
Worst-case topological entropy and minimal data rate for
state observation of switched linear systems

Guillaume O. Berger
∗

UCLouvain

Louvain-la-Neuve, Belgium

guillaume.berger@uclouvain.be

Raphaël M. Jungers
†

UCLouvain

Louvain-la-Neuve, Belgium

raphael.jungers@uclouvain.be

ABSTRACT
We introduce and study the concept of worst-case topological en-

tropy of switched linear systems under arbitrary switching. It is

shown that this quantity is equal to the minimal data rate (number

of bits per second) required for the state observation of the switched

linear system with any switching signal. A computable closed-form

expression is presented for the worst-case topological entropy of

switched linear systems. Finally, a practical coder–decoder, oper-

ating at a data rate arbitrarily close to the worst-case topological

entropy, is described.
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1 INTRODUCTION
In recent years, the outbreak of cyber-physical systems and com-

munication technologies has opened the door to a new generation

of systems, in which the different agents (plants, sensors, actuators,

controllers, etc.) are spatially distributed and communicate through

a shared, band-limited, digital communication network. This new

configuration of systems, coined as Networked Control Systems

(NCSs), offers several major advantages compared to traditional

centralized or wired systems, such as increased flexibility, lower
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cost and power, ease of maintenance, etc. [32]. As a consequence,

NCSs have found applications in a broad range of areas, like intelli-

gent transportation, remote surgery, haptics collaboration over the

Internet, etc. [14]. On the other hand, controlling systems through

digital/band-limited/delayed/error-prone communication networks

poses many challenges for the control theoretist, which cannot be

solved with the traditional approach where control and communica-

tion issues are treated separately. This motivated the development

of a new chapter in control theory, where the two frameworks are

integrated [3, 30].

Digital communication networks can carry only a finite amount

of information per unit of time. Moreover, high communication ca-

pacity generally comes at the cost of increased power consumption,

infrastructure, etc. . .when not physically infeasible (e.g., applica-

tions to underwater vehicles [35]). Consequently, a major challenge

in NCSs design is to determine the minimal communication data

rate between the plant and the controller required to achieve a

given control objective. This fundamental question has attracted a

significant research effort in the last decades, covering a large vari-

ety of settings (e.g., observability, stabilizability, optimal control;

for linear, nonlinear, hybrid systems); see, e.g., [8, 12, 31, 34].

Inspired by Shannon’s work on the link between information

entropy of a data source and the minimal communication capacity

required to carry the information reliably, it was soon realized that

the question of data rate requirement for NCSs had strong connec-

tions with the notion of topological entropy of dynamical systems.

This quantity, introduced in the late 60’s [1, 7] and now ubiquitous

in dynamical system theory, measures the rate at which informa-

tion about the initial condition is generated by the system as time

evolves. Topological entropy can also be defined as a measure of

the growth rate of the smallest number of trajectories necessary

to approximate the state of the system with arbitrary finite accu-

racy [7]. More recently, variants of topological entropy have been

proposed to address further aspects of NCSs design; e.g., model

uncertainties [34], time-varying systems [19, 22], exponentially

decreasing estimation error [27], feedback invariance and feedback

stabilization [10, 11, 31] and their modifications [9, 13, 17].

We are interested in the problem of determining the minimal

data rate at which a coder needs to send information to a decoder

to be able to estimate the state of the system with exponentially

decreasing error, and its connection with topological entropy. The

problem of state observation with limited data rate is depicted in

Figure 1. For LTI systems, the situation is well understood: com-

prehensive eigenvalue-based expressions exist for the topological

entropy of the system, and this quantity is shown to be equal to

the minimal data rate for state observation. Moreover, practical

https://doi.org/10.1145/3365365.3382195
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(i.e., implementable) coders–decoders for the state observation of

LTI systems, operating at a data rate as close as desired to the

topological entropy, are available; see, e.g., [30, §2.4].

Beyond the LTI realm, the situation is unfortunately much more

elusive: topological entropy is only known to be a lower bound on

the minimal data rate for state observation. In some cases (e.g., au-

tonomous systems with compact domain), it also provides a theoret-

ical upper bound on the minimal data-rate [20, 22, 29, 34]; however,

the implementability of a practical coder–decoder approaching the

optimal data rate is not guaranteed (e.g., the definition of topological

entropy relies on the existence of a minimal number of trajectories

needed to approximate the state of the system, disregarding the

computability of these trajectories). Furthermore, negative results

for the computability of the topological entropy have been proved,

even for very simple systems [21]; and the exact value of the topo-

logical entropy of most nonlinear systems (even widely-studied

ones, such as the Hénon map, the van Der Pol oscillator, etc. [29])

is still unknown. On the other hand, constructive lower bounds

and upper bounds on the topological entropy and the minimal data

rate for state observation of nonlinear systems have been proposed

in the literature (see, e.g., [27, 29]); the major advantage of these

constructive data rate upper bounds is that they are generally ac-

companied by practical coders–decoders that work whenever the

channel capacity fits this bound (see, e.g., [27, 29]).

This paper focuses on discrete-time Switched Linear Systems

(SLSs). These are systems described by a finite set of linear modes,

among which the system can switch in time. As a paradigmatic

class of cyber-physical systems, SLSs have attracted much attention

from the control community in recent years [15, 25, 28]. These

systems turn out to be extremely challenging in terms of control

and analysis, even for basic questions like stability or stabilizability

[15]. In particular, neither the topological entropy nor the data rate

requirements for state observation are well understood for SLSs.

These questions have been addressed, e.g., in [38, 40], where upper

bounds and lower bounds on the topological entropy, when the
sequence of modes is fixed a priori, are derived for different classes

of SLSs (diagonal, commuting, general, etc.); and also in [26, 39],

where sufficient data rates for feedback stabilization of SLSs are

established.

In this paper, we introduce and study the concept of worst-case
topological entropy of SLSs, which is the maximal topological en-

tropy that can be reached by the system among all sequences of

modes (aka. switching sequences). The motivation of this concept is

to study the questions of topological entropy and data rate require-

ments for state observation of SLSs in a worst-case scenario. The
worst-case scenario approach is a popular approach is the study of

switched systems as it provides formal guarantees that the system

will satisfy the specifications in every situations. In our case, this

amounts to find coders–coders that are able to observe the state of

the system for every switching sequences.

The contribution of the paper is twofold. First, we present a

closed-form expression for the worst-case topological entropy of

SLSs. More precisely, the worst-case topological entropy is ex-

pressed as the Joint Spectral Radius (a ubiquitous measure of stabil-

ity of SLSs) of a higher-dimensional SLS representing the action of

the original system on elements of volume. The definition of this

Figure 1: State observation with limited data rate.

SLS acting on volume elements will require tools from multilin-

ear algebra. The main asset of this closed-form expression is that

it can be computed numerically via well-established algorithms

for the computation of the Joint Spectral Radius (see, e.g., [37]).

Consequently, it allows for a systematic analysis of the worst-case

topological entropy of SLSs.

The second contribution is to provide a practical coder–decoder

that estimates the state of the SLS with exponentially decreasing

estimation error, and operating at a data rate arbitrarily close to the

worst-case topological entropy of the system. In particular, com-

pared to other bounds on the topological entropy of SLSs available

in the literature—for which no practical coders–decoders have been

proposed—, this demonstrates the practical relevance of worst-case

topological entropy for the problem of state observation of SLSs

with limited data rate.

In our analysis, it is assumed that the switching sequence is

known by the coder–decoder during the state estimation process.

This framework is motivated by the fact that the switching sequence

is not always known at the time of the coder–decoder’s design, but
is available to the coder–decoder during its operation. An example

of application is when one has to design the communication in-

frastructure between the plant (e.g., of a factory) and the observer

(placed at a remote location, e.g., headquarter of the company), and

the switching signal is not known at the time of the infrastructure

design or might change with time. For instance, a given sequence of

modes (periodic in many applications, but this is not a requirement)

might be used by the plant of a factory for a certain amount of

time. But after a few days or months, another sequence might be

needed (e.g. to meet the ever-changing consumer demand). In this

case, it is desirable that only the plant and the observer need to

be reconfigured, while the communication infrastructure remains

unchanged (as it is easier/cheaper to reconfigure a device than

rebuilding a whole infrastructure). To meet these requirements,

the communication channel will need to satisfy constraints driven

by the worst-case topological entropy. Other examples of applica-

tions involving the control of SLSs with data rate constraints are

discussed in the conclusions.

The paper is organized as follows. In Section 2, we introduce the

notions of topological entropy and SLSs. In Section 3, we present

the closed-from expression for the worst-case topological entropy

of SLSs and discuss the computability aspects. In Section 4, we

present a practical coder–decoder for the state observation of SLSs,

operating at data rate as close as desired to the worst-case topologi-

cal entropy of the system. Finally, in Section 5, we demonstrate the

applicability of our results on numerical examples. Proofs of the

main results can be found in Sections 6 and 7.

Notation. N is the set of nonnegative integers {0, 1, 2, . . .}. d is

a positive integer representing the dimension of the system. For

vectors, ∥·∥ denotes the Euclidean norm in Rd , and for matrices,

it denotes the associated matrix norm (i.e., ∥M ∥ = largest singular
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value of M). B(ξ , r ) is the Euclidean closed ball in Rd centered at

ξ ∈ Rd , with radius r ≥ 0. ⌈α⌉ is the smallest integer larger than or

equal to α ∈ R (aka. ceil of α ). In this paper, we consider dynamical

systems in discrete time; therefore, if [T1,T2] (resp. [T1,T2)) refers to
an interval of times (in particular, T1,T2 ∈ N), then it is understood

to contain only the integers fromT1 toT2 (resp.T2 −1) inclusive. By

convention, an “empty product” of real numbers is equal to 1; e.g.,

an expression like

∏k
i=1

βi , βi ∈ R, is equal to 1 if k ≤ 0. Similarly,

an “empty product” of matrices is equal to I .

2 PRELIMINARIES
2.1 Topological entropy
Consider a discrete-time switched system

x(t + 1) = fσ (t )(x(t)), x(t) ∈ Rd , t ∈ N, (1)

where σ (t) ∈ Σ B {1, . . . ,N } and fi : Rd → Rd for all i ∈ Σ. The
function σ : N→ Σ is called the switching signal1 of the system and

specifies which mode, i.e., which transition map fi , is used by the

switched system at each time. We denote by xσ (t, ξ ) the solution,
at time t , of (1) with switching signal σ and initial state ξ ∈ Rd . Let
K ⊂ Rd be a compact set of initial states with nonempty interior.

For the ease of notation, we will sometimes write (fσ ,K) to denote

system (1) with switching signal σ and initial set K . In particular,

xσ (·, ξ ) is a trajectory of (fσ ,K) if and only if ξ ∈ K .
We use the definition of topological entropy introduced by Bowen

[7] (see, e.g., [29, 34] for more recent treatment), extended to the

case of non-autonomous systems by Kolyada and Snoha [22]. The

definition relies on the notion of minimal sets of trajectories nec-

essary to approximate the state of the system with arbitrary finite

accuracy for every time t ∈ [0,T ].
More precisely, let σ be a switching signal for system (1). For ε >

0 andT ∈ N, we say that E ⊂ K is an (ε,T )-spanning set for (fσ ,K)
if for every ξ ∈ K , there is η ∈ E such that ∥xσ (t, ξ ) − xσ (t,η)∥ ≤ ε
for all t ∈ [0,T ]. This means that for every trajectory xσ (·, ξ ) of
(fσ ,K), there is a trajectory of fσ starting in E ⊂ K that is ε-close
to xσ (·, ξ ) for all t ∈ [0,T ]. See Figure 2 for an illustration. We let

sspan(ε,T ; fσ ,K) be the smallest cardinality of an (ε,T )-spanning
set for (fσ ,K).

Definition 2.1. The topological entropy of (1) with switching sig-

nal σ and initial set K is defined as

h(fσ ,K) = lim

ε↘0

lim sup

T→∞
1

T
log

2
sspan(ε,T ; fσ ,K). (2)

The limit on the left is well defined because sspan(ε,T ; fσ ,K) is
non-increasing in ε .

An equivalent definition of topological entropy can be obtained

if instead of considering minimal spanning sets of trajectories,

we consider the dual problem, which consists in finding maximal

separated sets of trajectories: a set F ⊂ K is (ε,T )-separated for

(fσ ,K) if for any two points ξ ,η ∈ F , there is t ∈ [0,T ] such that

1
In our framework (worst-case scenario analysis), the switching signal is an external

input on which the user has no control, and the objective is to deduce properties of

the systems that will be valid for every switching signals.

x1

x2
t = 0

t = 1

t = 2

t = 3

t = 4 xσ(t, η)

K

ε xσ(t, ξ)

ξ
η

Figure 2: The set of trajectories in blue is (ε,T )-spanning for
(fσ ,K) if every trajectory xσ (·, ξ ) (e.g., the trajectory repre-
sented in red) is contained in the “ε-tube” around at least
one of the trajectories in blue for all t ∈ [0,T ].

∥xσ (t, ξ )−xσ (t,η)∥ > ε . Letting ssep(ε,T ; fσ ,K) be the largest cardi-
nality of an (ε,T )-separated set for (fσ ,K), we obtain an equivalent

definition of h(fσ ,K):2

Proposition 2.2. The topological entropy of (1) with switching
signal σ and initial set K satisfies

h(fσ ,K) = lim

ε↘0

lim sup

T→∞
1

T
log

2
ssep(ε,T ; fσ ,K). (3)

The proof is along the same lines as [27, Theorem 1], and thus

omitted here.

2.2 Switched linear systems
In this paper, we are interested in the topological entropy of discrete-

time Switched Linear Systems (SLSs):

x(t + 1) = Aσ (t )x(t), x(t) ∈ Rd , t ∈ N, (4)

where σ is the switching signal as in (1) andAi ∈ Rd×d for all i ∈ Σ.
SLSs are thus particular instances of switched systems where each

mode is linear. Following the lines of Subsection 2.1, we let xσ (t, ξ )
be the solution, at time t , of (4) with switching signal σ and initial

state ξ ∈ Rd . We will also use (Aσ ,K) to denote system (4) with

switching signal σ and initial set K . The system being linear, the

transition of the state from a time t1 to a time t2 can be represented

by a matrix: for t1, t2 ∈ N, t1 ≤ t2, we denote the fundamental
matrix solution of (4) from t1 to t2 with switching signal σ by

Φσ ,t1,t2
= Aσ (t2−1)Aσ (t2−2) · · ·Aσ (t1). (5)

In particular, we have that the trajectories xσ (·, ξ ) of (Aσ ,K) satisfy
xσ (t2, ξ ) = Φσ ,t1,t2

xσ (t1, ξ ) for all t1, t2 ∈ N, t1 ≤ t2.
The topological entropy of (Aσ ,K), denoted by h(Aσ ,K), is de-

fined in the same way as for switched systems (see Definition 2.1).

However, in the case of SLSs, h(Aσ ,K) does not depend on a par-

ticular choice of the initial set K ⊂ Rd , as long as it is compact

with nonempty interior; see, e.g., [40, Proposition 2] for a proof.

Therefore, we omit the initial set in the notation and denote by

h(Aσ ) the topological entropy of Aσ .

2
In general, sspan(ε ,T ; fσ , K ) , ssep(ε ,T ; fσ , K ).
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We study the worst-case topological entropy of (4), that is, the

maximal topological entropy that can be reached by the system

among all switching signals. (In formulas, it is convenient to identify

SLSs by their sets of modes M = {A1, . . . ,AN }.)
Definition 2.3. The worst-case topological entropy of (4) is defined

as

h∗(M) = sup

σ
h(Aσ ), (6)

where the supremum is over all switching signals σ : N→ Σ.

Computational aspects of worst-case topological entropy are

discussed in Section 3. It should also be noted that at this point,

there is a priori no link between the topological entropy (which is

defined as a topological property of the system) and the minimal

data rate for state observation of the system (which involves the

notion of coder–decoder). In Section 4, we show that the worst-case

topological entropy is in fact equal to the minimal data rate for

state observation of the system under arbitrary switching signals,

and that this data rate limit can be approached as closed as desired

by practical coders–decoders.
To conclude this section, the example below illustrates the no-

tions of SLS, spanning and separated sets, topological entropy, and

worst-case topological entropy.

Example 2.4. Consider the 1-dimensional SLS with two modes

M = {A1,A2} ⊂ R1×1
, A1 = 1 and A2 = 2. Let σ be the switching

signal alternating modes 1 and 2: σ = (1, 2, 1, 2, . . .). Trajectories
of the systems are thus given by xσ (t, ξ ) = 2

t/2ξ if t is even, and

xσ (t, ξ ) = 2
(t−1)/2ξ if t is odd. We will show that h(Aσ ) = 1/2. For

SLSs, as long as topological entropy is concerned, the choice of the

initial set is not important. Hence, we fix K = [0, 1].
For ε > 0 and T ∈ N, let n = ⌈ε−1

2
T /2−1⌉ and E = {i/n : 0 ≤

i ≤ n}. We show that E is (ε,T )-spanning for (Aσ ,K). To do this,

let ξ ∈ K , and let η ∈ E such that |ξ − η | = minζ ∈E |ξ − ζ |. Then,
by definition of E, |ξ − η | ≤ 1/(2n) ≤ ε2

−T /2
. This implies that for

every t ∈ [0,T ], |xσ (t, ξ ) − xσ (t,η)| ≤ 2
t/2 |ξ − η | ≤ ε . Hence, E is

(ε,T )-spanning for (Aσ ,K) and thus

sspan(ε,T ;Aσ ,K) ≤ |E | = n + 1 ≤ ε−1
2
T /2−1 + 2.

Injecting in (2), we get that 1/2 is an upper bound on h(Aσ ):
h(Aσ ) ≤ lim

ε↘0

lim sup

T→∞
1

T
log

2

(
ε−1

2
T /2−1 + 2

)
= lim

ε↘0

1

2

=
1

2

.

Now, in order to show that 1/2 is also a lower bound on h(Aσ ),
we rely on (ε,T )-separated sets. Letm = ⌈ε−1

2
T /2⌉ − 1. Without

loss of generality, we may assume m > 0 (because we take the

limit when ε → 0 and T → ∞). Define F = {i/m : 0 ≤ i ≤ m}.
Then, any two points ξ ,η ∈ F satisfy |ξ − η | > ε2−T /2

. Hence,

for T ∈ N even, |xσ (T , ξ ) − xσ (T ,η)| > ε , showing that F is (ε,T )-
separated for (Aσ ,K). This implies that ssep(ε,T ;Aσ ,K) ≥ |F | =
m + 1 ≥ ε−1

2
T /2 − 1. Injecting in (3), this finally gives that h(Aσ ) ≥

log
2

2
1/2 = 1/2. Thus, h(Aσ ) = 1/2.

As for the worst-case topological entropy, it is quite intuitive

that σ above is not the switching signal that maximizes the topo-

logical entropy of the SLS. It is also not difficult to see that the

entropy-maximizing sequence is given by using only mode 2: σ =
(2, 2, 2, . . .). In this case, xσ (t, ξ ) = 2

t ξ and we deduce that h(Aσ ) =
log

2
2 = 1. Hence, h∗(M) = 1. □

3 CLOSED-FORM EXPRESSION FOR THE
WORST-CASE TOPOLOGICAL ENTROPY OF
SWITCHED LINEAR SYSTEMS

We start by presenting a closed-form expression for the worst-

case topological entropy of SLSs. This will require concepts from

stability analysis of SLSs (namely, the Joint Spectral Radius) and

frommultilinear algebra (namely, exterior algebras).We also discuss

the algorithmic aspects of computing the worst-case topological

entropy of SLSs with this expression. Connections with related

results in the literature are discussed at the end of this section.

3.1 Joint Spectral Radius
The Joint Spectral Radius (JSR) of a set of matrices measures the

asymptotic growth rate of themaximal norm of products of matrices

in the set, when the size of the product goes to∞. More precisely,

for a finite set of matrices M = {A1, . . . ,AN } ⊂ Rd×d , the Joint
Spectral Radius ofM is defined as

ρ(M) = lim sup

t→∞
max

Ai
1
, ...,Ait ∈M

∥Ai1Ai2 · · ·Ait ∥1/t . (7)

This quantity was introduced by Rota and Strang in 1960 [33]

in order to characterize the stability of SLSs. In particular, the JSR

has the following property (for a proof, we refer the reader to

[15, Theorem 1.2]): every trajectory xσ (·, ξ ) (i.e., for any switching

signal σ and any ξ ∈ Rd ) of the SLS associated to M converges to

zero as t → ∞, if and only if the JSR ofM satisfies ρ(M) < 1.

3.2 Exterior algebras
The exterior algebra of a vector space V is an algebraic construc-

tion used to study the notions of areas, volumes, and their higher-

dimensional analogues in V . In finite dimension, exterior algebras

can be constructed from the exterior products of vectors inV . From

now on, we assume that V = Rd , and we consider an arbitrary set

of k vectors {v1, . . . ,vk } ⊂ V . The exterior product of v1, . . . ,vk ,

denoted by v1 ∧ . . .∧vk , is the k-linear map fromV k
to R, defined

by

(v1 ∧ . . . ∧vk )(w1, . . . ,wk ) = det

[
w⊤
i vj

]
1≤i≤k
1≤j≤k

, wi ∈ V .

If {v1, . . . ,vd } is a basis of V , the kth exterior power of V , denoted

by ΛkV , is the vector space spanned by the exterior products of

the form vi1 ∧ vi2 ∧ . . . ∧ vik , 1 ≤ i1 < i2 < . . . < ik ≤ d . In

particular, the dimension of ΛkV is C(k,d) = d!/(k!(d − k)!). Note
that ΛkV = {0} if k > d , and by convention we let Λ0V = R.

In numerical computations, it is convenient to treat ΛkV as the

coordinate space RC(k ,d )
. This can be done by fixing a basis B for

ΛkV : e.g., B = {ei1 ∧ ei2 ∧ . . . ∧ eik : 1 ≤ i1 < i2 < . . . < ik ≤ d},
where {e1, . . . , ed } is the canonical basis of Rd . If the elements of

B are ordered with respect to the lexicographical order of their

indices (i1, . . . , ik ), then B is called the canonical basis of ΛkV .

If A ∈ Rd×d , the kth exterior power of A is the unique linear map

A∧k
: ΛkV → ΛkV satisfying

A∧k (v1 ∧ . . . ∧vk ) = Av1 ∧ . . . ∧Avk , vi ∈ V .



Worst-case topological entropy and minimal data rate for
state observation of switched linear systems HSCC ’20, April 22–24, 2020, Sydney, NSW, Australia

By convention, A∧0 = 1. Using the canonical basis B, A∧k
can be

represented by aC(k,d) ×C(k,d) matrix. Finally, the exterior power
of A is the 2

d × 2
d
matrix A∧ = diag{A∧0, . . . ,A∧d }.

The following proposition, whose proof can be found in [2,

§3.2.3], summarizes all the properties of exterior powers of maps

that we will need in this work.

Proposition 3.1. Let k ∈ {0, . . . ,d} and A,B ∈ Rd×d .
(1) I∧k = I , (AB)∧k = A∧kB∧k , (A∗)∧k = (A∧k )∗.
(2) If A is upper-/lower-triangular/ diagonal/ orthogonal, then so is

A∧k (in the canonical basis of ΛkV ).
(3) The eigenvalues (with multiplicity) of A∧k are given by

λi1 (A)λi2 (A) · · · λik (A), 1 ≤ i1 < i2 < . . . < ik ≤ d,

where λi (A) is the ith eigenvalue (with multiplicity) of A.
(4) The singular values of A∧k are given by

σ̄i1 (A)σ̄i2 (A) · · · σ̄ik (A), 1 ≤ i1 < i2 < . . . < ik ≤ d,

where σ̄i (A) is the ith singular value of A.

3.3 Main result and consequences
The main contribution of this section is the following theorem

which provides a closed-form expression for the worst-case topo-

logical entropy of SLSs.

Theorem 3.2. The worst-case topological entropy of (4) satisfies

h∗(M) = log
2
ρ(M∧) (8)

whereM∧ = {A∧
1
, . . . ,A∧

N }.

Proof. The proof is presented in Subsection 6.1. □

A straightforward consequence of Theorem 3.2 is that the worst-

case topological entropy depends continuously on the SLS: that is,

if M and N are two finite sets of matrices, that are close to each

other (with respect to the Hausdorff distance between sets), then

h∗(M) and h∗(N) will also be close to each other. This fact, which

is not obvious from the definition of worst-case topological entropy,

follows from the continuity of M∧
with respect to M (easy to see

from the definition ofA∧
) and the continuity of the JSR with respect

to bounded set of matrices [15, Proposition 1.10].

A wide range of methods, of very different natures, have been

proposed in the last decades to evaluate the JSR of a set of matrices;

see, e.g., [15, §2.3]. While theoretical discouraging results exist for

the computation of the JSR in general, these methods turn out to be

extremely powerful in practice and to provide JSR approximation

algorithms of high accuracy. Any of these algorithms can be used

to approximate the right-hand term of (8). The computation of the

exterior power of a matrix is straightforward from its definition,

and thus M∧
can be computed in a systematic way. However, it

should be noted that the dimension of M∧
increases exponentially

with the dimension of the system, and so will the complexity of

approximating the JSR ofM∧
(this is the curse of dimensionality).

In this regard, we note that a simple and algorithm-independentway

to substantially speed up the approximation of ρ(M∧)—although
not sufficient to fight the curse of dimensionality—is to observe

that because the matrices A∧
i are block diagonal, the computation

of the JSR ofM∧
can be decoupled among the different diagonal

blocks [15, Proposition 1.5]: ρ(M∧) = max
0≤k≤d ρ(M∧k ).

Furthermore, there are cases for which the computation of the

JSR is straightforward. For instance, if M is a set of normal (or

upper-/lower-triangular) matrices, then the JSR is equal to the

largest spectral radius of the matrices inM [15, Propositions 2.2–

2.3]. Combining these observations with the properties of the exte-

rior powers (Proposition 3.1), this gives efficient ways to compute

the worst-case topological entropy of such sets of matrices.

Corollary 3.3. LetM = {A1, . . . ,AN } ⊂ Rd×d be a set of nor-
mal matrices. For Ai ∈ M, let λ1(Ai ), . . . , λd (Ai ) be its eigenvalues
values (with multiplicity) ordered by decreasing modulus. Then

h∗(M) = log
2

max

0≤k≤d
Ai ∈M

|λ1(Ai ) · · · λk (Ai )|.

The same holds for sets of upper-/lower-triangular matrices. Moreover,
in this case, the eigenvalues are on the diagonal of the Ai ’s.

Proof. The proof is presented in Subsection 6.2. □

Numerical illustrative examples of the computation of the worst-

case topological entropy of SLSs, using Theorem 3.2 and Corol-

lary 3.3, are presented in Subsection 5.1.

To conclude this subsection, we would like to mention another

consequence of Theorem 3.2, stated in Corollary 3.4 below. This

result is motivated by the fact that in some applications, the switch-

ing signal is forced to be periodic (see, e.g., [24]), even if the signal

itself or its period is not known beforehand. The corollary states

that as long as worst-case topological entropy is concerned, there

is no loss of generality in restricting to periodic sequences.

Corollary 3.4. The worst-case topological entropy of (4) satisfies

h∗(M) = sup

σ periodic
h(Aσ ).

Proof. The proof is presented in Subsection 6.3. □

3.4 Related works
The worst-case topological entropy provides an upper bound on the

topological entropy of Aσ for any switching signal σ . The question
of estimating h(Aσ ) has been addressed, e.g., in [38, 40]. Because

the focus is put on a particular matrix sequence Aσ (disregarding

other sequences), the bounds on h(Aσ ) obtained in [38, 40] are in

general better than the worst-case topological entropy. However,

in “ill-conditioned” cases (e.g., triangular systems with large values

at the (1, 1)-entries), the bounds available in [38, 40] can be quite

conservative. In these cases, it can be beneficial to use h∗(M) as an
upper bound on h(Aσ ).

As already mentioned, the Joint Spectral Radius is a cornerstone

of SLS theory, and has attracted a lot of attention in the last decades

[15, 33, 37]. As a measure of the worst-case asymptotic growth rate

of the trajectories of the system, it is not surprising to encounter

this quantity in the characterization of the worst-case topological

entropy.

Exterior algebras have also received attention in dynamical sys-

tems theory; in particular, in the study of the Lyapunov exponents

[2, 4] and entropy-related properties [18, 23] of dynamical systems

and control systems. For instance, we note the remarkable formula
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by Kozlovski [23] for the topological entropy of a discrete-time

autonomous dynamical system, described by aC∞
map f : X → X ,

on a compact Riemannian manifold:

h(f ) = lim

n→∞
1

n
log

2

∫
X
∥(Df nx )∧∥ dx .

4 PRACTICAL CODER–DECODER
We investigate the problem of state observation of SLSs through

communication networks with limited data rate. The situation is

depicted in Figure 1. At specific sampling/transmission times, 0 =

T0 < T1 < T2 < . . . (Tj ∈ N), a coder measures the state x(Tj ) of the
system, and is connected to a decoder via a noiseless digital channel
which can carry one discrete-valued symbol e(Tj ) per time epoch

[Tj ,Tj+1], selected from a coding alphabet Ej of time-varying size.

Neglecting the propagation delay and transmission errors, each

symbol takes at most one epoch durationTj+1 −Tj to be completely

transmitted. Hence, at time Tj+1, the decoder has e(T0), . . . , e(Tj )
available and generates estimates x̂(t) of the state of the system for

the ongoing epoch [Tj+1,Tj+2).
More precisely, the coder is a family of functions C[·, ·, · | j,σ ]

(parameterized by j the index of the epoch and σ the switching

signal of the system):

C[·, ·, · | j,σ ] : Rd × Rd × R>0 → Ej ,
e(Tj ) = C[x(Tj ), x̂(Tj ), δj | j,σ ], j ∈ N, (9)

where x̂(Tj ) ∈ Rd is an estimate of the current state x(Tj ), and δj
satisfies ∥x(Tj )− x̂(Tj )∥ ≤ δj . The output is e(Tj ) ∈ Ej ⊂ Rd where

Ej is a finite set depending on j and σ . The symbol e(Tj ) will be
transmitted to the decoder at most at Tj+1. The decoder is a family

of functions D[·, ·, · | j,σ ] (also parameterized by j and σ ):

C[·, ·, · | j,σ ] : Ej−1 × Rd × R>0 → (Rd )Tj+1−Tj ,
[x̂(Tj ), . . . , x̂(Tj+1 − 1)] =

D[e(Tj−1), x̂(Tj−1), δj−1 | j,σ ], j ∈ N,
(10)

where x̂(Tj−1) satisfies ∥x(Tj−1)−x̂(Tj−1)∥ ≤ δj−1, and e(Tj−1) is the
symbol transmitted atTj−1 and received by the decoder atTj . If j =
0, take e(T−1) = x̂(T−1) = 0. The decoder outputs estimates of the

state for the ongoing epoch [Tj ,Tj+1). The sampling/transmission

times Tj , the error bounds δj and the coding alphabets Ej depend
only on the switching signal σ and thus they can be computed by

both the coder and the decoder independently. The data rate R (in

bits per unit of time) of the coder–decoder is defined as

R = sup

σ
sup

j ∈N
log

2
|Ej |

Tj+1 −Tj
. (11)

We want to build coders–decoders that estimate the state of the

system with exponentially decreasing error.

Definition 4.1. The coder–decoder (9)–(10) is said to observe the
SLS (4) with initial set K if there existC > 0 and д ∈ (0, 1) such that

for every switching signal σ and initial state ξ ∈ K , it holds that

∥xσ (t, ξ ) − x̂(t)∥ ≤ Cдt , ∀ t ∈ N. (12)

Remark 4.1. (9)–(10) assume that the whole switching signal is

known by the coder and the decoder during its operation (see also

the Introduction for the relevance of this assumption). In fact, as

it will be clear from the implementation of the coder and decoder

(see paragraphs below), it is sufficient that only theTj+1 −Tj modes

that are being used during the ongoing epoch [Tj ,Tj+1] are known
by the coder and the decoder.

We describe a family of practical coders–decoders that observe

(4) and whose data rate can be as close as desired to the worst-case

topological entropy of the system. More precisely, for any compact

set K ⊂ Rd and R′ > h∗(M), there is such a coder–decoder that

observes (4) with initial set K and whose data rate satisfies R ≤ R′
(see also Theorem 4.2 at the end of this section). The construction

relies on the properties of the Joint Spectral Radius and exterior

powers of matrices to build coders–decoders with data rate as close

as desired to the right-hand term of (8).

Coder–decoder’s implementation. For r > 0, we let

I (r ) =
{
Zeven ∩ [1 − ⌈r⌉, ⌈r⌉ − 1] if ⌈r⌉ is odd,
Z

odd
∩ [1 − ⌈r⌉, ⌈r⌉ − 1] if ⌈r⌉ is even,

where Zeven (Z
odd

) is the set of even (odd) integers. By construction,

for every ξ ∈ [−r , r ], there is η ∈ I (r ) such that |ξ − η | ≤ 1, and

we have that |I (r )| ≤ ⌈r⌉. If r = 0, we let I (0) = {0}. Now, for
r1, . . . , rd ≥ 0, we define

Grid(r1, . . . , rd ) = I (r1) × . . . × I (rd ).
Its cardinality satisfies µ̂ B |Grid(r1, . . . , rd )| ≤

∏d
i=1

⌈ri ⌉∗ where
⌈α⌉∗ = max{⌈α⌉, 1}. Finally, for ξ ∈ Rd , we let Q(ξ ) be the closest
point to ξ in Grid(r1, . . . , rd ). Hence, Q(·) is a µ̂-points quantizer
and satisfies

∥ξ −Q(ξ )∥ ≤ d1/2, ∀ ξ ∈ [−r1, r1] × . . . × [−rd , rd ].
Let K ⊂ Rd be a compact set and fix a target data rate R′

strictly

larger than the right-hand side of (8). We will build a coder–decoder

that observes the SLS (4) with initial set K and whose data rate

satisfies R ≤ R′
. (The reader may find useful to refer to Figure 3,

where the different quantities appearing in the definition of the

coder–decoder are represented.)

Let T0 = 0. Also, let x̂(0) be an estimation of the initial state and

δ0 ≥ 0 be such that K ⊆ B(x̂(0), δ0). Fix α > 1.

• At time Tj , the values of Tj+1, Ej , and δj+1 are computed as

follows (these computations are carried out by both the coder and

the decoder independently). For T ∈ N, T > Tj , we let σ̄i (Φσ ,Tj ,T ),
i ∈ {1, . . . ,d}, be the singular values of the fundamental matrix

solution Φσ ,Tj ,T (defined in (5)). We define Tj+1 as the smallest

T ∈ N, T > Tj , satisfying
d∏
i=1

⌈αd1/2σ̄i (Φσ ,Tj ,T )⌉∗ ≤ 2
(T−Tj )R′

. (13)

Finally, Tj+1 being fixed, we let

Ej = Grid(r1, . . . , rd ), ri = αd1/2σ̄i (Φσ ,Tj ,Tj+1
), (14)

and
3

δj+1 = δj/α . (15)

3
That is, the bound δj on the estimation error ∥xσ (Tj , ξ ) − x̂ (Tj ) ∥ decreases by a

factor 1/α between two sampling/transmission times Tj and Tj+1 . And thus the rate

д of decay of the estimation error (see Definition 4.1) is given by α−1/τ
where τ is an

upper bound on Tj+1 −Tj ; see also Subsection 7.1.



Worst-case topological entropy and minimal data rate for
state observation of switched linear systems HSCC ’20, April 22–24, 2020, Sydney, NSW, Australia

x(Tj)
x̂(Tj)

δj
Bj

x(Tj + 1)

x̂(Tj + 1)

x(Tj+1 − 1)

x̂(Tj+1 − 1)

x(Tj+1)

δjσ̄1

δjσ̄2

2d−1/2δj/α

x̂(Tj+1)

x(Tj+1)

e(Tj) αd1/2σ̄1

αd1/2σ̄2

2

O

Φσ ,Tj ,Tj+1Bj

δjα
−1d−1/2U

Figure 3: The different quantities appearing in the defini-
tion of the coder–decoder. The gray dots (bottom left) rep-
resent Grid(r1, r2), where σ̄1, σ̄2 are the singular values of
Φσ ,Tj ,Tj+1

. According to (17), Grid(r1, r2) is scaled and rotated
by δj+1d

−1/2U , and centered at x(Tj+1) B Φσ ,Tj ,Tj+1
x̂(Tj ). The

latter is the best available estimate of x(Tj+1) before the re-
ception of the symbol e(Tj ). At reception of e(Tj ), the new
estimate x̂(Tj+1) is then given by the center of the square in
which the state x(Tj+1) lies.

• The coder is defined as follows. At time Tj , if x̂(Tj ) is the cur-
rent estimate of the state (stored in the memory of the coder) and

x(Tj ) is the current state of the system (the coder has access to

the plant), we let ∆ξ j = x(Tj ) − x̂(Tj ). Let USV ∗
be the Singular

Value Decomposition ofΦσ ,Tj ,Tj+1
, where the singular values on

the diagonal of S are in the same order as in (14). The symbol sent

by the coder at time Tj is then defined as

e(Tj ) = Q(d1/2SV ∗∆ξ j/δj+1) ∈ Ej . (16)

where Q(·) is the quantizer with respect to Ej = Grid(r1, . . . , rd ).
• The decoder is defined as follows. At time Tj , the decoder

receives the symbol e(Tj−1) and has the last estimate x̂(Tj−1) in
memory. Then, the decoder computes the estimates x̂(·) for the
ongoing epoch [Tj ,Tj+1) as follows:

x̂(Tj ) = Φσ ,Tj−1,Tj x̂(Tj−1) + δjUe(Tj−1)/d1/2, (17)

where USV ∗
is the Singular Value Decomposition ofΦσ ,Tj−1,Tj , as

above. If Tj = 0, simply use the initial estimate x̂(0) given in the

parameters of the coder–decoder. Next, define inductively

x̂(t) = Aσ (t−1)x̂(t − 1), t ∈ (Tj ,Tj+1), (18)

The implementation of the above coder–decoder is described in

Algorithms 1–2. The proof of its correctness, i.e., that it satisfies (12),

is presented in Subsection 7.1. Summarizing, we have the following

result on the equivalence of the worst-case topological entropy and

the minimal data rate for state observation of the system under

arbitrary switching signals.

Theorem 4.2. Let K ⊂ Rd be compact, and consider the SLS
(4). If R′ < h∗(M), then there is no coder–decoder with data rate

R ≤ R′ that observes (4). If R′ > h∗(M), then there is a practical
coder–decoder with data rate R ≤ R′ that observes (4).

Proof. The proof is presented in Subsection 7.2. □

Algorithm 1: Coder

Input: R, α , x̂(0), δ0, and σ .
Let j = 0 and Tj = 0;

loop wait t
real
= Tj /* t

real
is the real time */

Measure current state x(Tj ) of the system;

Compute Tj+1, Ej , and δj+1 as in (13)–(15);

Compute e(Tj ) as in (16) and send e(Tj ) to the decoder;

Let j = j + 1;

Compute x̂(Tj ) as in (17);

end loop

Algorithm 2: Decoder

Input: R, α , x̂(0), δ0, and σ .
Let j = 0 and Tj = 0;

loop wait t
real
= Tj /* t

real
is the real time */

Receive symbol e(Tj−1); // If j = 0, e(T−1) = 0.

Compute Tj+1, Ej , and δj+1 as in (13)–(15);

Compute x̂(Tj ) as in (17); // If j = 0, x̂(T0) = x̂(0).
Compute x̂(t) for t ∈ (Tj ,Tj+1) as in (18);

Let j = j + 1;

end loop

5 NUMERICAL EXPERIMENTS
5.1 Worst-case topological entropy
We use the results of Section 3 to compute the worst-case topologi-

cal entropy of SLSs with general and triangular matrices.

Example 5.1. Consider the set of 2 × 2 matrices

M =

{
A1 B

[−0.1 0.7

−1.3 0.2

]
, A2 B

[
0.1 1.3

−0.7 0.5

] }
. (19)

We use Theorem 3.2 to compute the worst-case topological entropy

of the SLS associated withM. Therefore, we compute the exterior

powers of A1 and A2:

A∧
1
=


1

−0.1 0.7

−1.3 0.2

0.89

 , A∧
2
=


1

0.1 1.3

−0.7 0.5

0.96

 .
We have used the JSR Toolbox [37] (in MATLAB) to compute the

JSR of M∧
: this gives ρ(M∧) = 1.2379. Hence, we conclude that

h∗(M) = 0.3079. Observe that the worst-case topological entropy

is nonzero even if A1 and A2 are both stable matrices (indeed their

spectral radii are given by 0.94 and 0.98 respectively). □
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Figure 4: Top: Evolution of x(t) and x̂(t) for a sample exe-
cution of the coder–decoder with data rate R = 4. Bottom:
Evolution of the estimation error ∥x(t) − x̂(t)∥ for sample ex-
ecutions of the coder–decoder with data rates R = 0.8 (red)
and R = 0.5 (blue). The vertical gray lines indicate the sam-
pling/transmission times Tj (in general, the error decreases
at these times because the decoder receives a new symbol).

Example 5.2. Consider the set of 2 × 2 matrices

M =

{
A1 B

[
3 1

0.1

]
, A2 B

[
1.1 1

2

] }
.

BecauseA1 andA2 are upper-triangular, wemay apply Corollary 3.3

(note that the eigenvalues of A1 and A2 are on their diagonal). We

deduce that the worst-case topological entropy of the SLS associated

withM is equal to log
2

3 = 1.5850. The reader will check that the

same result can be obtained by applying directly Theorem 3.2;

indeed the exterior powers of A1 and A2 are given by

A∧
1
=


1

3 1

0.1

0.3

 , A∧
2
=


1

1.1 1

2

2.2

 ,
and the JSR of upper-triangular matrices is given by the largest

absolute value of its diagonal entries [15, Proposition 2.3]. □

5.2 State observation with limited data rate
We apply the coder–decoder described in Section 4 for the state

observation of the SLS (19). The parameters of the coder–decoder

(see Algorithms 1–2) are set as follows: we fix the value α = 2.5;

the values of x̂(0) and δ0 are given in Figure 4 (top); and we use

different values for the maximal data rate R, as explained below.
4

Firstly, to make a comprehensive visual illustration, we use a data

rate of R = 4, which is much larger than the worst-case topological

entropy (cf. Example 5.1). This ensures that each epoch lasts one

unit of time, i.e., Tj+1 −Tj = 1. A sample execution of the coder–

decoder is presented in Figure 4 (top). In this picture, the states

x(t) of the true system are represented in blue. The estimates x̂(t)
computed by the coder–decoder are represented in red.

In a second time, we simulate the execution of the coder–decoder

with data rates that are closer to the worst-case topological entropy

of the system, namely R = 0.8 and R = 0.5. For these values of R,
the duration of the epochs are longer (between 5 and 12, in our

simulation). The evolution of the estimation error ∥x(t) − x̂(t)∥
is represented in Figure 4 (bottom). As expected, we observe that

the estimation error decreases more rapidly when the data rate is

higher.

6 PROOFS OF SECTION 3
6.1 Proof of Theorem 3.2
Consider the SLS (4) with set of matricesM and denote by R(M)
the right-hand term of (8). The proof is divided into two parts: first

we prove that R(M) is an upper bound on h∗(M) and then we

prove that it is also a lower bound.

Part 1: Let R′ > R(M). We will show that h∗(M) ≤ R′
. The most

natural way to do this would probably be to use an argument based

on the definition of topological entropy in terms of spanning sets

(see Definition 2.1). However, we will present an alternative proof
1
,

which draws on the fact that we have described a coder–decoder

for the state observation of the system (see Section 4). The proof is

based on the result below (Lemma 6.1), which is well known (with

slight modifications) for autonomous systems [30, Theorem 2.3.6],

and certainly also for non-autonomous systems because the proof

argument is identical. For the sake of completeness, the proof of

this result is presented below.

Lemma 6.1. Consider the SLS (4) with compact initial set K . As-
sume there is a coder–decoder (9)–(10) with data rate R that observes
(4) with initial set K . Then, the worst-case topological entropy of (4)

satisfies h∗(M) ≤ R.

Proof of Lemma 6.1. Fix a switching signal σ . We will prove

that h(Aσ ,K) ≤ R. The proof is based on the definition of topo-

logical entropy in terms of separated sets of trajectories (Propo-

sition 2.2). Let ε > 0. We will show that there is D > 0 such that

for all T ∈ N, ssep(ε,T ;Aσ ,K) ≤ D2
TR

. By (3), and because ε is
arbitrary, this will prove that h(Aσ ,K) ≤ R.

4
It is worth noticing the following effects of the parameters α and R on the output of

the coder–decoder. By (15), α gives the rate of decrease of the worst-case estimation

error at the sampling/transmission times Tj . On the other hand, by (13), for a fixed

α > 0, the maximal lengthTj+1 −Tj of an epoch will depend on the maximal allowed

data rate R of the coder–decoder; the smaller R , the longer Tj+1 −Tj . Furthermore,

if R is smaller than the worst-case topological entropy—and only in this case—, the

maximal epoch length may be infinite.

1
The two proofs are of course intrinsically related. With the coder–decoder, we build a

set of functions approximating the trajectories of the system. Because these functions

are not trajectories themselves, this set is not a spanning set as defined in Subsection 2.1,

but the two concepts are akin.
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To do this, let S ∈ N be such that CдS+1 ≤ ε/2 where C and д
are as in (12). Define D = ssep(ε, S ; fσ ,K). Now, assume for a con-

tradiction there is T ∈ N and an (ε,T )-separated set F for (Aσ ,K),
with |F | > D2

TR
. By definition (11) of the data rate, the sequence

of symbols {e(T0), . . . , e(Tj )} received by the decoder at timeT (i.e.,

T ∈ [Tj+1,Tj+2)) can take at most 2
Tj+1R ≤ 2

TR
different values.

Thus, the sequence of estimates {x̂(0), . . . , x̂(T )}, which depends

only on x̂(0) and the past symbols, can also take at most 2
TR

differ-

ent values. Hence, since |F | > D2
TR

, there is a subset F ′ ⊆ F with

cardinality |F ′ | > D, such that all trajectories of fσ starting from F ′
have the same sequence of estimates on [0,T ], say {x̂(0), . . . , x̂(T )}.
By definition of S , this implies that for any two points ξ ,η ∈ F ′ and
every t ∈ (S,T ], it holds that
∥xσ (t, ξ ) − xσ (t,η)∥ ≤ ∥xσ (t, ξ ) − x̂(t)∥ + ∥xσ (t,η) − x̂(t)∥ ≤ ε .

Hence, because F ′ is (ε,T )-separated (as a subset of F ), there must

be T ∈ [0, S] such that ∥xσ (t, ξ ) − xσ (t,η)∥ > ε . This implies that

F ′ is in fact (ε, S)-separated, a contradiction with the definition of

D. Thus, h(Aσ ,K) ≤ R. Now, because the topological entropy of

Aσ is independent from the initial set, we have that h(Aσ ) ≤ R,
and since σ is arbitrary, it follows that h∗(M) ≤ R, concluding the

proof of the lemma. □

By applying Lemma 6.1 to the coder–decoder described in Sec-

tion 4 that observes the SLS (4) with initial set K (see Section 7.1 for

the proof) and operating at data rate R′
, we deduce that h(M) ≤ R′

.

Finally, since R′
is arbitrary, this proves that h∗(M) ≤ R(M), con-

cluding the proof of Part 1.

Part 2: We will show that R(M) ≤ h∗(M). The proof is based
on the the following result, known as the “Joint Spectral Radius

Theorem”, whose proof can be found in [15, Theorem 2.3].

Proposition 6.2. IfM = {A1, . . . ,AN } ⊂ Rd×d is a finite set of
matrices, then

ρ(M) = lim sup

t→∞
max

Ai
1
, ...,Ait ∈M

ρ̄(Ai1Ai2 · · ·Ait )1/t

where ρ̄(M) is the spectral radius ofM , i.e., the largest modulus of its
eigenvalues.

We proceed with the proof of Part 2. Therefore, let R′ < R(M).
From Proposition 6.2, there is T ∈ N>0 and M = Ai1 · · ·AiT
(Ai1 , . . . ,AiT ∈ M) such that ρ̄(M∧) ≥ 2

TR′
. BecauseM∧

is block

diagonal, its spectral radius is given by the maximal spectral radius

of the diagonal blocks. It follows that there is k ∈ {0, . . . ,d} such
that ρ̄(M∧k ) ≥ 2

TR′
. By Proposition 3.1 (item 3), this is equiva-

lent to |λ1(M) · · · λk (M)| ≥ 2
TR′

where λ1(M), . . . , λd (M) are the
eigenvalues of M ordered by decreasing modulus. On the other

hand, it is well known [30, Theorem 2.4.2] that the topological en-

tropy of the LTI system x(t + 1) = Mx(t), denoted by h(M), satisfies
h(M) = ∑d

j=1
log

2
max{|λj (M)|, 1}. Hence, h(M) ≥ TR′

.

Let σ be the periodic switching signal obtained by repeating

the sequence of modes (iT , . . . , i1) where i1, . . . , iT are as in the

definition ofM above. Then, the topological entropy ofAσ satisfies

h(Aσ ) ≥ R′
. Indeed, if K ⊂ Rd is a compact initial set andm ∈ N,

then any (ε,mT )-spanning set for (Aσ ,K) is an (ε,m)-spanning
set for the LTI system given by M . Hence, sspan(ε,mT ;Aσ ,K) ≥

sspan(ε,m;M,K), implying that h(Aσ ,K) ≥ h(M,K)/T ≥ R′
. Fi-

nally, this implies that h∗(M) ≥ R′
, and because R′

is arbitrary, it

follows that h∗(M) ≥ R(M). This concludes the proof of Part 2.

6.2 Proof of Corollary 3.3
This follows from the following result, whose proof can be found

in [15, Proposition 2.2–2.3].

Proposition 6.3. IfM is a set of normal (or upper-/lower-trian-
gular) matrices, then ρ(M) is equal to the largest spectral radius of
the matrices inM.

From Proposition 3.1 (item 1–2), it holds that ifA is normal, then

A∧
is normal as well. Indeed, if A = UDU ∗

whereU is orthogonal

and D is diagonal, then A∧ = U ∧D∧(U ∧)∗ and U ∧
is orthogonal

and D∧
is diagonal. Hence, by Proposition 6.3, ρ(M∧) = ρ̄(A∧

i )
for some Ai ∈ M, where ρ̄(M) is the spectral radius ofM , i.e., the

largest modulus of its eigenvalues. Because A∧
i is block diagonal,

its spectral radius is given by the maximal spectral radius of the

diagonal blocks, i.e., ρ̄(A∧
i ) = ρ̄(A∧k

i ) for somek ∈ {0, . . . ,d}. Using
Proposition 3.1 (item 3), this gives the desired result.

The proof for sets of upper-/lower-triangular matrices is identi-

cal, and thus omitted.

6.3 Proof of Corollary 3.4
The proof is straightforward from Part 2 in the proof of Theorem 3.2

(see Subsection 6.1). Indeed, for a given R′ < h∗(M), we showed
the existence of a periodic switching signal σ satisfying h(Aσ ) ≥ R′

.

Because, R′
is arbitrary, this concludes the proof.

7 PROOFS OF SECTION 4
7.1 Proof of the correctness of the

coder–decoder presented in Section 4
The proof is divided into two parts: first, we prove that there is an

absolute upper bound on the epoch duration Tj+1 −Tj . This upper
bound depends only on the SLS and the data rate, as long as it is

strictly larger than the right-hand side of (8). Then, we prove that

the estimation error at Tj is smaller than δj . Because δj decreases

exponentially (with rate α−1
) with respect to j , this will imply that

the estimation error ∥x(t) − x̂(t)∥ decreases exponentially with

respect to t .

Part 1: Fix α > 1. Let R′
be strictly larger than the right-hand

side of (8). Then, by the definition of the JSR, there is τ ∈ N>0 large

enough such that

max

Ai
1
, ...,Aiτ ∈M

∥(Ai1Ai2 · · ·Aiτ )∧∥ ≤ 2
−dα−dd−d/2

2
τR′
.

This τ will be an upper bound on Tj+1 − Tj . Indeed, let σ be any

switching signal and let T = Tj + τ . The left-hand side of (13)

satisfies

d∏
i=1

⌈αd1/2σ̄i (Φσ ,Tj ,T )⌉∗ ≤
d∏
i=1

2αd1/2
max{σ̄i (Φσ ,Tj ,T ), 1} (20)

On the other hand, by definition of τ , we have that

∥Φσ ,Tj ,T ∧∥ ≤ 2
−dα−dd−d/2

2
τR′
.
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By Proposition 3.1 (item 4) and the block-diagonal structure of

Φσ ,Tj ,T
∧
, the inequality above is equivalent to

max

0≤k≤d
σ̄1(Φσ ,Tj ,T ) · · · σ̄k (Φσ ,Tj ,T ) ≤ 2

−dα−dd−d/2
2
τR′
.

With (20), this gives that the left-hand side of (13) satisfies

d∏
i=1

⌈αd1/2σ̄i (Φσ ,Tj ,T )⌉∗ ≤ 2
τR′
,

and thus τ is an upper bound of Tj+1 −Tj .

Part 2: We prove, by induction on j ∈ N, that the estimation error

at Tj satisfies ∥x(Tj ) − x̂(Tj )∥ ≤ δj for all j ∈ N. By definition of T0,

x̂(0) and δ0, the claim is satisfied for j = 0. Now, for the induction

step, assume that it is satisfied for some j ∈ N. This implies that

∆ξ j B x(Tj ) − x̂(Tj ) ∈ B(0, δj ). In the view of this, let us look at the

definition (16) of e(Tj ). Therefore, letUSV ∗
be the Singular Value

Decomposition ofΦσ ,Tj ,Tj+1
.

We have thatV ∗∆ξ j/δj+1 ∈ B(0,α) becauseV ∗
is orthogonal and

δj+1 = δj/α . It follows that d1/2SV ∗∆ξ j/δj+1 belongs to [−r1, r1] ×
. . . × [−rd , rd ] where ri are defined as in (14). By definition of Q(·),
this implies that

∥d1/2SV ∗∆ξ j/δj+1 − e(Tj )∥ ≤ d1/2. (21)

Now, let us look at the definition (17) of x̂(Tj+1) at time Tj+1. The

difference between x(Tj+1) and x̂(Tj+1) satisfies
x(Tj+1) − x̂(Tj+1) = Φσ ,Tj ,Tj+1

x(Tj )
−Φσ ,Tj ,Tj+1

x̂(Tj ) − δj+1Ue(Tj )/d1/2

= Φσ ,Tj ,Tj+1
∆ξ j − δj+1Ue(Tj )/d1/2

= USV ∗∆ξ j − δj+1Ue(Tj )/d1/2

= δj+1U (d1/2SV ∗∆ξ j/δj+1 − e(Tj ))/d1/2.

By (21) and the orthogonality ofU , the latter implies that ∥x(Tj+1)−
x̂(Tj+1)∥ ≤ δj+1, concluding the proof of Part 2.

Now, combining Part 1 and Part 2, we have that the estimates

x̂(t) satisfy (12) with д = α−1/τ
and C = δ0D where

D = max

0≤T ≤τ−1

Ai
1
, ...,AiT ∈M

д−T ∥Ai1 · · ·AiT ∥.

Indeed, if t ∈ [Tj ,Tj+1) for some j ∈ N, then
∥x(t) − x̂(t)∥ = ∥Φσ ,Tj ,t (x(Tj ) − x̂(Tj ))∥

≤ ∥Φσ ,Tj ,t ∥ ∥x(Tj ) − x̂(Tj )∥ ≤ Dдt−Tj ∥x(Tj ) − x̂(Tj )∥
≤ Dдt−Tj δj = Dдt−Tj δ0α

−j ≤ Dдt−Tj δ0α
−Tj /τ

= Dдt−Tj δ0д
Tj = Dδ0д

t .

This concludes the proof of the correctness of the coder–decoder.

7.2 Proof of Theorem 4.2
The first implication is Lemma 6.1. The second one follows from

the existence of the family of coders–decoders presented in Sec-

tion 4, which can have data rates arbitrarily close to the worst-case

topological entropy.

8 CONCLUSION
This paper introduced the concept of worst-case topological entropy

for switched linear systems. It was shown that this quantity is

relevant for the problem of state observation of these systems with

limited data rate. More precisely, we constructed a practical coder–

decoder, operating at a data rate as close as desired to the worst-

case topological entropy, that estimates the state of the system for

any switching signal and with exponentially decreasing estimation

error. We also discussed the computational aspects of the worst-

case topological entropy. In particular, we provided a closed-form

formula expressing the worst-case topological entropy as the Joint

Spectral Radius of some set of matrices obtained from the original

one by taking exterior powers. Among other consequences, the

computation of the worst-case topological entropy can thereby

benefit from the numerous algorithmic tools developed in the last

decades for the computation of the Joint Spectral Radius.

In our framework, it is assumed that the switching signal is

known by the coder–decoder. However, it was noted in Remark 4.1

that only a few future values of the switching signal actually need

to be known by the coder–decoder. Based on this observation, we

plan to show that the concept of worst-case topological entropy is

also relevant for the control of switched linear systems with limited

data rate. We think for instance to control schemes involving the

switching signal as control input (see, e.g., [36, Chapter 4] [16]).

We also plan to consider variants of this framework, involving

for instance relaxations of the assumption that the switching sig-

nal is known by the coder–decoder (non-deterministic systems),

or considering the control of switched linear systems under data

rate constraints. Related questions have been addressed, e.g., in

[34] (topological entropy for non-deterministic systems), [9, 13, 34]

(control of autonomous systems with limited data rate), and [26]

(stabilization of non-deterministic switched linear systems with

limited data rate). However, the specific case of switched linear

systems seems to have not received much attention yet. Another

potential direction for further research is to combine our results

for the computation of the worst-case topological entropy with

other techniques for the analysis of switched linear systems, in

order to fight the curse of dimensionality. We think for instance to

p-dominance analysis techniques [5, 6] which allow one to decide

whether the system has a low-dimensional dominant behavior.
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