
Complexity of the LTI system trajectory boundedness problem

Guillaume O. Berger and Raphaël M. Jungers

Abstract— We study the algorithmic complexity of the prob-
lem of deciding whether a Linear Time Invariant dynamical
system with rational coefficients has bounded trajectories.
Despite its ubiquitous and elementary nature in Systems and
Control, it turns out that this question is quite intricate, and, to
the best of our knowledge, unsolved in the literature. We show
that classical tools, such as Gaussian Elimination, the Routh–
Hurwitz Criterion, and the Euclidean Algorithm for GCD of
polynomials indeed allow for an algorithm that is polynomial
in the bit size of the instance. However, all these tools have to
be implemented with care, and in a non-standard way, which
relies on an advanced analysis.

I. INTRODUCTION

This paper deals with the computational problem of de-
ciding whether a Linear Time Invariant (LTI) dynamical
system with rational coefficients has bounded trajectories;
see Problems 1 and 2 in Section II. We show that this
problem can be solved in polynomial time with respect to
the bit size of the coefficients. We are interested in the exact
complexity, also called “bit complexity” or “complexity in
the Turing model”, which accounts for the fact that arithmetic
operations (+, −, ×, ÷) on integers and rational numbers
take a time proportional to the bit size of the operands.

Rational matrices appear in many applications, including
combinatorics, computer science and information theory; for
instance, the number of paths of length r in a graph (involved
for instance in the computation of its entropy [13]) grows at
most as ρr (ρ ≥ 0) if and only if the adjacency matrix of the
graph divided by ρ has bounded powers. However, despite
its ubiquitous and paradigmatic nature for many applications,
it seems that the question of the complexity of the problem
of deciding whether the trajectories of a LTI system with
rational coefficients are bounded is unsolved in the literature.
The aim of this paper is to fill this gap by providing a proof
of its polynomial complexity.

The question of deciding asymptotic stability (rather than
boundedness of the trajectories) of LTI systems has received
a lot of attention in the literature [11], [12], [15]. Algorithms
with polynomial bit complexity have been proposed to ad-
dress this question for systems with rational coefficients. This
includes algorithms based on the Routh–Hurwitz stability
criterion [14] where care is taken to avoid exponential
blow-up of the bit size of the intermediate coefficients; or
algorithms based on the resolution of the Lyapunov equation
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Fig. 1. A naive way to decide the boundedness of the trajectories of
a LTI system described by a rational matrix would be to use the Matlab
function jordan and look at the eigenvalues and size of the associated
Jordan blocks. However, this method will not be efficient for two reasons.
Firstly, the complexity of the Matlab function jordan applied on symbolic
integer matrices seems super-linear. In the above plot, we have generated,
for each n ∈ {1, . . . , 12}, 50 random n × n matrices with 8-bit integer
entries (the bit size of the input is thus 8n2) and we measured the time
to compute the Jordan form (represented by the boxplots). The empirical
complexity is clearly super-linear. Secondly, the obtained Jordan form does
not contain explicitly the eigenvalues of the matrix, but rather expressions
of the form root(’some polynomial’), so that extra computation is
needed to decide the (marginal) stability of each of the Jordan blocks. In
this work, we show that a more efficient implementation is possible.

[2], again taking care to avoid exponential blow-up of the
bit size of the intermediate steps of the resolution.

However, these algorithms focus on the asymptotic sta-
bility and do not extend straightforwardly for the problem
of deciding boundedness of the trajectories. For instance,
the Routh–Hurwitz stability criterion applied on the char-
acteristic polynomial of a matrix allows to decide whether
all eigenvalues of the matrix have negative real part. For
the problem of boundedness of the trajectories, the analysis
is more difficult because eigenvalues with nonnegative real
parts are also allowed1, provided they are on the imaginary
axis and correspond to Jordan blocks of size one in the
Jordan normal form of the system matrix. Extensions of
the Routh–Hurwitz criterion to compute the number of roots
with negative real part of a given polynomial have also been
proposed in the literature (see, e.g., [9, §15], [4], [5]), but
the analysis of the bit complexity of these algorithms remains

1This holds for the continuous-time case, but a similar result holds for
the discrete-time case. Both cases are studied in this paper.



elusive. The situation is similar for the approach based on
the Lyapunov equation [2]. More precisely, while for the
study of the asymptotic stability, a solution of the Lyapunov
matrix inequality can be computed by arbitrarily fixing the
right-hand side term to −I , this trick cannot be used for the
analysis of the boundednes of the trajectories, since the RHS
term is not guaranteed to be negative definite. One has thus
to solve a matrix inequality instead of a matrix equation, and
there is to the best of the authors’ knowledge no clear result
available in the literature on the bit complexity of solving
LMIs, so that an extension of the Lyapunov method for the
problem of trajectory boundedness is not straightforward.

Objectives and methodology. The discussion above never-
theless suggests an algorithmic procedure for our problem,
consisting in

1) computing the minimal polynomial of the system ma-
trix, which contains the information on the eigenvalues
and on the size of the largest associated Jordan block
in the Jordan normal form of the system matrix;

2) using an extension of the Routh–Hurwitz criterion to
decide whether all the roots of the minimal polynomial
either have negative real part, or are on the imaginary
axis and correspond to Jordan blocks of size one.

We provide self-contained proofs that these two steps can be
achieved in polynomial time with respect to the bit size of
the matrix. In particular, we provide a careful analysis of the
extended Routh–Hurwitz criterion, showing that it provides
a polynomial bit-complexity algorithm for the second step.

Comparison with the literature. Algorithms with polyno-
mial bit complexity for computing the minimal polynomial
of a rational matrix have been proposed in the literature [7],
[8].2 While being aware of these results, we describe here an
elementary algorithm for this problem, based on the defining
property of the minimal polynomial (see Subsection IV-A).
The proposed algorithm is likely to be less efficient than
those available in the literature, but its elementary nature
allows us to provide a simple self-contained proof of its
polynomial bit complexity.

As for the second step, several extensions of the Routh–
Hurwitz criterion have been proposed in the literature to
compute for a given polynomial the number of roots on the
imaginary axis and their multiplicity [4], [5], [9]. However,
no proofs of the polynomial complexity of these algorithms
are provided. In particular, since they are extensions of
the classical Routh–Hurwitz criterion, there is no guarantee
on the boundedness of the bit size of the intermediate
coefficients; see, e.g., [14, p. 321] for a discussion on the
“bit size growth factor” for the Routh–Hurwitz criterion.
The extended Routh–Hurwitz criterion proposed in this paper
draws on these results and combines them with techniques
introduced in the context of the classical Routh–Hurwitz
criterion to avoid “bit-size blow-up”. This results in a sound
elementary algorithm to address the second step, and for

2Note that the Matlab function jordan would not have helped us for
this problem, as the complexity of this function seems to be super-linear in
the bit size of the instance; see, e.g., Figure 1.

which we provide a simple self-contained proof of the
polynomial bit complexity.

Outline. The paper is organized as follows. The statement
of the problems and the main results are presented in Section
II. Some preliminary results, namely on the computation
of the determinant and the resolution of systems of linear
equations, are presented in Section III. Then, in Section IV,
we present the proof of the main result for continuous-time
systems. Finally, in Section V, we present the proof of the
main result for discrete-time systems.

Many of the intermediate results used in our analysis are
inspired from classical results, but have been adapted for the
needs of this work. Below, we refer to these results as folk
theorems, meaning that we are referring to a classical result
— possibly slightly adapted to our needs, but on which we
do not claim any paternity.

Notation. We use a Matlab-like notation for the indexing of
submatrices; e.g., A[1:r,:] denotes the submatrix consisting of
the r first rows of the matrix A. The degree of a polynomial p
is denoted by deg p. We use i to denote the imaginary unit
i =
√
−1 and as an index i ∈ N, but the disambiguation

should be clear from the context.

II. PROBLEM STATEMENT AND MAIN RESULTS

We start with the definition of bit size for integers, integer
matrices and rational matrices.

Definition 1 (Bit size): • The bit size of an integer a ∈
Z is b(a) = dlog2(|a| + 1)e + 1 (= smallest b ∈ Z≥0
such that −2b−1 + 1 ≤ a ≤ 2b−1 − 1).

• The bit size of an integer matrix A = (aij)
m,n
i=1,j=1 ∈

Zm×n is b(A) =
∑m,n

i=1,j=1 b(aij).
• The bit size of a rational matrix A ∈ Qm×n, described

by A = B/q with B ∈ Zm×n and q ∈ Z>0, is b(A) =
b(B) + b(q).

We consider the following decision problem, accounting
for the boundedness of the trajectories of continuous-time
LTI systems:

Problem 1: Given a rational matrix A ∈ Qn×n, decide
whether supt∈R≥0

‖eAt‖ <∞.

The following theorem states that Problem 1 can be solved
in polynomial time with respect to the bit size of the input.

Theorem 1: There is an algorithm that, given any A ∈
Qn×n, gives the correct answer to Problem 1, and whose bit
complexity is polynomial in b(A).

The proof of Theorem 1 is presented in Section IV. Note
that a rational matrix A = B/q, with B ∈ Zn×n and q ∈
R>0, is a positive instance of Problem 1 if and only if B is
a positive instance of Problem 1. Hence, in Section IV, we
limit ourselves to proving Theorem 1 for integer matrices.

The same kind of results can be obtained for the problem
of the boundedness of the trajectories of discrete-time LTI
systems:

Problem 2: Given a rational matrix A ∈ Qn×n, decide
whether supt∈Z≥0

‖At‖ <∞.



Theorem 2: There is an algorithm that, given any A ∈
Qn×n, gives the correct answer to Problem 2, and whose bit
complexity is polynomial in b(A).

The proof of Theorem 2 is presented in Section V.

III. PRELIMINARY RESULTS

The following result, which follows directly from [1, Eq.
(8)], will be instrumental in the following section. Due to
space limitation, we only present a sketch of its proof as a
corollary of [1, Eq. (8)].

Proposition 3 (from [1]): There is an algorithm that, given
any A ∈ Zm×n, computes the tuple (r,R, C,det(A[R,C]))
where (i) r is the rank of A, (ii) R = {i1, . . . , ir} ⊆ N with
1 ≤ i1 < i2 < . . . < ir ≤ m, (iii) C = {j1, . . . , jr} ⊆ N
with 1 ≤ j1 < j2 < . . . < jr ≤ n, and (iv) det A[R,C] 6= 0.
Moreover, the bit complexity of the algorithm is polynomial
in b(A).

Proof: See the extended version of this paper [3].
In particular, when A ∈ Zn×n, the determinant of A can

be obtained from the output (r,R, C, D) of the algorithm: if
r < n, then det(A) = 0, otherwise det(A) = D.

By combining the algorithm of Proposition 3 with the
well-known rule of Cramer (see, e.g., [10, §0.8.3]), one
can obtain a polynomial-time algorithm for the resolution
of systems of linear equations with integer coefficients.3

Proposition 4: There is an algorithm that, given any A ∈
Zm×n and b ∈ Zm, computes integers x0 6= 0 and x1, . . . , xn
such that x = [x1, . . . , xn]/x0 is a solution to Ax = b if the
system is feasible, or outputs that the system has no solution
(in Rn). Moreover, the bit complexity of the algorithm is
polynomial in b(A) + b(b).

Proof: See the extended version of this paper [3].

IV. PROOF OF THEOREM 1

A. The minimal polynomial

The first step of our algorithm to answer Problem 1 is to
compute the minimal polynomial of A. We remind that the
minimal polynomial of a matrix A ∈ Rn×n is defined as the
monic real polynomial p : x 7→ xd + c1x

d−1 + . . .+ cd with
smallest degree d such that p(A) = 0.

The relevance of the minimal polynomial for Problem 1
is explained in Theorem 5 below. First, we introduce the
following terminology that will simplify the statement of the
theorem.

Definition 2: A (complex or real) polynomial will be said
to have the boundedness property if each of its roots satisfies
one of the following two conditions: (i) has negative real part,
or (ii) is on the imaginary axis and is simple.

Theorem 5 (Folk): For any A ∈ Rn×n, it holds that
supt∈R≥0

‖eAt‖ <∞ if and only if the minimal polynomial
of A has the boundedness property.

Proof: See the extended version of this paper [3].

3Let us mention that more efficient algorithms for this problem have
been proposed in the literature, such as the well-known Gaussian Elimina-
tion. However, the latter necessitates more advanced analysis for a careful
proof of its polynomial-time nature (see [1, §2]).

Input: A ∈ Zn×n.
Output: “YES” if A is a positive instance of Problem 1 and
“NO” otherwise.
Algorithm:
. Step 1: Using Theorem 6, compute integers e0 6= 0 and
e1, . . . , ed such that x 7→ xd + e1x

d−1/e0 + . . . + ed/e0 is
the minimal polynomial of A.
Let p : x 7→ e0x

d + e1x
d−1 + . . .+ ed.

. Step 2: Using Theorem 7, return “YES” if p has the boun-
dedness property (see Definition 2) and return “NO” other-
wise.
Fig. 2. Algorithm for answering Problem 1 for integer matrices (rational
matrices can be treated in the same way by considering only the “numerator
matrix”).

The above theorem allows us to provide an algorithm to
answer Problem 1. The algorithm is presented in Figure 2; it
consists in two main steps that are described in the following
subsections.

B. Step 1: Computation of the minimal polynomial
The definition of the minimal polynomial, combined with

the algorithm of Proposition 4, allows for polynomial-time
computation of the minimal polynomial of integer matrices.4

Theorem 6: There is an algorithm that, given any A ∈
Zn×n, computes integers e0 6= 0 and e1, . . . , ed such that
x 7→ xd+e1x

d−1/e0+. . .+ed/e0 is the minimal polynomial
of A. Moreover, the bit complexity of the algorithm is
polynomial in b(A).

Proof: For each d ∈ {1, . . . , n}, write the matrix equa-
tion Ad + c1A

d−1 + . . .+ cdI = 0, with unknowns c1, . . . ,
cd ∈ R. For any ` ∈ Z≥0, it holds that the bit size of the
entries of A` is bounded by `b(A)+ `b(n) (since each entry
is the sum of n` products of ` elements of A).

The matrix equation can be rewritten in the classical vector
form: Mx = N , where x = [c1, . . . , cd], N = −vec(Ad) and
M = [vec(Ad−1), . . . , vec(A0)] (vec(·) is the vectorization
operator5). From the above, it holds that the bitsize of the
entries of M is bounded by nb(A)+n2 ≤ 2(b(A))2. Hence,
b(M) ≤ 2(b(A))5 (since the number of elements of M is
equal to n2d). Similarly, we find that b(N) ≤ 2(b(A))4.

Hence, using the algorithm of Proposition 4, we can find
integers e0 6= 0 and e1, . . . , ed such that Ad + e1A

d−1/e0 +
. . .+ edI/e0 = 0 or conclude that no such numbers (integer
or not) exist. The smallest d for which such integers exist
provides the minimal polynomial of A. Moreover, from the
developments above, the bit size of these integers and the
time to compute them is polynomial in b(A).

C. Step 2: Analysis of the roots of a polynomial
The goal of this subsection is to prove Theorem 7 below,

which states that deciding whether a polynomial with integer

4Again, let us mention that more efficient algorithms have been pro-
posed in the literature (see, e.g., in [8]), but necessitate more work for their
description and for the analysis of their complexity. Hence, we present an
elementary algorithm to keep the paper simple and self-contained.

5I.e., if A = [a1, . . . , an] ∈ Rm×n with ai ∈ Rm for all i ∈
{1, . . . , n}, then vec(A) = [a>1 , . . . , a>n ]>.



coefficients has the boundedness property can be done in
polynomial time w.r.t. the bit size of its coefficients.

The proof relies on the Routh–Hurwitz stability criterion,
which is an algorithmic test to decide whether all the roots of
a given polynomial have negative real part and was shown
to be implementable by a polynomial-time algorithm (see,
e.g., [14]). Extensions of the Routh–Hurwitz criterion allow
to compute for a given polynomial the number of roots on
the imaginary axis and their multiplicity (see, e.g., [9, §15],
[4], [5]). However, to the best of the authors’ knowledge, no
proof of the polynomial bit complexity of such algorithms is
available in the literature. Hence, in Theorem 7, we present a
minimalist version of the extended Routh–Hurwitz algorithm
that is sufficient for our needs (verifying the boundedness
property), and thriving on Proposition 3, we show that this
minimalist version can be implemented by a polynomial-time
algorithm.

Theorem 7: There is an algorithm that, given any polyno-
mial p : x 7→ a0x

d + . . . + ad with integer coefficients a0,
. . . , ad, outputs “YES” if p has the boundedness property,
and outputs “NO” otherwise. Moreover, the bit complexity
of the algorithm is polynomial in

∑d
`=0 b(a`).

The rest of this section is devoted to proving Theorem
7. To do that, we first introduce several results and concepts
that are classical in the study of the Routh–Hurwitz criterion.

Let p0, p1, . . . , pm+1 be a sequence of real polynomials
such that{

pm+1 ≡ 0, pk 6≡ 0, ∀ k ∈ {1, . . . ,m},
pk+1 = −rem(pk−1, pk), ∀ k ∈ {1, . . . ,m}, (1)

where rem(pk−1, pk) is the remainder of the Euclidean div-
ision of pk−1 by pk, meaning that deg pk+1 < deg pk and
there is a real polynomial qk such that pk+1 = qkpk− pk−1.
Hence, the polynomials p0, . . . , pm+1 are those that would
be obtained by applying the Euclidean algorithm (see, e.g.,
[6, §1.5]) on p0 and p1, which is known to produce the GCD
of p0 and p1.

Lemma 8 (Folk): Let p0, . . . , pm+1 be as (1). Then, for
all k ∈ {0, . . . ,m}, pm is a greatest common divisor (GCD)
of pk and pk+1.

Proof: See the extended version of this paper [3].
From the above, it holds that pm divides p0 and p1. The

following result is known as the Routh–Hurwitz theorem.
Lemma 9 (see, e.g., [9, Theorem 15.2]): Let p0, . . . , pm+1

be as in (1), and let p : x 7→ p̃0(−ix) + ip̃1(−ix) where
p̃0 = p0/pm and p̃1 = p1/pm. Then, it holds that

τs − τu = V (+∞)− V (−∞),

where τs is the number of roots of p with negative real part
and τu is the number of roots of p with positive real part,
and V (y) (y ∈ R ∪ {±∞}) is the number of variations of
sign6 in the sequence p0(y), . . . , pm(y).

Proof: See the extended version of this paper [3].

6The number of variations of sign in a finite sequence of nonzero real
numbers (or ±∞) is the number of pairs of consecutive elements in the
sequence that have opposite sign. For instance, the number of variations of
sign in 1,∞,−1, 3,−∞,−2 is equal to 3.

A similar approach can be used to compute the number
of distinct real roots of a real polynomial.

Lemma 10 (see, e.g., [9, p. 174]): Let p0, . . . , pm+1 be as
in (1) with p1 = −p′0. Then, V (+∞)− V (−∞) is equal to
the number of distinct real roots of p0, where V (y) is the
number of variations of sign in p0(y), . . . , pm(y).

Proof: See the extended version of this paper [3].
By combining Lemmas 9 and 10, we obtain the following

algorithmic procedure to decide whether a given polynomial
has the boundedness property.

To introduce this procedure, let p : x 7→ c0x
d + c1x

d−1 +
. . .+cd be a real polynomial (c0 6= 0). If deg p is even, then
decompose p into two real polynomials p0 and p1 such that
p(ix) = p0(x) + ip1(x) for all x ∈ C. Namely,

p0 : x 7→ idc0x
d + id−2c2x

d−2 + . . .+ cd,
p1 : x 7→ id−2c1x

d−1 + id−4c3x
d−3 + . . .+ cd−1x.

(2)

On the other hand, if deg p is odd, then decompose p into
two real polynomials p0 and p1 such that ip(ix) = p0(x) +
ip1(x) for all x ∈ C. Namely,

p0 : x 7→ id+1xd + id−1c2x
d−2 + . . .+ i2cd−1x,

p1 : x 7→ id−1c1x
d−1 + id−3c3x

d−3 + . . .+ cd.
(3)

In both cases, it holds that deg p0 > deg p1.
Let p0, p1, . . . , pm+1 satisfy (1) with p0 and p1 given by

(2) or (3). If pm is not a constant polynomial, then let7 pext
0 ,

pext
1 , . . . , p

ext
mext+1 satisfy (1) with pext

0 = pm and pext
1 = −p′m.

The following result links the boundedness property with the
variations of sign in the sequences p0, p1, . . . , pm and pext

0 ,
pext
1 , . . . , p

ext
mext .

Lemma 11: Let p0, . . . , pm+1 and pext
0 , . . . , p

ext
mext+1 be as

above. Then, p has the boundedness property if and only if

V (+∞)−V (−∞)+V ext(+∞)−V ext(−∞) = deg p0, (4)

where V (y) and V ext(y) are the number of variations of sign
in the sequences p0(y), . . . , pm(y) and pext

0 (y), . . . , pext
mext(y).

Proof: See the extended version of this paper [3].
From the above lemma, we obtain the following necessary

condition for the satisfiability of the boundedness property.
Corollary 12: Let p0, . . . , pm+1 and pext

0 , . . . , p
ext
mext+1 be as

above. A necessary condition for p to have the boundedness
property is that the degree difference between two consecu-
tive polynomials is equal to one: i.e., deg pk = deg pk−1−1
for every k ∈ {1, . . . ,m}, and deg pext

k = deg pext
k−1 − 1 for

every k ∈ {1, . . . ,mext}.
Proof: See the extended version of this paper [3].

We are now able to prove Theorem 7 (see below). For this,
we use Lemma 11, which requires to compute V (+∞) −
V (−∞) and V ext(+∞)− V ext(−∞).8 We will see that this
can be achieved by computing the determinants of matrices

7The superscript “ext” stands for “extended” because we extend the
sequence p0, p1, . . . , pm+1.

8The naive way to do this would be to compute the polynomials p0, . . . ,
pm and pext

0 , . . . , pext
mext , and look at the variations of sign in the associated

sequences. However, a proof of Theorem 7 based on this would require to
show that the computation of these polynomials can be done in polynomial
time, which is long and tedious (see, e.g., [16, §6]). Therefore, we use
another approach, based on the “Hurwitz determinants”.



built from the coefficients of p0 and p1. This is the idea of the
“Hurwitz determinants” obtained from the “Hurwitz matrix”
(see, e.g., [9, §15.6]). By combining it with Proposition 3,
we deduce that this can be done in polynomial time.

Proof of Theorem 7: First, we explain how to compute
V (+∞) − V (−∞) and pext

0 ; then we apply the exact same
idea to compute V ext(+∞)− V ext(−∞).

Let p0 and p1 be as in (2) or (3). For definiteness, suppose
that we are in the case of (2) (i.e., the degree of p is even);
the case of (3) is exactly the same. Let d = deg p = 2f .
If deg p1 < d − 1, then p does not satisfy the necessary
condition of Corollary 12 so that there is no need for further
computations. Thus, we assume that deg p1 = d−1. Denote
the coefficients of p0 and p1 by9

p0 : x 7→ a00x
d + a01x

d−2 + . . .+ a0f ,

p1 : x 7→ a10x
d−1 + a11x

d−3 + . . .+ a1f−1x.
(5)

Consider the following (d+ 1)× (d+ 1) matrix:

M =



a00 a01 a02 · · · a0f

a10 a11 · · · a1f−1
a00 a01 · · · a0f−1 a0f

a10 · · · a1f−1 a1f−1

a00 · · · a0f−2 a0f−1 a0f
. . . . . .

a10 a11 a12 · · · a1f−1
a00 a01 a02 · · · a0f−1 a0f


.

Let q1 : x 7→ b1x be such that deg(q1p1− p0) < deg p1. By
(5), it is equivalent to asking that b1a

1
0 − a00 = 0. Hence, if,

for each k ∈ {3, 5, 7, . . . , d + 1}, we transform M[k,:] (the
kth row of M) into b1M[k−1,:] −M[k,:], then we get the
following matrix:

M1 =



a00 a01 a02 a03 · · · a0f

a10 a11 a12 · · · a1f−1
a20 a21 · · · a2f−2 a0f−1

a10 a11 · · · a1f−1 a1f−1

a20 · · · a2f−2 a0f−1
. . . . . .

a10 a11 a12 · · · a1f−1
a20 a21 · · · a2f−2 a0f−1


.

Any kth row ofM1, with k ∈ {3, 5, 7, . . . , d+1}, gives the
coefficients of the polynomial p2, defined by p2 = q1p1−p0.
Namely, p2 : x 7→ a20x

d−2 + a21x
d−4 + . . . + a2f−1. The

interest of this approach is that to compute the sign of the
coefficients a20, . . . , a

2
f−1, we do not need to compute M1,

it suffices to compute the determinant of a submatrix of M.
More precisely, for all ` ∈ {0, . . . , f − 1}, it holds that

detM1
[1:3,1:2∪{`+3}] = a00a

1
0a

2
` = −detM[1:3,1:2∪{`+3}],

9In the rest of this subsection, for the sake of readability, superscripts
are used both as exponents and as indexes, but the distinction should be
clear from the context; e.g., a00, M1 (index) vs. xd (exponent).

since M1
[1:3,:] was obtained from M[1:3,:] by using the row

transformation M1
[3,:]

:= b1M[2,:] −M[3,:].
In the same way as above, for each k ∈ {4, 6, 8, . . . , d},

we can eliminate the first element ofM1
[k,:] by transforming

M1
[k,:] into b2M1

[k−1,:]−M
1
[k,:], where q2 : x 7→ b2x is such

that deg(q2p2 − p1) < deg p1. This will give a matrix M2

containing among others the coefficients of the polynomial
p3 : x 7→ a30x

d−3 + a31x
d−5 + . . . + a3f−2 defined by p3 =

q2p2−p1. From this, we get that, for all ` ∈ {0, . . . , f − 2},

a00a
1
0a

2
0a

3
` = detM[1:4,1:3∪{`+4}].

By using the same reasoning inductively, we get the general
relation: for all k ∈ {0, . . . , d} and ` ∈ {0, . . . , f − dk/2e},

a00 · · · ak−10 ak` = σk detM[1:k+1,1:k∪{`+k+1}], (6)

where σk = −1 if k ∈ 4Z + 2 and σk = 1 otherwise, and
pk : x 7→ ak0x

d−k + ak1x
d−k−2 + . . . + akf−dk/2ex

kmod 2 is
the kth polynomial in the sequence obtained by (1) with p0
and p1 as in (5).

If det M[1:k+1,1:k+1] = 0 for some k ∈ {1, . . . , d}, this
means that ak0 = 0. In this case, two situations can occur:
(S1) detM[1:k+1,1:k∪{`+k+1}] = 0 for all ` ∈ {1, . . . , f −

dk/2e}. This means that pk ≡ 0.
(S2) detM[1:k+1,1:k∪{`+k+1}] 6= 0 for some ` ∈ {1, . . . ,

f − dk/2e}. This means that pk 6≡ 0 but deg pk <
deg pk−1 − 1.

The above leads to the following algorithm for the com-
putation of V (+∞)− V (−∞) + V ext(+∞)− V ext(−∞).

Algorithm: Using Proposition 3, we compute the determi-
nant ofM[1:k+1,1:k+1] for k = 0, 1, . . . , d. If the determinant
is nonzero for all k ∈ {0, . . . , d}, then we deduce from (6)
the signs of the leading coefficients a00, . . . , a

d
0. We verify

whether these signs are strictly alternating since this is the
only way to have V (+∞)−V (−∞) = d. If this is the case,
we stop the algorithm and output “YES” since p satisfies (4)
in Lemma 11. Otherwise, we stop the algorithm and output
“NO” since p does not satisfy (4) in Lemma 11.

On the other hand, if, for some k ∈ {1, . . . , d}, the de-
terminant of M[1:k+1,1:k+1] is zero, then we check whether
we are in situation (S1) or (S2) above. If we are in (S2),
then it means that p does not satisfy the necessary condition
of Corollary 12, and thus, we stop the algorithm and output
“NO”. Otherwise (we are in (S1)), we let m be the smallest
k such that detM[1:k+2,1:k+2}] = 0, and from (6) we
compute the sign of a00, . . . , a

m
0 (the leading coefficients of

p0, . . . , pm). If the signs are not strictly alternating, then we
stop the algorithm and output “NO” since p does not satisfy
(4) in Lemma 11. Otherwise, from (6) with k = m and
` = 0, . . . , f − dm/2e, we define pext

0 = |a00 · · · am−10 |pm.
At this stage, if the algorithm did not stop and outputted

“Yes” or “NO”, then it produced the polynomial pext
0 = αpm

with α = |a00 · · · am−10 | > 0. From pext
0 , we compute the

value of V ext(+∞)−V ext(−∞) as follows. First, we define
pext
1 = −(pext

0 )′. Then, in the same way as above, we compute
the signs of aext,0

0 , . . . , aext,mext

0 (the leading coefficients of
pext
0 , . . . , p

ext
mext ). If mext = d − m and the signs are strictly



Input: A = B/q, with A ∈ Zn×n and q ∈ Z>0.
Output: “YES” if A is a positive instance of Problem 2 and
“NO” otherwise.
Algorithm:
. Step 1: Using Theorem 6, compute integers e0 6= 0 and
e1, . . . , ed such that x 7→ xd + e1x

d−1/e0 + . . . + ed/e0 is
the minimal polynomial of B.
Let p̂ : x 7→ e0q

dxd + e1q
d−1xd−1 + . . .+ e1q + ed.

. Inter-step: Using Theorem 14, compute a polynomial p
that has the boundedness property if and only if p̂ has the
discrete-time boundedness property.
. Step 2: Using Theorem 7, return “YES” if p has the boun-
dedness property and return “NO” otherwise.

Fig. 3. Algorithm for answering Problem 2.

alternating, then we stop the algorithm and output “YES”
since p satisfies (4) in Lemma 11. Otherwise, we stop the
algorithm and output “NO” since p does not satisfy (4) in
Lemma 11. /

The above algorithm requires at most d2 computations of
the determinant of a submatrix ofM. By Proposition 3, these
determinants can be computed in polynomial time w.r.t. the
bit size of the entries of M. Since these entries consist in
the coefficients of the input polynomial p, this concludes the
proof of the theorem.

V. PROOF OF THEOREM 2

The polynomial-time algorithm to answer Problem 1 pre-
sented in the previous section (see Figure 2) can be easily
adapted, by adding an intermediate step between Step 1 and
Step 2, to obtain a polynomial-time algorithm for Problem
2. The intermediate step consists in a transformation of
the minimal polynomial of the matrix, called a Möbius
transformation, which maps the interior of the unit circle
in the complex plane to the interior of the left-hand side
plane. The relevance of this transformation is explained in
Theorem 13 below.

Definition 3: A (complex or real) polynomial will be said
to have the discrete-time boundedness property if each of its
roots satisfies one of the following two conditions: (i) is in
the interior of the unit circle, or (ii) is on the unit circle and
is simple.

Theorem 13 (Folk): For any A ∈ Rn×n, it holds that
supt∈Z≥0

‖At‖ < ∞ if and only if the minimal polynomial
of A has the discrete-time boundedness property.

Proof: See the extended version of this paper [3].
Theorem 14: There is an algorithm that, given any polyno-

mial p̂ : x 7→ a0x
d+. . .+ad with integer coefficients a0, . . . ,

ad, outputs a polynomial p such that p̂ has the discrete-time
boundedness property if and only if p has the boundedness
property. Moreover, the bit complexity of the algorithm is
polynomial in

∑d
`=0 b(a`).

Proof: See the extended version of this paper [3].
Putting things together, we get the polynomial-time algo-

rithm presented in Figure 3 to answer Problem 2.

VI. CONCLUSIONS

Summarizing, in this paper, we showed that the problem of
deciding whether a linear time invariant dynamical system,
with rational transition matrix, has bounded trajectories can
be answered in polynomial time with respect to the bit
size of the entries of the transition matrix. To do this, we
leveraged several tools from system and control theory and
from computer algebra, and we provided a careful analysis of
the computational complexity of these tools when integrated
into a complete algorithm for our decision problem.

For further work, it would interesting to derive tight upper
bounds on the complexity of the described algorithm (and
of some improved versions not presented here to keep the
paper simple and self-contained), and also to compare it with
the complexity that could be obtained with other types of
algorithms, like randomized algorithms, which are known to
provide practically efficient algorithms, for instance, for the
computation of the determinant of integer matrices, or for
the computation of the GCD of polynomials with integer
coefficients.
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