al-
gorithm is mainly driven by the complexity of computing
abstractions of the invariant set Λ. For a given size of the
regions, this grows in the worst case as a power of the
dimension of the system; this is the curse of dimensionality
of the abstraction approach. On the other hand, once the



abstraction is computed, it suffices to run a SDP solver to
find whether there is or not a path-complete contracting set
of matrices adapted to this abstraction. The SDP problem
will involve N = |M| matrix variables of dimension d× d
and m = |E|+ 2N constraints; typically, m ∈ O(N).

D. Related works

The hyperbolicity verification problem has been addressed
by George Osipenko in [20]; this is the only other work
on the algorithmic hyperbolicity verification we are aware
of. Osipenko’s approach relies on constructing abstractions
of the augmented system (x, δx) 7→ (f(x), Dfxδx). This
requires to discretize the state space M and the “tangent
space” Rd (more precisely, the projective space PRd−1) of
the system. The Morse spectrum of the system can then be
over-approximated by bounding the minimal and maximal
growth rate of the derivative along cycles in the graph of
the abstraction. A certificate of hyperbolicity of the system
is then obtained if the over-approximation of the Morse
spectrum keeps away from zero.

This approach also suffers from the curse of dimensional-
ity since it requires to construct abstractions of a space with
dimension 2d−1. It is difficult to have a further comparison
between the two methods because this will highly depend
on the size of the abstraction of Λ, which can be smaller
than O(ηd), where η is the size of the regions Mi and d the
dimension of the system, if Λ is low-dimensional.

V. NUMERICAL EXAMPLE

In this section, we illustrate the use of the computational
framework described above on a numerical example. There-
fore, we consider the modified Ikeda mapping:

f(x, y) =
(
r + a(x cos τ − y sin τ), b(x sin τ + y cos τ)

)
with τ = C1−C3/(1 + x2 + y2), r = 2, C1 = 0.4, C3 = 6,
a = 0.9, b = −0.9. The modified Ikeda mapping is known
to have an invariant set in Ω = [−1.1, 3.4]× [−1.5, 1.8] with
a hyperbolic structure; see [20].

We have considered abstractions of the maximal invariant
set Λ contained in Ω as represented in Fig. 3. In order to
obtain an abstraction that δ-approximates Df with δ = 0.08,
we have used hx = 0.0023 and hy = 0.0017. This leads to
an abstraction with 2454 vertices and 9390 edges. For this
abstraction, (4) is feasible and all feasible solutions ({Si}i, ε)
satisfy In(Si) = (1, 0, 1) for every i. Hence, f is hyperbolic
on its maximal invariant set Λ contained in Ω.
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