
JOTA manuscript No.
(will be inserted by the editor)

On the Quality of First-Order Approximation of Functions with Hölder
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Abstract We show that Hölder continuity of the gradient is not only a sufficient condition, but
also a necessary condition for the existence of a global upper bound on the error of the first-
order Taylor approximation. We also relate this global upper bound to the Hölder constant of the
gradient. This relation is expressed as an interval, depending on the Hölder constant, in which the
error of the first-order Taylor approximation is guaranteed to be. We show that, for the Lipschitz
continuous case, the interval cannot be reduced. An application to the norms of quadratic forms
is proposed, which allows us to derive a novel characterization of Euclidean norms.
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1 Introduction

The purpose of this paper is to investigate the relation between two properties of a real-valued
function, which play crucial roles in optimization. The first property of interest is the Hölder
continuity of the gradient, which means that the variation of the gradient of the function between
two points is upper bounded by a power (with exponent smaller than or equal to one) of the
distance between the two points; up to some multiplicative constant, called the Hölder constant
of the gradient. The second property is that there exists a global upper bound on the error of
the first-order Taylor approximation of the function. This global upper bound takes the form of
a power (with exponent between one and two) of the distance between the point of interest and
the reference point for the Taylor approximation; the power of the distance can be scaled by a
multiplicative constant, called the approximation parameter of the function.

The class of functions with Hölder continuous gradient is ubiquitous in optimization. Indeed,
the vast majority of first-order optimization methods (e.g., the gradient descent) requires Hölder
continuity of the gradient to compute the optimal step size and to assert the convergence of the
method to a stationary point [1–4]. It is well known that, if a function has Hölder continuous
gradient, then there is a global upper bound on the error of the first-order Taylor approximation
of the function at any point. Actually, it appears that the majority of the above-mentioned devel-
opments only make use of the Hölder continuity of the gradient as a convenient sufficient condition
to ensure the global upper bound on the error of the first-order Taylor approximation.

For example, in the global convergence analysis found in [2, Section 3], the function is assumed
to have Hölder continuous gradient, and the very first step is a lemma, stating that this property
implies the existence of a global upper bound on the error of the first-order Taylor approximation
of the function. In fact, the main complexity result [2, Corollary 2] can be obtained by assuming
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the global upper bound on the error of the first-order Taylor approximation, while disregarding
the Hölder continuity of the gradient.

Another evidence of the prominent importance of the second property (global upper bound
on the error of the first-order Taylor approximation) over the first one (Hölder continuity of the
gradient) is that it is a generalization of the second property—and not of the first one—that is used
as an assumption in [5] to generalize global complexity bounds for the minimization of functions
defined on Riemannian manifolds.

As already mentioned, the first property is sufficient for the second one. The following questions
then naturally arise. Is it also necessary? And, if it is, how can we relate the Hölder constant of the
gradient to the approximation parameter arising in the second property? To the best of the authors’
knowledge, an answer to this second question is available in the literature only for convex functions
with Hölder exponent of the gradient equal to one (the particular case of Hölder continuity with
exponent equal to one is generally referred to as Lipschitz continuity); see, e.g., [6, Theorem 2.1.5].
However, this second question is important for its implications in optimization: The upper bound
on the error of the first-order Taylor approximation is used to compute the step size and to estimate
the global rate of convergence of first-order optimization methods; the more accurately we know
this bound, the better we can choose the step size and estimate the rate of convergence (see, e.g.,
Example 3.1).

In this paper, we provide an answer to the above questions. We show in Theorem 4.1 that a
function satisfies the second property, if and only if it satisfies the first one. We also provide an
interval, depending on the Hölder constant of the gradient, in which the approximation parameter
of the function is guaranteed to be. We show that, in the case of functions with Lipschitz continuous
gradient and quadratic upper bound on the first-order Taylor approximation, this interval is tight
(see Example 5.1). We also provide a more detailed analysis, when the domain of the function is
endowed with a Euclidean norm, i.e., a norm induced by a scalar product. Finally, we apply these
results to quadratic functions; see Section 6. This allows us to obtain a novel characterization of
Euclidean norms.

The paper is organized as follows. In Section 2, we introduce notation and definitions. The
questions we address are motivated in Section 3 with an example that demonstrates their impor-
tance in optimization. In Section 4, we prove the equivalence between the two properties described
above, and explain the relation between the Hölder constant of the gradient and the approxima-
tion parameter. In Section 5, we particularize the results of Section 4 to the case of functions with
Lipschitz continuous gradient, and we show that the bounds, derived in this specific case, are tight.
The application to quadratic functions is presented in Section 6.

2 Notation and Preliminaries

In the sequel, E is a real finite-dimensional normed vector space with norm ‖·‖. The norm ‖·‖ is
said to be Euclidean, if it is induced by a scalar product. Equivalently, ‖·‖ is Euclidean, if and only
if every pair of vectors u, v ∈ E satisfies the parallelogram law ‖u+v‖2 +‖u−v‖2 = 2‖u‖2 +2‖v‖2
(Jordan–von Neumann theorem [7]). In this paper, we will consider both cases of Euclidean and
non-Euclidean norms.

On R, we denote the absolute value by |·|. The dual of E is the space of linear maps from E to
R and is denoted by E∗. We denote by 〈ϕ, h〉 the image of h ∈ E by ϕ ∈ E∗. We endow E∗ with
the dual norm, ‖·‖∗, defined by

‖ϕ‖∗ = max {〈ϕ, h〉 : h ∈ E, ‖h‖ = 1}.
Let f be a function from E to R. In the sequel, we will always assume that f is differentiable.

For x ∈ E, we denote by f ′(x) the derivative—which we also term gradient as in [1]—of f at
x. Note that f ′(x) ∈ E∗. (Thus it acts on vectors h ∈ E, and 〈f ′(x), h〉 is sometimes called the
directional derivative of f at x, in the direction h.)

The first property of interest is defined by:

Definition 2.1 (ν-Hölder continuous gradient) Let 0 ≤ ν ≤ 1. We say that f has ν-Hölder
continuous gradient, if there exists an M ≥ 0, such that, for every x, y ∈ E,

‖f ′(x)− f ′(y)‖∗ ≤M‖x− y‖ν . (1)
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In this case, it is easily seen that there exists a smallest M satisfying inequality (1) for every
x, y ∈ E. This M is called the ν-Hölder constant of the gradient of f , and is denoted by Mf (ν):

Mf (ν) := sup
x6=y

‖f ′(x)− f ′(y)‖∗
‖x− y‖ν <∞.

Note that not every function has ν-Hölder continuous gradient for some ν ∈ [0, 1].1 The next
definition particularizes the former for ν = 1.

Definition 2.2 (Lipschitz continuous gradient) We say that f has Lipschitz-continuous gra-
dient, if f has 1-Hölder continuous gradient. In this case, Mf (1) is called the Lipschitz constant of
the gradient of f .

As for the second property of interest in this paper, it reads as:

Definition 2.3 (ν-approximable) We will say that f is ν-approximable, if there exists an L ≥ 0,
such that, for every x, y ∈ E,

|f(y)− f(x)− 〈f ′(x), y − x〉| ≤ L

1 + ν
‖y − x‖1+ν . (2)

The smallest such L will be called the ν-approximation parameter of f , and will be denoted by
Lf (ν):

Lf (ν) := (1 + ν) sup
x 6=y

|f(y)− f(x)− 〈f ′(x), y − x〉|
‖y − x‖1+ν

<∞.

Remark 2.1 Clearly, Definitions 2.1–2.3 are invariant under translation, and addition of linear
functions. In other words, if g(x) = f(x+ a) + 〈ϕ, x〉 + c for some a ∈ E, ϕ ∈ E∗ (i.e., ϕ is
a linear map from E to R), and c ∈ R, then g is ν-approximable (resp. has ν-Hölder continuous
gradient), if and only if f is ν-approximable (resp. has ν-Hölder continuous gradient); and moreover,
Mg(ν) = Mf (ν), and Lg(ν) = Lf (ν).

The following proposition is a classical result in optimization. It states that, if f has ν-Hölder
continuous gradient for some 0 ≤ ν ≤ 1, then f is ν-approximable. Moreover, the ν-Hölder constant
is an upper bound on the ν-approximation parameter:

Proposition 2.1 Let f have ν-Hölder continuous gradient. Then, f is ν-approximable, and Lf (ν) ≤
Mf (ν).

Proof See [2, Lemma 1], for instance. ut

3 Motivation

We present an example of optimization method, which uses inequality (2) to assert the convergence
of the method to a stationary point. To compute the step size, the method requires an L satisfying
(2). For a given such L, the global complexity of the method is proportional to L1/ν . It is thus
beneficial to choose L as small as possible, ideally L = Lf (ν). The results in the next section
provide an interval (or a specific value), depending on Mf (ν), in which Lf (ν) is guaranteed to be.

Example 3.1 (from [2]) Let f be a real-valued function, defined on E = Rn (with any norm ‖·‖),
and satisfying (2) for some L ≥ 0 and some2 0 < ν ≤ 1 (i.e., f is ν-approximable with parameter
Lf (ν) ≤ L). Suppose that there is a lower bound f∗ ∈ R on f : f(x) ≥ f∗ for all x ∈ E. We use
the gradient method to find a stationary point of f . The step size depends on L and ν, and on the
norm of the gradient at each iteration point.

1 E.g., x ∈ R 7→ x3, or x ∈ R 7→ x2 sin(1/x2) (with continuous extension at 0).
2 Note that the method requires ν > 0. In fact, finding a descent direction for a non-smooth non-convex function

is NP-hard [1], and thus, it is reasonable to ask that ν > 0.
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The method goes as follows. (For more details, we refer the reader to [2].) We start from a
point x0 ∈ Rn. For k = 0, 1, 2, . . . , let xk be the iterate at step k. The norm of f ′(xk) is denoted by
nk = ‖f ′(xk)‖∗. Let dk ∈ Rn be such that ‖dk‖ = 1 and 〈f ′(xk), dk〉 = nk (i.e., −dk is a steepest
descent direction).

Fix 0 < ξ < 1. Define the step size at iteration k as hk = ξ
(

1+ν
L

)1/ν
n

1/ν
k . Then, the next

iterate is defined by xk+1 = xk − hkdk. From (2), we have

f(xk+1) ≤ f(xk)− 〈f ′(xk), hkdk〉+
L

1 + ν
‖hkdk‖1+ν .

This gives

f(xk+1) ≤ f(xk)− ξ
(

1 + ν

L

)1/ν

n
1+1/ν
k + ξ1+ν

(
1 + ν

L

)1/ν

n
1+1/ν
k

= f(xk)− ξ(1− ξν)

(
1 + ν

L

)1/ν

n
1+1/ν
k .

Summing over k from 0 to K, we get

ξ(1− ξν)

(
1 + ν

L

)1/ν K∑

k=0

n
1+1/ν
k ≤ f(x0)− f(xK+1) ≤ f(x0)− f∗.

We conclude that

min
0≤k≤K

‖f ′(xk)‖1+1/ν
∗ ≤ 1

K + 1

(
L

1 + ν

)1/ν
f(x0)− f∗
ξ(1− ξν)

.

In particular, if we choose ξ =
(

1
1+ν

)1/ν

, we obtain

min
0≤k≤K

‖f ′(xk)‖1+1/ν
∗ ≤ 1

K + 1

1 + ν

ν
L1/ν(f(x0)− f∗).

The objective is to converge to a quasi-stationary point: For some fixed ε > 0, we want to find
an x̄ such that ‖f ′(x̄)‖∗ ≤ ε. Then, the above-presented method stops after a number of iterations
not greater than ⌈

1

ε1+1/ν

1 + ν

ν
L1/ν(f(x0)− f∗)

⌉
, (3)

where d·e denotes the ceiling operator.

In summary, with the above example, we have shown that:

– The existence of an L satisfying (2) (i.e., being ν-approximable) is sufficient to assert the con-
vergence of the method to a quasi-stationary point. Contrary to the way it is presented in many
textbooks, it is not necessary to resort to the ν-Hölder continuous gradient assumption (1).

– The bound (3) on the number of iterations shows that the knowledge of the smallest L satisfying
(2) (i.e., Lf (ν)) allows us to have a better bound on the total number of iterations required by
the method.

As we will see in the next section, a lower bound on Lf (ν) can be obtained from the ν-Hölder
constant of the gradient. In the above developments, the derivation of (3) requires only a global
upper bound on the difference between the function and its first-order approximation, and not on
the absolute value thereof, as in (2). A more general class of functions can be analyzed, if we allow
for different parameters in the lower bound and in the upper bound on the difference between the
function and its first-order approximation. For this class of functions, we obtain similar conclusions
as for the case of ν-approximable functions (see next section as well).
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4 Main Results

The main contributions of this paper are summarized in Theorems 4.1–4.2. Theorem 4.1 shows that
ν-approximability implies ν-Hölder continuity of the gradient, and also provides an upper bound
on the Hölder constant of the gradient. From this upper bound, we obtain an interval, depending
on Mf (ν), in which the value of Lf (ν) is guaranteed to be. We also show that a smaller interval
can be obtained, if we further assume that the norm ‖·‖, on the domain of f , is Euclidean.

Theorem 4.1 Let 0 ≤ ν ≤ 1. Let f be a differentiable function from E (with norm ‖·‖) to R.
Suppose that f is ν-approximable, and denote by Lf (ν) its ν-approximation parameter. Then, f
has ν-Hölder continuous gradient with ν-Hölder constant Mf (ν) satisfying3

Lf (ν) ≤Mf (ν) ≤ 21−ν
(

1 + ν

ν

)ν
Lf (ν). (4)

Moreover, if we further assume that ‖·‖ is Euclidean, then

Lf (ν) ≤Mf (ν) ≤ 21−ν
√

1 + ν

(
1 + ν

ν

)ν/2
Lf (ν). (5)

See Figure 1 for a comparison of (4) and (5).

Proof Let us fix arbitrary x̄, ȳ ∈ E. From Remark 2.1, we may assume, without loss of generality,
that x̄ = 0, f(x̄) = 0, and f ′(x̄) = 0. Let ϕ = f ′(ȳ). Then, for any two directions z1, z2 ∈ E, we
have (from (2) with (x, y) = (0, z1), and with (x, y) = (ȳ, z1))

−Lf (ν)

1 + ν
‖z1‖1+ν ≤ f(z1) ≤ f(ȳ) + 〈ϕ, z1 − ȳ〉+

Lf (ν)

1 + ν
‖z1 − ȳ‖1+ν ,

and (from (2) with (x, y) = (0, z2) and with (x, y) = (ȳ, z2))

Lf (ν)

1 + ν
‖z2‖1+ν ≥ f(z2) ≥ f(ȳ) + 〈ϕ, z2 − ȳ〉 −

Lf (ν)

1 + ν
‖z2 − ȳ‖1+ν .

Subtracting the rightmost and leftmost sides of the first set of inequalities from the second one,
we get

〈ϕ, z2 − z1〉 ≤
Lf (ν)

1 + ν

(
‖z1‖1+ν + ‖z2‖1+ν + ‖z1 − ȳ‖1+ν + ‖z2 − ȳ‖1+ν

)
.

Let v̂ ∈ E be such that ‖v̂‖ = 1 and 〈ϕ, v̂〉 = ‖ϕ‖∗. (From the compactness of {x ∈ E : ‖x‖ = 1},
it is always possible to find such a v̂.) Then, let α ≥ 0, and define z1 = ȳ−αv̂

2 and z2 = ȳ+αv̂
2 . This

gives

α 〈ϕ, v̂〉 ≤ 2
Lf (ν)

1 + ν

(∥∥∥∥
ȳ − αv̂

2

∥∥∥∥
1+ν

+

∥∥∥∥
ȳ + αv̂

2

∥∥∥∥
1+ν
)
. (6)

Non-Euclidean case Let r = ‖ȳ‖. The right-hand side of (6) can be bounded as follows:

∥∥∥∥
ȳ − αv̂

2

∥∥∥∥
1+ν

+

∥∥∥∥
ȳ + αv̂

2

∥∥∥∥
1+ν

≤ 2

(
r + α

2

)1+ν

.

If ν > 0, then, from (6) and the above inequality, we obtain (letting α = r
ν )

〈ϕ, v̂〉 ≤ 4
Lf (ν)

1 + ν

ν

r

(
r(1 + ν)

2ν

)1+ν

= 2Lf (ν)

(
1 + ν

2ν

)ν
rν .

Hence, we have the conclusion in the case of ν > 0. On the other hand, if ν = 0, we get Mf (0) ≤
2Lf (0), by letting α→ +∞ in (6).

3 With the convention that 00 = 1, hence,
(
1+ν
ν

)ν
=
(
1+ν
ν

)ν/2
= 1, when ν = 0.
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Euclidean case Now, assume that ‖·‖ is Euclidean. Then, using the inequality ap + bp ≤
21−p (a+ b)

p
for every a, b ≥ 0 and p ∈ [0, 1], (resulting from the concavity of x 7→ xp), we

get the following upper bound on the right-hand side of (6):

∥∥∥∥
ȳ − αv̂

2

∥∥∥∥
1+ν

+

∥∥∥∥
ȳ + αv̂

2

∥∥∥∥
1+ν

≤ 2(1−ν)/2

(∥∥∥∥
ȳ − αv̂

2

∥∥∥∥
2

+

∥∥∥∥
ȳ + αv̂

2

∥∥∥∥
2
)(1+ν)/2

.

Let r = ‖ȳ‖. Using the parallelogram identity, we obtain

∥∥∥∥
ȳ − αv̂

2

∥∥∥∥
1+ν

+

∥∥∥∥
ȳ + αv̂

2

∥∥∥∥
1+ν

≤ 2(1−ν)/2

(
r2 + α2

2

)(1+ν)/2

.

For ν > 0, we get (letting α = r√
ν

)

〈ϕ, v̂〉 ≤ Lf (ν)
21−ν
√

1 + ν

(
1 + ν

ν

)ν/2
rν .

This concludes the proof of the theorem. ut
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21−ν
(
1 + ν

ν

)ν

21−ν√
1 + ν

(
1 + ν

ν

)ν/2

Fig. 1 Comparison of the coefficients appearing in the upper bounds on the ν-Hölder constant in (4) and (5) in
Theorem 4.1.

We now move to the second main result. Observe that inequality (2) is equivalent to

−L
1 + ν

‖y − x‖1+ν ≤ f(y)− f(x)− 〈f ′(x), y − x〉 ≤ L

1 + ν
‖y − x‖1+ν . (7)

In some situations, we may also want to have different values of L for the lower bound and the
upper bound in (7). This arises, for example, if we consider convex functions. In this case, the
lower bound is zero, since the first-order approximation of a convex function always lies below the
graph of the function. This leads to the following theorem. (Note that, for this theorem, we do not
make the distinction between the Euclidean and non-Euclidean case.)

Theorem 4.2 Let f be a differentiable function from E (with norm ‖·‖) to R. Let 0 ≤ ν ≤ 1, and
suppose there exist L− ≥ 0 and L+ ≥ 0, such that, for every x, y ∈ E,

−L−
1 + ν

‖x− y‖1+ν ≤ f(y)− f(x)− 〈f ′(x), y − x〉 ≤ L+

1 + ν
‖y − x‖1+ν . (8)
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Then, f has ν-Hölder continuous gradient, and the ν-Hölder constant Mf (ν) satisfies4

Mf (ν) ≤ 2−ν
(

1 + ν

ν

)ν (
L− + L+

)
.

Proof The proof is similar to the proof of Theorem 4.1. Let us fix arbitrary x̄, ȳ ∈ E. Without loss
of generality, we may assume that x̄ = 0, f(x̄) = 0, and f ′(x̄) = 0. Denote ϕ = f ′(ȳ). Then, for
any two directions z1, z2 ∈ E, we have (from (8) with (x, y) = (0, z1) and with (x, y) = (ȳ, z1))

−L−
1 + ν

‖z1‖1+ν ≤ f(z1) ≤ f(ȳ) + 〈ϕ, z1 − ȳ〉+
L+

1 + ν
‖z1 − ȳ‖1+ν ,

and (from (8) with (x, y) = (0, z2) and with (x, y) = (ȳ, z2))

L+

1 + ν
‖z2‖1+ν ≥ f(z2) ≥ f(ȳ) + 〈ϕ, z2 − ȳ〉 −

L−

1 + ν
‖z2 − ȳ‖1+ν .

Subtracting the rightmost and leftmost sides of the first set of inequalities from the second one,
we get

〈ϕ, z2 − z1〉 ≤
L−

1 + ν

(
‖z1‖1+ν + ‖z2 − ȳ‖1+ν

)
+

L+

1 + ν

(
‖z2‖1+ν + ‖z1 − ȳ‖1+ν

)
.

Let v̂ ∈ E be such that ‖v̂‖ = 1 and 〈ϕ, v̂〉 = ‖ϕ‖∗. Then, let α ≥ 0, and define z1 = ȳ−αv̂
2 and

z2 = ȳ+αv̂
2 . This gives

α 〈ϕ, v̂〉 ≤ 2

1 + ν

(
L−
∥∥∥∥
ȳ − αv̂

2

∥∥∥∥
1+ν

+ L+

∥∥∥∥
ȳ + αv̂

2

∥∥∥∥
1+ν
)
. (9)

Let r = ‖ȳ‖. The right-hand side of (9) can be bounded as follows:

L−
∥∥∥∥
ȳ − αv̂

2

∥∥∥∥
1+ν

+ L+

∥∥∥∥
ȳ + αv̂

2

∥∥∥∥
1+ν

≤ (L− + L+)

(
r + α

2

)1+ν

.

We conclude in the same way as for the proof of Theorem 4.1. ut

Corollary 4.1 Let f be ν-approximable. If f is convex, then the upper bound in (4) can be im-
proved by a factor 1/2: Lf (ν) ≤Mf (ν) ≤ 2−ν

(
1+ν
ν

)ν
Lf (ν).

5 Application to Functions with Lipschitz Continuous Gradient

In this section, we particularize Theorem 4.1 and Corollary 4.1 to the classical case of ν = 1
(Lipschitz continuity). Moreover, we obtain that the bounds are tight, meaning that there exist
functions, such that Mf (ν) attains either the lower or upper bound in (4) when ν = 1. Recall that
f is 1-approximable, if there exists an L ≥ 0, such that, for every x, y ∈ E,

|f(y)− f(x)− 〈f ′(x), y − x〉| ≤ L

2
‖y − x‖2. (10)

To simplify the notation, we will denote Lf = Lf (1) and Mf = Mf (1).

Corollary 5.1 Let f be a differentiable function from E (with norm ‖·‖) to R. Then, f is 1-
approximable, if and only if the gradient of f is Lipschitz continuous. Moreover, we have the
following bounds, depending on the assumptions on f and ‖·‖:
1. In general, we have 1

2Mf ≤ Lf ≤Mf .
2. If ‖·‖ is Euclidean, then Lf = Mf .
3. If f is convex, then Lf = Mf .

4 With the convention that 00 = 1, as in Theorem 4.1.
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The proof of the corollary directly follows from Theorem 4.1 for the first and second items. The
third item can be easily proved with Corollary 4.1. (Let us also mention that the case of convex
functions is also proved, with different arguments, in [6, Theorem 2.1.5], for example.)

We would like to know whether the bounds on Lf that we obtained in the first item of Corol-
lary 5.1 are tight. The second and third items directly give that the upper bound Lf = Mf is
reached, when ‖·‖ is Euclidean, or when f(·) is convex. Hence, the main question is: “Is there a
normed space (E, ‖·‖) and a function f , defined on E, such that Lf = 1

2Mf?” The answer is yes,
as shown in the following example:

Example 5.1 Let E = R2 with the infinity norm, ‖x‖ = max { |x(1)|, |x(2)| } for all x = (x(1), x(2))> ∈
R2. (We use superscripts to denote the components of vectors in R2.) Define f(x) = (x(1))2−(x(2))2.
The gradient of f at x satisfies 〈f ′(x), h〉 = 2x(1)h(1) − 2x(2)h(2) for all h = (h(1), h(2))> ∈ E.

We check that (10) holds with L = 2. Indeed, for any x, y ∈ R2,

Left-hand side of (10) =
∣∣∣
[
y(1) − x(1)

]2 −
[
y(2) − x(2)

]2∣∣∣

≤ max
{ ∣∣y(1) − x(1)

∣∣2,
∣∣y(2) − x(2)

∣∣2
}

= ‖y − x‖2.

On the other hand, if x = (1, 1)>, and y = (0, 0)>, then 〈f ′(x)− f ′(y), h〉 = 2h(1)− 2h(2) for every
h ∈ R2. Taking h = (1,−1)>, we get

‖f ′(x)− f ′(y)‖∗ ≥ |〈f ′(x), h〉 − 〈f ′(y), h〉| = 4.

Since ‖h‖ = 1, it follows that Mf ≥ 4. Hence, we have Lf ≤ 2 ≤ 1
2Mf , which concludes the proof

that Lf = 1
2Mf for some functions f .

Before ending this section, we would like to point out that there is still a gap between the
first and the second items of Corollary 5.1. Indeed, in the second item, we state: if the norm on
E is Euclidean, then Lf = Mf . On the other hand, if ‖·‖ is any norm, then we can ensure that
1
2Mf ≤ Lf . However, we do not say anything about the possibility of finding a space E with
a non-Euclidean norm, but such that every function on E satisfies Lf = Mf . We will prove in
Section 6 that this situation is impossible. In other words, if all functions on a space E (with norm
‖·‖) satisfy Lf = Mf , then ‖·‖ is Euclidean. In fact, it suffices to have Lf = Mf for every quadratic
function with rank 2 (to be defined below), to conclude that the norm ‖·‖ is Euclidean.

6 Application: Norm of Quadratic Functions

In this section, we apply the results of the previous section to quadratic functions, that is, func-
tions defined by self-adjoint operators. We will use Corollary 5.1 to derive bounds on the norms of
self-adjoint operators; see Proposition 6.1. We do not believe that the results presented in Proposi-
tion 6.1 are new. (For instance, the case of ‖·‖ Euclidean is a standard result in functional analysis
on Hilbert spaces; see, e.g., [8].) However, we will use these results—and more precisely the fact
that they are a consequence of Corollary 5.1—to show that it is impossible to have a space E with
a non-Euclidean norm, but such that every function on E satisfies Lf = Mf (cf. the last paragraph
of the previous section).

Definition 6.1 (Self-adjoint operator) Let E be a real finite-dimensional vector space.

1. A self-adjoint operator on E is a linear map B : E → E∗, x 7→ Bx, satisfying 〈Bx, y〉 = 〈By, x〉
for every x, y ∈ E.

2. If B is a self-adjoint operator on E, we let QB : E → R be the quadratic form associated with
B, defined by QB(x) = 〈Bx, x〉 for every x ∈ E.
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The set of self-adjoint operators on E is a real (finite-dimensional) vector space. Given a norm
‖·‖ on E, we define the following norm on this space:

‖B‖ = max { 〈Bx, y〉 : ‖x‖ = ‖y‖ = 1 } = max { ‖Bx‖∗ : ‖x‖ = 1 }.

We also define the norm of a quadratic form QB :

‖QB‖ = max { |QB(x)| : ‖x‖ = 1 } = max { |〈Bx, x〉| : ‖x‖ = 1 }.

The quantities ‖B‖ and ‖QB‖ appear in several fields of mathematics:

Example 6.1 If E = Rn, then B can be identified with a symmetric matrix B̃ ∈ Rn×n. If ‖x‖ =√
x>x (canonical Euclidean norm), then ‖B‖ = ‖QB‖ = ρ(B̃), where ρ(B̃) is the largest absolute

value of the eigenvalues of B̃.
If ‖·‖ is the `1-norm, i.e., ‖x‖ =

∑n
i=1|x(i)|, where x = (x(1), . . . , x(n))>, then ‖B‖ = max1≤i,j≤n |B̃(i,j)|,

where B̃(i,j) is the (i, j)th entry of matrix B̃. On the other hand, the value of ‖QB‖ is, in general,
NP-hard to compute. This quantity appears, for instance, in the problem of determining the largest
clique in a graph (Motzkin–Straus theorem [9]).

The quantity ‖QB‖, with ‖x‖ = max1≤i≤n |x(i)| (infinity norm), appears, for instance, in the

MAXCUT problem [10, Section 4.3.3]. If B̃ is a positive semidefinite matrix (as it is the case in
the MAXCUT problem), then we can show that ‖QB‖ = ‖B‖ (see Proposition 6.1).

Clearly, ‖QB‖ ≤ ‖B‖. The following proposition, which follows from Corollary 5.1, provides a
partial converse result.

Proposition 6.1 Let E be a normed vector space with norm ‖·‖, and let B be a self-adjoint
operator on E. Then, we have the following results, depending on the assumptions on E and on
B:

1. In general, we have 1
2‖B‖ ≤ ‖QB‖ ≤ ‖B‖.

2. If ‖·‖ is Euclidean, then ‖QB‖ = ‖B‖.
3. If B is positive semidefinite5, then ‖QB‖ = ‖B‖.

Proof Let f(x) = 1
2QB(x) = 1

2 〈Bx, x〉. The gradient of f at x is f ′(x) = Bx ∈ E∗. Let x, y be in
E. The difference between f(y) and its first-order approximation f(x) + 〈f ′(x), y − x〉 is given by

1

2
〈By, y〉 − 1

2
〈Bx, x〉 − 〈Bx, y − x〉 =

1

2
〈By, y〉+

1

2
〈Bx, x〉 − 〈Bx, y〉

=
1

2
〈B(y − x), y − x〉

=
1

2
QB(y − x).

Hence, f is 1-approximable, and Lf = ‖QB‖. It is also not hard to see that f has Lipschitz
continuous gradient, and Mf = ‖B‖. Thus, we obtain the first and second items of the proposition,
from the first and second items of Corollary 5.1. Finally, f is convex, if and only if B is positive
semidefinite. Hence, we get the desired results from the third item of Corollary 5.1. ut

The second item in Proposition 6.1 states that, when the norm on E is Euclidean, the two
quantities ‖B‖ and ‖QB‖ coincide for every B. The following theorem shows that ‖QB‖ = ‖B‖
for every self-adjoint operator B on a normed vector space E, only if the norm of E is Euclidean.6

(The proof of the theorem is presented in the “Appendix.”)

Theorem 6.1 Let (E, ‖·‖) be a finite-dimensional normed vector space. Then, ‖·‖ is Euclidean,
if and only if ‖QB‖ = ‖B‖ for every self-adjoint operator B on E.

5 That is, 〈Bx, x〉 ≥ 0 for every x ∈ E.
6 The result presented in Theorem 6.1 seems to be a novel (to the best of the authors’ knowledge) characterization

of Euclidean norms in the finite-dimensional case. (For a detailed survey of results on equivalent characterizations
of Euclidean norms, we refer the reader to the celebrated book by Amir [11].)
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Remark 6.1 From the proof of Theorem 6.1 (see the “Appendix”), we can obtain a stronger version
of this theorem: ‖·‖ is Euclidean, if and only if ‖QB‖ = ‖B‖ for every self-adjoint operator B on
E with rank 2, that is, for every B that can be expressed as Bx = 〈ϕ, x〉ϕ ± 〈ψ, x〉ψ for some
ϕ,ψ ∈ E∗.

Finally, Theorem 6.1 allows us to answer the question in the last paragraph of the previous
section:

Corollary 6.1 Let (E, ‖·‖) be a finite-dimensional normed vector space, and suppose that, for
every real-valued function f on E, we have Lf = Mf (using the notation of Corollary 5.1). Then,
‖·‖ is Euclidean.

Proof If Lf = Mf for every function f on E, this is also true for every quadratic function f(x) =
QB(x) = 〈Bx, x〉, where B is any self-adjoint operator on E. Hence, using similar developments
as in the proof of Proposition 6.1, we get that ‖QB‖ = ‖B‖ for every self-adjoint operator B on
E. Thus, Theorem 6.1 implies that ‖·‖ must be Euclidean. ut

7 Conclusions

We have shown that Hölder continuity of the gradient is a sufficient and necessary condition for
a function to have a global upper bound on the error of its first-order Taylor approximation. We
established the link between the parameter appearing in the global upper bound on the error of the
first-order Taylor approximation and the Hölder constant of the gradient: This takes the form of an
interval, depending on the Hölder constant, in which the approximation parameter is guaranteed
to be.

For the Lipschitz case, an example shows that the interval cannot be shortened. On top of
this, tighter bounds can be obtained, if we further assume that the function is convex, or if the
underlying norm is Euclidean. In particular, for the Lipschitz case, if the norm is Euclidean, then
the interval reduces to a single point, and Theorem 6.1 shows that the assumption that the norm
is Euclidean is not conservative. We have not addressed in this paper the question of whether the
interval for the general case (i.e., with Hölder exponent different than one) is tight or not. We leave
it for further work.

Another follow-up topic is a generalization of Theorem 4.1 to higher-order derivatives and
higher-order Taylor approximations. Those play central roles in higher-order optimization methods.
By applying a similar argument as in the proof of Theorem 4.1, one can obtain an interval,
depending on the Hölder constant of the derivative of a given order, in which the approximation
parameter of the Taylor approximation (of order equal to the one of the derivatives) is guaranteed
to be. Drawing upon this observation, the following aspects still need to be addressed: Are the
obtained bounds tight? Can we obtain better bounds, if we further assume that the norm is
Euclidean? We plan to study these questions in further work.
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Appendix: Proof of Theorem 6.1

The proof relies on the fact that, if ‖·‖ is not Euclidean, then the unit ball defined by ‖·‖, i.e., {x ∈ E : ‖x‖ ≤ 1},
is not equal to the ellipsoid with smallest volume containing this ball. Based on this ellipsoid, we will build a self-
adjoint operator B : E → E∗, such that ‖QB‖ < ‖B‖. The notions of ellipsoid and (Lebesgue) volume are defined
on Rn only. The following lemma implies, among other things, that there is no loss of generality in restricting to
the case E = Rn:

Lemma A.1 Let E be a real vector space with norm ‖·‖, and let A : E → E′ be a bijective linear map. Then, ‖·‖
is Euclidean, if and only if the norm ‖·‖′ on E′, defined by ‖x‖′ = ‖A−1x‖, is Euclidean.
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Proof Straightforward from the definition of ‖·‖ being Euclidean, if and only if it is induced by a scalar product,
i.e., if and only if there exists a self-adjoint operator H : E → E∗, satisfying ‖x‖2 = 〈Hx, x〉 for all x ∈ E. ut

Proof of Theorem 6.1 The “only if” part follows from Proposition 6.1. For the proof of the “if” part, let E be an
n-dimensional vector space, and let ‖·‖ be a non-Euclidean norm on E. We will build a self-adjoint operator B on
E, such that ‖QB‖ < ‖B‖.

By Lemma A.1, we may assume that E = Rn and that ‖·‖ is a non-Euclidean norm on Rn. We use superscripts
to denote the components of vectors in Rn: x = (x(1), . . . , x(n))>.

Let K = {x ∈ Rn : ‖x‖ ≤ 1}. Because K is compact, convex, with non-empty interior, and symmetric with
respect to the origin, the Löwner–John ellipsoid theorem [12,13] asserts that there exists a unique ellipsoid E, with
minimal volume, and such that K ⊆ E. Moreover, E is centered at the origin, and K has n linearly independent
vectors on the boundary of E.

Let L : Rn → Rn be a linear isomorphism, such that LE is the Euclidean ball Bn = {x ∈ Rn : ‖x‖2 ≤ 1}, where

‖x‖2 =
√
x>x is the canonical Euclidean norm on Rn. Let ‖x‖′ = ‖L−1x‖, and let K′ = {x ∈ Rn : ‖x‖′ ≤ 1}. By

Lemma A.1, ‖·‖′ is not Euclidean. Since K′ = LK, it is clear that K′ is compact, convex, with non-empty interior,
and symmetric with respect to the origin. Moreover, K′ is included in Bn, and it has n linearly independent vectors
on the boundary Sn−1 of Bn.

We will need the following lemma to conclude the proof of Theorem 6.1:

Lemma A.2 There exist u, v ∈ Sn−1 ∩K′, not colinear, such that u+v
‖u+v‖2

/∈ K′.

We proceed with the proof of Theorem 6.1 (a proof of Lemma A.2 is provided at the end of this appendix).
Let u, v be as in Lemma A.2, and define e1 = u+v

‖u+v‖2
and e2 = u−v

‖u−v‖2
. Note that these vectors are orthonormal

(w.r.t. the inner product x>y).

Let κ = max {|e>1 x| : x ∈ K′}. Since |e>1 x| < 1 for every x ∈ Bn \ {±e1}, and ±e1 /∈ K′, we have that κ < 1.

Moreover, κ > 0, since int(K′) 6= ∅. Let B̃ be the self-adjoint operator on Rn, defined by

〈B̃x, y〉 =
1

κ2
(e>1 x)(e>1 y)− (e>2 x)(e>2 y)

for every x, y ∈ Rn. Let x ∈ K′. Then,

−1 ≤ −(e>2 x)2 ≤ 〈B̃x, x〉 ≤
1

κ2
(e>1 x)2 ≤

1

κ2
κ2 = 1.

It follows that, for every x ∈ Rn with x 6= 0, |〈B̃x, x〉| = ‖x‖′2 |〈B̃ x
‖x‖′ ,

x
‖x‖′ 〉| ≤ ‖x‖

′2. Hence, ‖QB̃‖ ≤ 1. Now,

we will show that |〈B̃u, v〉| > ‖u‖′‖v‖′ (where u, v are as above). Therefore, let α = ‖u + v‖2 and β = ‖u − v‖2.

Observe that u = αe1+βe2
2

and v = αe1−βe2
2

. Thus,

〈B̃u, v〉 =
1

κ2
α2

4
+
β2

4
=

1− κ2

κ2
α2

4
+
α2

4
+
β2

4
.

This shows that 〈B̃u, v〉 > 1, since (by the parallelogram identity)

α2

4
+
β2

4
=

1

4

(
‖u+ v‖22 + ‖u− v‖22

)
= 1,

0 < κ < 1, and α > 0. Since u, v ∈ K′ (i.e., ‖u‖′, ‖v‖′ ≤ 1), we have that ‖u‖′‖v‖′ ≤ 1 < |〈B̃u, v〉|. Thus, ‖B̃‖ > 1.

Finally, define the self-adjoint operator B on E by 〈Bx, y〉 = 〈B̃Lx, Ly〉. It is clear, from the definition of ‖·‖′,
that |〈Bx, x〉| ≤ ‖x‖2 for every x ∈ E and |〈Bx, y〉| > ‖x‖‖y‖ for x = L−1u and y = L−1v (where u, v are as above).
Hence, one gets ‖QB‖ ≤ 1 < ‖B‖. This concludes the proof of Theorem 6.1. ut

It remains to prove Lemma A.2. The following proposition, known as Fritz John necessary conditions for
optimality will be useful in the proof of Lemma A.2:

Proposition A.1 (Fritz John necessary conditions [12]) Let S be a compact metric space. Let F (x) be a real-
valued function on Rn, and let G(x, y) be a real-valued function defined for all (x, y) ∈ Rn × S. Assume that F (x)
and G(x, y) are both differentiable with respect to x and that F (x), G(x, y), ∂F

∂x
(x), and ∂G

∂x
(x, y) are continuous

on Rn × S. Let R = {x ∈ Rn : G(x, y) ≤ 0, ∀y ∈ S}, and suppose that R is non-empty.

Let x∗ ∈ R be such that F (x∗) = maxx∈R F (x). Then, there is m ∈ {0, . . . , n}, and points y1, . . . , ym ∈ S, and
nonnegative multipliers λ0, λ1, . . . , λm ≥ 0, such that (i) G(x∗, yi) = 0 for every 1 ≤ i ≤ m, (ii)

∑m
i=0 λi > 0, and

(iii)

λ0
∂F

∂x
(x∗) =

m∑
i=1

λi
∂G

∂x
(x∗, yi).

We refer the reader to [12] for a proof of Proposition A.1.
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Proof of Lemma A.2 Consider the following optimization problem:

maximize F (x) := ‖x‖22

subject to G(x, y) := x>y − 1 ≤ 0 for every y ∈ Sn−1 ∩K′,
(11)

with variable x ∈ Rn.
First, we show that (11) is bounded. Suppose the contrary, and, for every k ≥ 1, let xk be a feasible solution

with ‖xk‖2 ≥ k. Let x̂k = xk/‖xk‖2. Taking a subsequence if necessary, we may assume that x̂k converges to some
x̂∗, with ‖x̂∗‖2 = 1. Since x̂>k y ≤ 1/‖xk‖2 for every y ∈ Sn−1 ∩K′, we have that x̂>∗ y ≤ 0 for every y ∈ Sn−1 ∩K′.
By symmetry of Sn−1 ∩ K′, it follows that x̂>∗ y = 0 for every x ∈ Sn−1 ∩ K′, a contradiction with the fact that
Sn−1∩K′ contains n linearly independent vectors. Hence, the set of feasible solutions of (11) is bounded, and closed
(as the intersection of closed sets), so that (11) has an optimal solution, say x̄.

We will show that ‖x̄‖2 > 1. Therefore, we use the fact that K′ 6= Bn.7 Fix some z ∈ Sn−1 \ K′, and let
η = max {z>y : y ∈ K′}. Since z>y < 1 for every y ∈ Bn \ {z}, and z /∈ K′, we have that η < 1. Let x = z/η. From
the definition of η, it is clear that x is a feasible solution of (11). Moreover, ‖x‖2 = η−1 > 1, so that ‖x̄‖2 ≥ ‖x‖2 > 1.

The gradient of F at x̄ is equal to 2x̄. Then, Proposition A.1 asserts that there exist vectors y1, . . . , ym ∈
Sn−1 ∩K′, and nonnegative multipliers λ0, λ1, . . . , λm ≥ 0, such that x̄>yi = 1 for every 1 ≤ i ≤ m,

∑m
i=0 λi > 0,

and λ0x̄ =
∑m
i=1 λiyi. If λ0 = 0, then 0 =

∑m
i=1 λix̄

>yi =
∑m
i=1 λi > 0, a contradiction. Hence, λ0 > 0. Suppose

that y1, . . . , ym are colinear. This implies that all yi’s must be parallel to x̄ (because λ0x̄ =
∑m
i=1 λiyi and λ0x̄ 6= 0),

and since they are in Sn−1, we have that yi = ±x̄/‖x̄‖2, so that x̄>yi = ‖x̄‖2 > 1 or −x̄>yi = ‖x̄‖2 > 1. This gives
a contradiction, since −yi and yi are both in Sn−1 ∩K′ (by the symmetry of Sn−1 ∩K′). Thus, there exist at least
two non-colinear vectors u, v ∈ Sn−1 ∩K′ satisfying x̄>u = 1 and x̄>v = 1.

Let e1 = u+v
‖u+v‖2

. Since u and v are not colinear, ‖u+ v‖2 < 2, and thus, x̄>e1 = 2/‖u+ v‖2 > 1. This shows

that e1 /∈ Sn−1 ∩K′. By definition, e1 is in Sn−1, so that e1 /∈ K′, concluding the proof of the lemma. ut
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