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Abstract: In this paper, we show that the topological entropy of linear time-varying systems
coincide with their minimal data rate for state observation, thereby extending the well-known
“observation data rate” theorem for LTI systems and time-invariant nonlinear systems with
compact domain. This result is relevant for the problem of controlling and observing dynamical
systems via limited-capacity communication networks, as it provides a tight bound on the data
rate required for the state observation of these systems. This bound, which relies only on the
topological properties of the system, can thus be used as a benchmark for the comparison of
different implementations of coders–decoders observing the system.
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1. INTRODUCTION

Many modern control systems (such as cyber-physical sys-
tems, IoT, etc.) involve spatially distributed components
that communicate through a shared, digital communica-
tion network. Due to the digital nature of the network,
all data must be quantized before transmission, resulting
in quantization error that can affect the performance of
the observing/controlling scheme. Furthermore, in applica-
tions, the capacity of the network is often limited by cost,
power, physical and/or security constraints. Consequently,
a major challenge in the design of such networked systems
is to determine the minimal communication data rate
required to achieve a given control task. This fundamental
question has attracted a lot of attention from the control
community in recent years, with great theoretical and
practical advances; as surveyed in Hespanha et al. (2007);
Matveev and Savkin (2009)

In this paper, we study Linear Time-Varying (LTV) sys-
tems. Since these systems appear in the modeling of many
cyber-physical systems, it is essential to understand the
impact of data rate constraints on the observation and
control of these systems. In particular, we are interested
in determining the minimal data rate required for state
observation of LTV systems, that is, the smallest data rate
at which a coder needs to send information to a decoder
to estimate the state of the system with arbitrary finite
accuracy; see also Figure 1 for an illustration.

Now, we review the literature relevant to our problem.
Inspired from the works of Shannon on information en-
tropy and the minimal data rate to transmit information
reliably, it was soon realized that the question of minimal
data rate for state observation of dynamical systems has
strong connections with the notion of topological entropy
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Fig. 1. State observation of linear time-varying systems
with limited data rate. The coder measures the state
x(t) and sends a discrete-valued symbol e(t) to the
decoder, which constructs an estimate x̂(t) of the state
of the system based on the past symbols.

of a dynamical system. This quantity, introduced in the
late 60’s (Adler et al., 1965; Bowen, 1971; Dinaburg, 1970)
and now ubiquitous in dynamical system theory, measures
the rate at which information about the initial condition
is generated by the system, as time evolves. The study of
topological entropy and its link with the minimal data rate
for state observation of dynamical systems has attracted
a lot of attention from the control community in the last
decades; see, e.g., Savkin (2006); Matveev and Pogromsky
(2016); Kawan (2017); Matveev and Pogromsky (2016).
Most of the works available in the literature focus on
LTI systems and time-invariant nonlinear systems with
a compact domain. For these systems, it is shown that
topological entropy and the minimal data rate for state
observation coincide (Savkin, 2006; Matveev and Pogrom-
sky, 2016). Beyond these specific classes of systems, the
situation is unfortunately much more elusive. Topological
entropy is only known to be a lower bound on the minimal
data rate for state observation. In particular, it seems an
open question whether topological entropy also provides
an upper bound on the minimal data rate for state ob-
servation. As an evidence of this, we refer to Matveev
and Pogromsky (2016); Kawan (2017), where the lower
bound is discussed but no proof, or counter-example, for
the upper bound is presented.

In this paper, we show that, for LTV systems, topological
entropy and the minimal data rate for state observation
are equal. The relevance of this result is first from the
theoretical viewpoint, as it extends the “observation data



rate” theorem for time-invariant systems, to LTV systems.
Moreover, the proof of the theorem is constructive, in the
sense that it provides a coder–decoder that observes the
state of the system with arbitrary accuracy, and with data
rate as close as desired to the topological entropy of the
system. It is nonetheless important to mention that the
implementation of the proposed coder–decoder requires an
unbounded memory in general, which limits the practical
usage of the coder–decoder. Nevertheless, we still believe
that the result and its proof have a strong practical rele-
vance. For instance, the topological entropy can be used as
a benchmark to evaluate the performance of different im-
plementations of coders–decoders. Furthermore, the ideas
presented in the proof of the theorem can be used to obtain
efficient coders–decoders satisfying memory limitations,
though possibly operating at suboptimal data rates.

Compared to time-invariant systems, the following diffi-
culty arises when we seek to relate the topological entropy
with data rate bounds for state observation of time-varying
systems. Since the coder–decoder observes the state of the
system at periodic sampling times, data rate requirements
are mainly driven by the amount of information generated
by the system between two sampling times. By contrast,
the topological entropy gives the growth rate of informa-
tion generated by the system since the beginning of time.
For time-invariant systems, this problem is overcome by
using the fact that the amount of information generated on
each sampling interval is the same, and thus it is possible to
relate the minimal data rate with the topological entropy.
However, this is not true in general for time-varying sys-
tems. Therefore, in our analysis of LTV systems, we have
used a different approach exploiting the fact that from the
growth rate of information generated by the system, i.e.,
the topological entropy, we can derive an upper bound on
the amount of information generated during the sampling
intervals. This requires that the trajectories of the system
are spatially distributed in a “uniform way” (see Section 3
for details), and which is ensured by the linearity of the
system. In particular, it seems that the proof argument
presented in this paper does not extend straightforwardly
to nonlinear time-varying systems.

The main content of the paper is divided into two sections.
In Section 2, we introduce the problem of state observation
with limited data rate, and the notions of topological
entropy and LTV systems. We also discuss some previous
results about the link between topological entropy and the
minimal data rate for state observation. In Section 3, we
present and prove the main result of the paper, namely
the equivalence of topological entropy and minimal data
rate for state observation of LTV systems. For the sake
of simplicity and conciseness, the systems considered in
this paper are in discrete time, but the main results and
definitions extend naturally to the continuous-time case.

Notation. N is the set of nonnegative integers {0, 1, 2, . . .}.
d is a positive integer representing the dimension of the
system. For vectors, ‖·‖ denotes the Euclidean norm in Rd,
and for matrices, it denotes the associated matrix norm,
‖M‖ = σmax(M). dαe is the smallest integer larger than
or equal to α ∈ R (aka. ceil of α). For E,F ⊆ Rd, we let
E + F be their Minkowski sum. For the ease of notation,
we also let E + ξ = E + {ξ} (ξ ∈ Rd). In this paper, we
consider dynamical systems is discrete-time; therefore, if

[T1, T2] (resp. [T1, T2)) refers to an interval of times (in
particular, T1, T2 ∈ N), then it is understood to contain
only the integers from T1 to T2 (resp. T2 − 1) inclusive.

2. PRELIMINARIES

2.1 State observation with limited data rate

Consider a time-varying dynamical system

x(t+ 1) = ft(x(t)), x(0) ∈ K, t ∈ N, (1)

where K ⊆ Rd is a nonempty compact set (called the set of
initial states) and ft : Rd → Rd is continuous for all t ∈ N.
We denote by x(t, ξ) the solution, at time t, of (1) with
initial state ξ ∈ K (by extension, we also define x(t, ξ) for
every ξ ∈ Rd). In formulas, it will be convenient to denote
system (1) by the pair (ft,K).

The aim of state observation is to produce an estimation
of the state of the system when direct observation of the
system is not possible. Information about the system will
thus be delivered to the observer via a communication
channel which can carry only a limited amount of infor-
mation per unit of time. The observation procedure works
as follows (see, e.g., Matveev and Pogromsky (2016)); see
also Figure 1. At time t, a coder measures the state x(t)
of the system and is connected to a decoder via a discrete
channel which carries one discrete-valued symbol e(t) per
unit of time, selected from a coding alphabet Et of time-
varying size. Each symbol takes one sample interval to be
completely transmitted. Hence, at time t+ 1, the decoder
has the symbols e(0), . . . , e(t) available and generates an
estimate x̂(t+ 1) of the state x(t+ 1).

More precisely, the coder is a family of functions Ct:
e(t) = Ct(x(0), . . . , x(t) | x̂(0), δ), t ∈ N, (2)

where x̂(0) is an estimate of the initial state x(0) satisfying
‖x(0) − x̂(0)‖ ≤ δ. The output is e(t) ∈ Et where Et is a
finite set with size depending on t. The symbol e(t) will be
transmitted to the decoder at most at t+ 1. The decoder
is a family of functions Dt:

x̂(t) = Dt(e(0), . . . , e(t− 1) | x̂(0), δ), t ∈ N, (3)

where x̂(t) is an estimate of x(t) based on the past symbols
and the initial estimate x̂(0).

Definition 1. The coder–decoder (2)–(3) is said to observe
system (1) with accuracy ε > 0 if there is δ > 0 such
that for every trajectory x(·) of (1) and every x̂(0) ∈ K
satisfying ‖x(0)− x̂(0)‖ ≤ δ, it holds that

‖x(t)− x̂(t)‖ ≤ ε, ∀ t ∈ N.

The symbols e(t) must be transmitted from the coder to
the decoder via a limited channel. For a given system,
what is the minimal channel capacity needed by a coder–
decoder to observe the system with accuracy ε > 0? Several
notions of “channel capacity” have been proposed in the
literature, accounting for various non-idealities of commu-
nication channels (e.g., noise, delay, etc.). Borrowing the
model 1 of Matveev and Savkin (2009), we let b(r) be
a lower bound on the number of bits of data that can

1 This model is general enough to take into account non-idealities
of the channel, like unsteady instant data rates, transmission delays
and dropouts (Matveev and Savkin, 2009, §3.4).
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Fig. 2. The set of functions in blue is (ε, T )-spanning for
(1) if every trajectory x(·) (e.g., the trajectory repre-
sented in red) is contained in the “ε-tube” around at
least one of the functions in blue, for all t ∈ [0, T ].

be transmitted accurately via the channel during a time
interval of duration r ∈ N>0. We assume that the average
w.r.t. time of b(r) converges to some value R called the
channel capacity :

lim
r→∞

1

r
b(r) = R. (4)

Definition 2. System (1) is said to be observable over the
communication channel C if for every ε > 0, there is
a coder–decoder (2)–(3) that observes (1) with accuracy
ε > 0 and whose symbols can be transmitted through C.

We define the minimal data rate (or channel capacity) for
state observation of system (1) as

Ro(ft,K) = inf {R : (ft,K) is observable over

any communication channel with capacity R}.
In the next section, we will see (Theorem 5) howRo(ft,K)
can be related with the topological entropy of the system.

2.2 Topological entropy

We use the definition of topological entropy introduced
by Bowen (1971) and Dinaburg (1970) for time-invariant
systems on metric spaces, and extended to time-varying
systems by Kolyada and Snoha (1996). The definition re-
lies on the notion of minimal sets of functions necessary to
approximate the state of the system with finite accuracy,
on any interval [0, T ].

More precisely, for ε > 0 and T ∈ N, a set E of functions
from [0, T ] to Rd (i.e., E ⊆ (Rd)[0,T ]) is said to be (ε, T )-
spanning set for (1) if for every trajectory x(·) of (1), there
is x̂(·) ∈ E such that ‖x(t)− x̂(t)‖ ≤ ε for all t ∈ [0, T ]. See
Figure 2 for an illustration. We let sspan(ε, T ; ft,K) be the
smallest cardinality of an (ε, T )-spanning set for (1).

Definition 3. The topological entropy of (1) is defined as

h(ft,K) = sup
ε>0

lim sup
T→∞

1

T
log2 sspan(ε, T ; ft,K). (5)

Alternatively, topological entropy can be defined starting
from maximal separated sets of trajectories: a set F ⊆ K
is (ε, T )-separated for (1) if for any two points ξ, η ∈ F ,
there is t ∈ [0, T ] such that ‖x(t, ξ)− x(t, η)‖ > ε. Letting
ssep(ε, T ; ft,K) be the largest cardinality of an (ε, T )-

separated set for (1), we obtain an equivalent definition
of h(ft,K):

Proposition 4. The topological entropy of (1) satisfies

h(ft,K) = sup
ε>0

lim sup
T→∞

1

T
log2 ssep(ε, T ; ft,K). (6)

The proof is along the same lines as (Liberzon and Mitra,
2017, Theorem 1) and thus omitted here.

The following theorem, which can be found in (Matveev
and Pogromsky, 2016, Theorem 8) 2 , states that the topo-
logical entropy is a lower bound on the minimal data rate
for state observation of dynamical systems. In some cases,
it is also an upper bound:

Theorem 5. For any time-varying system (1), it holds that
h(ft,K) ≤ Ro(ft,K). Moreover, if (1) is time-invariant
and K is positively invariant, then h(ft,K) = Ro(ft,K).

The equality h(ft,K) = Ro(ft,K) also holds for LTI sys-
tems with compact initial set K with nonempty interior,
—not necessarily positively invariant ; see, e.g., (Matveev
and Savkin, 2009, §2.5–2.6). However, it seems an open
question whether h(ft,K) = Ro(ft,K) in general for time-
varying systems. In this paper, we show that h(ft,K) =
Ro(ft,K) holds for linear time-varying systems.

2.3 Linear time-varying systems

Linear Time-Varying (LTV) systems are time-varying sys-
tems, like (1), where ft is linear for each t ∈ N. They are
thus described by

x(t+ 1) = Atx(t), x(0) ∈ K, t ∈ N, (7)

where At ∈ Rd×d for all t ∈ N. Following the notation of
the previous subsections, in formulas, we will write (At,K)
to denote system (7). For instance, the topological entropy
of (7) is denoted by h(At,K) and sspan(ε, T ;At,K) is the
smallest cardinality of an (ε, T )-spanning set for (7).

Linearity of (7) implies that for every ξ, η ∈ Rd, k, ` ∈ R,
and t ∈ N, x(t, kξ+`η) = kx(t, ξ)+`x(t, η). It follows from
linearity that the topological entropy and the minimal data
rate for state observation of LTV systems are independent
of the initial set K, as long as it is compact with nonempty
interior; see, e.g., (Yang et al., 2018, Proposition 2). For
this reason, in the following, we will omit the initial set in
the notation, and simply use h(At) and Ro(At) to denote
the respective quantities. Finally, let us mention that the
estimation of topological entropy for LTV systems was
addressed for instance in Yang et al. (2018).

In conclusion to this section, the example below illustrates
the notions of spanning sets, separated sets, and topolog-
ical entropy, with a simple LTV system.

Example 6. Consider the 1-dimensional LTV system (7)
with At = 1 if t is even and At = 2 if t is odd. Trajectories
of the system are thus described by x(t, ξ) = 2t/2ξ if t is
even and x(t, ξ) = 2(t−1)/2ξ if t is odd. We will show that

2 Theorem 8 in Matveev and Pogromsky (2016) is presented for
time-invariant systems only. However, the time-varying case can be
deduced, without loss of generality, by considering time as a state
variable. (Note that the resulting system will not have a compact
positively invariant initial set, since time goes to infinity.)



h(At) = 1/2. As explained above, the topological entropy
of linear systems does not depend on the initial set; hence,
we set K = [0, 1].

For ε > 0 and T ∈ N, let n = d2−1ε−12T/2e and define
E = {i/n : 0 ≤ i ≤ n}. Let E ⊆ R[0,T ] be the set of
functions {x(·, η) : η ∈ E}. We show that E is (ε, T )-
spanning for (At,K). To do this, fix ξ ∈ K, and let η ∈ E
minimize the distance to ξ. Then, by definition of E, it
holds that |ξ − η| ≤ 1/(2n) ≤ ε2−T/2. This implies that

|x(t, ξ)− x(t, η)| ≤ 2t/2|ξ − η| ≤ ε, ∀ t ∈ [0, T ].

Hence, E is (ε, T )-spanning for (At,K) and thus

sspan(ε, T ;At,K) ≤ |E| = n+ 1 ≤ 2−1ε−12T/2 + 2.

Injecting in (5), we get that h(At) is upper-bounded by

sup
ε>0

lim sup
T→∞

1

T
log2

(
ε−12T/2−1 + 2

)
= sup

ε>0

1

2
=

1

2
.

In order to show that 1/2 is also a lower bound on h(At),
we rely on (ε, T )-separated sets. Let m = dε−12T/2e − 1.
We may assume m > 0 since in (6) we take the limit when
ε→ 0 and T →∞. Define F = {i/m : 0 ≤ i ≤ m}. Then,
any two points ξ, η ∈ F satisfy |ξ − η| > ε2−T/2. Hence,
for T ∈ N even, |x(T, ξ)− x(T, η)| > ε, showing that F is
(ε, T )-separated for (At,K). This implies that

ssep(ε, T ;At,K) ≥ |F | = m+ 1 ≥ ε−12T/2 − 1.

Injecting in (6), this finally gives that h(At) ≥ log2 21/2 ≥
1/2. Summarizing, we have shown that h(At) = 1/2. 2

3. EQUIVALENCE OF TOPOLOGICAL ENTROPY
AND MINIMAL DATA RATE FOR LTV SYSTEMS

The following theorem is the main result of the paper. It
extends the second part of Theorem 5 to LTV systems.

Theorem 7. For any LTV system (7), it holds that h(At) =
Ro(At).

The rest of this section is devoted to the proof of Theo-
rem 7. We first introduce some notation: for a given LTV
system (7) and T ∈ N, we define the norm

‖ξ‖At,T = max
0≤t≤T

‖x(t, ξ)‖, ξ ∈ Rd,

where x(t, ξ) is the trajectory of (7) starting from ξ. From
the linearity of x(t, ξ) with respect to ξ, it is clear that
‖·‖At,T is a norm in Rd. For ξ0 ∈ Rd and r ∈ R≥0, we let

BAt,T (ξ0, r) = {ξ ∈ Rd : ‖ξ − ξ0‖At,T ≤ r}.

Let ε > 0 and let X ⊆ Rd. We will say that E ⊆ Rd is an
(ε, T ;At)-cover of X if

X ⊆
⋃
ξ∈E BAt,T (ξ, ε).

Finally, an (ε, T ;At)-cover E of X is said to be minimal
if there is no (ε, T ;At)-cover of X with cardinality strictly
smaller than the cardinality of E. We let scov(ε, T ;At, X)
be the cardinality of a minimal (ε, T ;At)-cover of X.

Basic idea. The intuition behind the proof of Theorem 7
is that for linear systems, any minimal (ε, T ;At)-cover
of X must be “uniformly distributed” over X. Based
on this observation, we obtain that if E1 is a minimal
(ε, T1;At)-cover of X, E2 is an (ε, T2;At)-cover of X, and
T1 ≤ T2, then there is an (ε, T2;At)-cover of BAt,T1(0, ε)

with cardinality of the order of |E2|/|E1| (this is where
the “uniformly distributed” assumption is used). These
claims are encapsulated in the following two lemmas,
whose proofs can be found in Appendix A.

Lemma 8. Consider system (7), and let ε > 0 and T ∈ N.
Then, for every ξ ∈ Rd and α ∈ R≥0, there is an (ε, T,At)-
cover E of BAt,T (ξ, αε) with |E| ≤ (2α+ 1)d.

Lemma 9. Consider system (7). Let ε > 0 and T1, T2 ∈ N,
T1 ≤ T2. Let E1 be a minimal (ε, T1;At)-cover of K and let
E2 be an (ε, T2;At)-cover of K+BAt,T1

(0, 2ε). Then, there
exists an (ε, T2;At)-cover E of BAt,T1

(0, ε) with cardinality
|E| ≤ 11d|E2|/|E1|.

We are now able to prove Theorem 7.

Proof of Theorem 7. Since h(At,K) and Ro(At,K)
are independent from K as long as it is compact with
nonempty interior (see Subsection 2.3), we fix K to be the
closed unit Euclidean ball centered at 0 in Rd. We will show
that h(At,K) = Ro(At,K). From Theorem 5, we already
know that h(At,K) ≤ Ro(At,K). Hence, it remains to
show that h(At,K) is an upper bound on Ro(At,K).

Claim: We claim that scov(ε, T ;At,K) ≤ ssep(ε, T ;At,K).

Proof: Let F ⊆ K be an (ε, T )-separated set for (At,K)
with maximal cardinality. Then, for every ξ ∈ K there is
η ∈ F such that ‖x(t, ξ) − x(t, η)‖ ≤ ε for all t ∈ [0, T ],
as otherwise F ∪ {ξ} would be an (ε, T )-separated set for
(At,K), contradicting the maximality of F . The above is
equivalent to say that ‖ξ − η‖At,T ≤ ε and thus it implies
that F is an (ε, T ;At)-cover of K, proving the claim. y

From the above Claim and Proposition 4, we get that

sup
ε>0

lim sup
T→∞

1

T
log2 scov(ε, T ;At,K) ≤ h(At). (8)

Now, fix a communication channel C with capacity R >
h(At). We will show that (7) is observable over C. There-
fore, we fix ε ∈ (0, 1/2), and we will build a coder–decoder
that observes (7) with accuracy ε and whose symbols can
be transmitted through C.

Preliminaries: To do this, we fix α ∈ (h(At), R), and we
let r ∈ N>0 be large enough such that (i) b(r) ≥ αr + 9d
where b(r) is as in (4); and (ii) scov(ε, T ;At,K) ≤ 2αT

for all T ∈ [r,∞). Clauses (i) and (ii) are satisfiable
because of (4), (8), and the definition of α. Then, in our
construction of the coder–decoder, it is important that the
norms of the matrices involved in the LTV system are
uniformly bounded. Since this is not necessarily the case,
we decompose the matrix sequence At as follows. For each
t ∈ N, let nt ∈ N>0 and Bt,0, . . . , Bt,nt−1 ∈ Rd×d be a
factorization of At, i.e., At = Bt,nt−1Bt,nt−2 · · ·Bt,0, such
that for every i ∈ {0, . . . , nt − 1}, ‖Bt,i‖ ≤ 2 and

‖Bt,i−1 · · ·Bt,0ξ‖ ≤ max{‖ξ‖, ‖Atξ‖}, ∀ ξ ∈ Rd. (9)

See Lemma 11 (in Appendix A) for the construction of
such a factorization. Then, let {Φs}s∈N (we use the index
s instead of t to distinguish Φs from At) be the matrix
sequence obtained by concatenating the sequences of ma-
trices Bt,0, . . . , Bt,nt−1. In other words, Φs = Bτ(s),s−τ(s)

where τ(s) ∈ N is defined by
∑τ(s)
t=0 nt ≤ s <

∑τ(s)+1
t=0 nt.



Using these preliminaries, we build a coder–decoder that
observes (7) with accuracy ε and communicates by using
packets of r symbols. Thus, at time t = (j + 1)r, the
decoder has received the last r symbols e(jr), . . . , e((j +
1)r − 1), which by assumption on C contain together at
least b(r) bits of information, and the decoder uses this
information to estimate the state x(t) of the system during
the ongoing “epoch” [(j + 1)r, (j + 2)r).

The coder–decoder is built as follows. For every j ∈ N, let
sj ∈ N be the largest integer such that scov(ε, sj ;Φs,K) ≤
2α(j+1)r. Then, by (9) and the definition of r, we have
that τ(sj) ≥ (j + 1)r. Moreover, by Lemma 12 (see Ap-

pendix A), it holds that scov(ε, sj ;Φs,K) ≥ 5−d2α(j+1)r.

We proceed by induction on j (the index of the epoch) to
build the coder–decoder. For the base case (j = 0), it is
not difficult to see that since there is a finite (ε, s0;Φs)-
cover of K, there is δ > 0 such that ‖x(0) − x̂(0)‖ ≤ δ
implies that x(0) ∈ BΦs,s0(x̂(0), ε). Denote ξ0 = x̂(0).
Now, for the induction step, fix j ∈ N and assume that
x(0) ∈ BΦs,sj (ξj , ε). Let Ej be a minimal (ε, sj+1;Φs)-
cover of BΦs,sj (ξj , ε).

Claim: We claim that |Ej | ≤ 275d2αr.

Proof: Since ε < 1/2, it holds that K+BΦs,sj (0, 2ε) ⊆ 2K.
By Lemma 8 (use ε = 1, T = 0 and α = 2), it is possible
to cover 2K with 5d translated copies of K. Thus, we
find that scov(ε, sj+1;Φs, 2K) ≤ 5dscov(ε, sj+1;Φs,K). By
Lemma 9, we have thus

|Ej | ≤ 55dscov(ε, sj+1;Φs,K)/scov(ε, sj ;Φs,K).

Now, by the definition of sj and sj+1, we get

|Ej | ≤ (55d2α(j+2)r)/(5−d2α(j+1)r) = 275d2αr. y

Because, b(r) ≥ αr + 9d, we may transmit via C b(r) bits
of information during the interval [jr, (j+1)r). This is suf-
ficient to give a unique binary code to each of the 275d2αr

points of Ej (see the Claim), since log2(275d2αr) ≤ αr+9d.

Summarizing, the coder–decoder is defined as follows.

– Coder. At time t = jr, the coder can compute Ej since
it knows the system and ξj (as either ξ0 = x̂(0) or ξj was
computed at the previous epoch). Hence, it can compute
ξj+1 ∈ Ej such that x(0) ∈ BΦs,sj+1(ξj+1, ε). Then, during
the coming epoch [jr, (j + 1)r), the coders Ct, t ∈ [jr, (j +
1)r), will send the symbols e(jr), . . . , e((j + 1)r− 1), such
that these symbols define together uniquely the point ξj+1

(assuming ξj is known). By the above, there is a set of
symbols satisfying this property and that are transmissible
via the communication network C.

– Decoder. At time t = (j + 1)r, the decoder can compute
Ej since it knows the system and also knows ξj (as either
ξ0 = x̂(0) or ξj was computed at the previous epoch). It
has also received all the symbols e(jr), . . . , e((j + 1)r− 1)
and thus it can compute the point ξj+1. Hence, during the
coming epoch [(j+1)r, (j+2)r), the decoders Dt, t ∈ [(j+
1)r, (j + 2)r), compute the estimates x̂(t) = x(t, ξj+1). By
definition of sj+1, we have that x(0) ∈ BAt,τ(sj+1)(ξj+1, ε).
Thus, since τ(sj+1) ≥ (j+2)r, it holds that for all t ∈ [(j+
1)r, (j + 2)r), ‖x(t)− x̂(t)‖ ≤ ε. This concludes the proof
of the theorem. 2

4. CONCLUSIONS AND FURTHER WORKS

In this paper, we have shown that the “observation data
rate” theorem, which is a well-known result for LTI sys-
tems and time-invariant nonlinear systems with invariant
compact initial set, extends to LTV systems. This theorem
is a cornerstone of networked control systems theory. It
implies that the topological entropy can be used as a
benchmark for the minimal channel capacity necessary for
the state observation of the system, as it provides a tight
bound on the optimal channel capacity.

For future work, we want to address the question of prac-
tical implementability of the coder–decoder. Indeed, in the
proof of Theorem 7, the construction of the coder–decoder
relies on the existence of minimal sets of functions neces-
sary to approximate the state of the system, disregarding
the computability of these functions. In fact, the same lim-
itation holds for the proof of the “observation data rate”
theorem for time-invariant systems with invariant compact
initial set; see, e.g., Matveev and Pogromsky (2016). How-
ever, for our specific case, we plan to draw on the linearity
of the system to show that “almost-minimal” (ε, T ;At)-
spanning sets can be computed numerically, thriving on
the notion of (ε, T ;At)-covers (defined in Section 3) which
can be approximated with ellipsoids. Based on this idea, we
plan to provide practical coders–decoders for the state ob-
servation of LTV systems, operating at data rates as close
as desired to topological entropy of the system; thereby
showing that topological entropy is not only a theoretical
but also a practical upper bound on the minimal data for
state observation of LTV systems.
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Appendix A

A.1 Proof of Lemma 8

The proof of the lemma follows from the fact that every
maximal (ε, T )-separated for (At,K) is an (ε, T ;At)-cover
of K (see the first Claim in the proof of Theorem 7).

Let F be an (ε, T )-separated subset for (At,K). We will
give an upper bound on the cardinality of F . Being (ε, T )-
separated for (At,K) is equivalent to the property that
for any two points η, ζ ∈ F , ‖η − ζ‖At,T > ε. This implies
that the balls BAt,T (η, ε/2), η ∈ E, are pairwise disjoint.
Moreover, because F ⊆ K, these balls are contained in
K ′ = K +BAt,T (0, ε/2).

Consequently, the volume of the union of these balls is
equal to |F | vol(BAt,T (0, ε/2)) and cannot exceed vol(K ′).
Hence, for K = BAt,T (ξ, αε), this gives

|F | ≤ vol(BAt,T (ξ, (α+ 1/2)ε))

vol(BAt,T (0, ε/2))
= (2α+ 1)d.

The latter comes from vol(BAt,T (ξ, r)) = rdvol(BAt,T (0, 1)),
which follows from BAt,T (ξ, r) = ξ + rBAt,T (0, 1). This
concludes the proof of the lemma.

A.2 Proof of Lemma 9

We will need the following result:

Lemma 10. Consider system (7) and let ε > 0 and T ∈ N.
Let E be a minimal (ε, T ;At)-cover of K. Then, there
exists a subset F ⊆ E such that |F | ≥ 11−d|E| and for
every two points ξ, η ∈ F , we have that ‖ξ − η‖At,T > 4ε
(or said otherwise, F is (4ε, T )-separated for (At, E)).

Proof. Fix ξ ∈ E. We claim that |BAt,T (ξ, 4ε)∩E| ≤ 11d.
Assume the contrary, and let Eξ = BAt,T (ξ, 4ε)∩E. Then,
Eξ covers at most the region BAt,T (ξ, 5ε), that is,⋃

η∈Eξ BAt,T (η, ε) ⊆ BAt,T (ξ, 5ε).

On the other hand, we have shown in Lemma 8 that
there exists an (ε, T ;At)-cover E′ of BAt,T (ξ, 5ε) with
|E′| ≤ 11d. This implies that E∗ = (E \ Eξ) ∪ E′ is an
(ε, T ;At)-cover of K with |E∗| < |E|, a contradiction with
the minimality of E. This proves the claim.

Using the above, we build the set F inductively as follows.
Let G0 = E and F0 = ∅. Then, for i = 0, 1, 2, . . . and
while Gi 6= ∅, pick ξi ∈ Gi and let

Gi+1 = Gi \ Eξi , and Fi+1 = Fi ∪ {ξi}.
Let k be the first i such that Gi = ∅ and define F = Fk.
Because |Eξi | ≤ 11d for each 0 ≤ i ≤ k − 1, we have that
k ≥ 11−d|E|. This concludes the proof of the lemma. 2

We proceed with the proof of Lemma 9. Note that since
E1 is a minimal (ε, T1;At)-cover of K, it holds that
BAt,T1(ξ, ε) ∩K 6= ∅ for all ξ ∈ E1. Hence, BAt,T1(ξ, ε) ⊆
K +BAt,T1(0, 2ε) for all ξ ∈ E1.

By Lemma 10, we know that there is F1 ⊆ E1 such
that |F1| ≥ 11−d|E1| and for every two points ξ, η ∈ F1,
‖ξ − η‖At,T1

> 4ε. For each ξ ∈ F1, let n∗(ξ) be the
smallest cardinality of a subset Eξ ⊆ E2 such that Eξ
is an (ε, T2;At)-cover of BAt,T1

(ξ, ε). Such Eξ alway exists
since E2 is an (ε, T2;At)-cover of K +BAt,T1

(0, 2ε).

Because ‖·‖At,T2 ≥ ‖·‖At,T1 , a ball BAt,T2(η, ε) cannot
intersect simultaneously BAt,T1(ζ, ε) and BAt,T1(θ, ε) if
ζ, θ ∈ F1 and ζ 6= θ. Thus, the subsets Eξ, ξ ∈ F1, are
pairwise disjoint. This implies that

∑
ξ∈F1

n∗(ξ) ≤ |E2|,
which in turn implies that

minξ∈F1
n∗(ξ) ≤ |E2|/|F1| ≤ 11d|E2|/|E1|.

Now, it is not difficult to see that if Eξ is an (ε, T2;At)-
cover of BAt,T1(ξ, ε), then Eξ − ξ is an (ε, T2;At)-cover of
BAt,T1(0, ε). This concludes the proof of the lemma.

A.3 Two useful lemmas

Lemma 11. Every matrix A ∈ Rd×d can be factorized as
A = BnBn−1 · · ·B1 where Bi ∈ Rd×d, ‖Bi‖ ≤ 2, and

‖Bi−1Bi−2 · · ·B1ξ‖ ≤ max{‖ξ‖, ‖Aξ‖}, (A.1)

for all i ∈ {1, . . . , n} and ξ ∈ Rd.

Proof. A possible factorization is the following. Let UΣV
be the Singular Value Decomposition of A and let σ be its
maximal singular value. Let n ∈ N>0 be such that σ1/n ≤
2. Let Π = Σ1/n (just take the nth root of the diagonal
elements which are nonnegative). Then, define B1 = ΠV ,
Bi = Π for i ∈ {2, . . . , n − 1} and Bn = UΠ. Clearly,
‖Bi‖ ≤ 2 and Bn · · ·B1 = A. Finally, (A.1) follows from

the fact that max0≤j≤n ‖Πjξ‖2 = max0≤j≤n
∑d
k=1 ξ

2
kΠ2j

kk
is reached either at j = 0 or j = n − 1 (because of the
convexity of exponential functions). 2

Lemma 12. Consider system (7) and let ε > 0 and T ∈ N.
Let α ≥ 1 such that ‖AT ‖ ≤ α. It holds that

scov(ε, T + 1;At,K) ≤ (2α+ 1)dscov(ε, T ;At,K).

Proof. Since α ≥ 1 and ‖AT ‖ ≤ α, we have that for every
ξ ∈ Rd, ‖ξ‖At,T+1 ≤ α‖ξ‖At,T , and thus BAt,T (0, ε) ⊆
BAt,T+1(0, αε). Thus, by Lemma 8, there is an (ε, T +
1;At)-cover E′ of BAt,T (0, ε) with |E′| ≤ (2α+1)d. Hence,
if E is an (ε, T ;At)-cover of K, we may define

E∗ = E + E′ =
⋃
ξ∈E(E′ + ξ).

Clearly, E∗ is an (ε, T +1;At)-cover of K and its cardinal-
ity satisfies |E′| ≤ (2α + 1)d|E|. Since E is arbitrary, this
concludes the proof of the lemma. 2


