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Abstract

This paper studies the asymptotic behavior of switched linear systems, beyond classical stability. We focus on systems having a
low-dimensional asymptotic behavior, that is, systems whose trajectories converge to a common time-varying low-dimensional
subspace. We introduce the concept of path-complete p-dominance for switched linear systems, which generalizes the approach
of quadratic Lyapunov theory by replacing the contracting ellipsoids by families of quadratic cones whose contraction properties
are dictated by an automaton. We show that path-complete p-dominant switched linear systems are exactly the ones that
have a p-dimensional asymptotic behavior. Then, we describe an algorithm for the computation of the cones involved in the
property of p-dominance. This allows us to provide an algorithmic framework for the analysis of switched linear systems with
a low-dimensional asymptotic behavior.
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methods, Positive systems, Hyperbolic systems

1 Introduction

Positive systems, that is, linear systems that leave a
convex pointed cone invariant, have been an important
topic of research for some time now; see, e.g., Luenberger
(1979), Berman et al. (1989), Kaczorek (2002) and Fa-
rina and Rinaldi (2000) for surveys. Indeed, positive sys-
tems appear naturally in a wide range of applications,
such as economics, biology, Markov chains, opinion dy-
namics, etc. Moreover, the property of cone invariance
provides significant information on the behavior of the
system: namely, positive systems have a single dominant
eigenvector (called Perron–Frobenius eigenvector) which
is a 1-dimensional attractor for the system (Vandergraft,
1968). Consequently, positive systems allow for a sim-
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plified analysis and control of their dynamics; see, e.g.,
Luenberger (1979), Farina and Rinaldi (2000), Rantzer
(2015) and references therein.

The concept of positive system has been generalized in
several directions, such as: positive time-varying sys-
tems, i.e., linear time-varying systems leaving a convex
pointed cone invariant (see, e.g., Parlett, 1970, and Pituk
and Pötzsche, 2019); monotone systems, i.e., dynami-
cal systems whose prolonged dynamics leaves a convex
pointed cone invariant (see, e.g., Smith, 1995, Angeli and
Sontag, 2003, and Hirsch and Smith, 2006); and more
recently, path-complete positive systems (see Forni et al.,
2017) and differentially positive systems (see Forni and
Sepulchre, 2016) which further extend the property of
cone invariance by moving from a single cone to a fam-
ily of convex pointed cones. These generalizations enjoy
similar properties as positive systems: in particular, their
asymptotic behavior lies in a 1-dimensional object. This
fundamental property has been used in a large number of
contexts, e.g., for the analysis of Markov chains (Seneta,
1981), population dynamics (Parlett, 1970, Golubitsky
et al., 1975), or communication networks (Shorten et al.,
2006).

Recently, the concept of p-dominance was introduced
by Forni and Sepulchre (2019) to generalize the ap-
proach of positivity to cones that are compatible with p-
dimensional attractors. They show that continuous-time
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dynamical systems whose linearized dynamics leaves in-
variant a quadratic p-cone (that is, a cone described by a
symmetric matrix with p negative eigenvalues and n− p
positive eigenvalues) have an asymptotic behavior that
lies in a p-dimensional object. In this sense, the theory of
p-dominance connects with the theory of partial hyper-
bolicity and exponential dichotomy (see, e.g., Brin and
Pesin, 1974, and Barreira and Valls, 2008), dealing with
systems whose linearized dynamics present an exponen-
tial separation between a p-dimensional dominant com-
ponent and a complementary transient component. As
for p-dominant systems, partially hyperbolic systems al-
low for a simplified analysis of their dynamics; see, e.g.,
Brin and Pesin (1974), Hirsch et al. (1977), Barreira and
Valls (2008) and Pesin (2004).

In this work, we focus on discrete-time switched linear
systems (SLSs). These are systems described by a finite
set of linear modes among which the system can switch
in time. As a paradigmatic class of cyber-physical sys-
tems and hybrid systems, SLSs have attracted much at-
tention from the control community in recent years; see,
e.g., Liberzon (2003) and Lin and Antsaklis (2009) for
introductions. A large part of these works focuses on the
question of stability, which already turns out to be ex-
tremely challenging (Tsitsiklis and Blondel, 1997). How-
ever, many complex systems encountered in applications
are in fact not stable with respect to a single fixed point
but nevertheless present a low-dimensional asymptotic
behavior. The aim of this paper is to provide a com-
putational framework for the analysis of such discrete-
time SLSs having a p-dimensional asymptotic behavior,
that is, whose trajectories converge to a time-varying p-
dimensional subspace.

Our approach combines ideas from p-dominance analy-
sis, discussed above, and from path-complete Lyapunov
theory, introduced in the context of stability analysis
of switched systems (see, e.g., Ahmadi et al., 2014, and
Angeli et al., 2017). First, p-dominance is extended to
path-complete p-dominance, by moving from a single
quadratic p-cone to a family of quadratic p-cones whose
invariance properties are driven by an automaton cap-
turing the admissible switching sequences of the system
(called a path-complete automaton). The goal is to in-
crease the expressiveness of p-dominance analysis while
preserving the feature of a p-dimensional asymptotic be-
havior: indeed, similarly to the case of stability analysis
(for which quadratic Lyapunov functions are known to
be conservative), p-dominance with respect to a single
quadratic p-cone does not allow to capture all SLSs with
a p-dimensional asymptotic behavior (see Example 16).
The use of a path-complete automaton allows to allevi-
ate this conservatism: in particular, we show that path-
complete p-dominance is a necessary and sufficient con-
dition for having a p-dimensional asymptotic behavior.

Secondly, we show that the property of path-complete
p-dominance can be verified algorithmically. The use of

quadratic p-cones allows to encode the invariance rela-
tions as the feasibility of a set of matrix inequalities.
This property has been extensively used in the con-
text of positivity and p-dominance analysis (see, e.g.,
Hildebrand, 2007, Grussler and Rantzer, 2014, Forni and
Sepulchre, 2019), leading to efficient methods, based on
conic optimization, for the computation of a single in-
variant quadratic p-cone. Thriving on these results, we
provide an algorithm for the computation of families of
quadratic p-cones whose invariance properties are driven
by an automaton. Combined with the non-conservatism
of path-complete p-dominance, this results in a tractable
computational framework for the analysis of SLSs that
have a p-dimensional asymptotic behavior.

Comments on earlier works. A preliminary discus-
sion of the results presented in this paper has been re-
ported in the conference papers: Berger et al. (2018) and
Berger and Jungers (2019). The present work completes
and improves these preliminary results in two ways:

1. Focus on the algorithmic aspects: The algorithmic as-
pects were absent from Berger and Jungers (2019), and
only suggested without proofs in Berger et al. (2018). In
this paper, we provide a thorough description and anal-
ysis of the computational framework for the verification
of path-complete p-dominance, and we provide several
examples of application, illustrating the practical appli-
cability of the framework.

2. Improved presentation of the results and connections
with other works: The presentation of the main result,
linking the property of path-complete p-dominance with
the property of having a p-dimensional asymptotic be-
havior, was initially split across Berger et al. (2018) and
Berger and Jungers (2019). We improve the presentation
of the result and we simplify and shorten its proof by
unifying the notation and removing redundancies with
the analysis of the algorithmic framework. We also pro-
vide several proofs that were not present in the confer-
ence papers; this is the case for instance for the last part
of the proof of Theorem 7, for the proofs related to the
algorithmic aspects. We also add several examples and
figures illustrating the main concepts. Finally, we dis-
cuss the connections and comparisons of our work with
other works in the literature; see Subsection 2.3.

Outline. The paper is organized as follows. The main
concepts related to path-complete p-dominance of SLSs
and the characterization of their asymptotic behavior
are presented in Section 2. The algorithm for the veri-
fication of path-complete p-dominance is described and
discussed in Section 3. Finally, numerical examples and
examples of applications are presented in Section 4.

All proofs can be found in the appendix.

Notation. For vectors, ‖·‖ denotes the Euclidean norm,
and for matrices, it denotes the spectral matrix norm.
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The set of real n× n symmetric matrices is denoted by
Sn×n. For P,Q ∈ Sn×n, we write P � Q (resp. P � Q)
if P −Q is positive definite (resp. positive semidefinite).
A matrix P ∈ Sn×n is said to have inertia (k, 0, n − k)
if it has k negative (< 0) eigenvalues and n− k positive
(> 0) eigenvalues; the set of all matrices P ∈ Sn×n with
inertia (k, 0, n− k) is denoted by Sn×nk . For S ⊆ Rn and
A ∈ Rn×n, AS = A(S) denotes the image of S by A.

2 p-dominant switched linear systems

2.1 p-dominant switched linear systems

We consider switched linear systems (SLSs), that is, sys-
tems of the form

x(t+ 1) = Aσ(t)x(t), t ∈ N, (1)

where σ(t) ∈ Σ := {1, . . . ,m} and Ai ∈ Rn×n for all
i ∈ Σ. The function σ : N → Σ is called the switching
signal (or s.s. for short) of the system, and it specifies
which mode is used by the system at time t.

A usual way to represent the set of switching signals of
an SLS is by using a finite-state automaton:

Definition 1.

• A finite-state automaton (or automaton for short)
Aut is a triplet (Q,Σ, δ) where Q is the finite set
of states, Σ = {1, . . . ,m} is the alphabet, and δ ⊆
Q× Σ×Q is the set of admissible transitions.

• For a transition d = (q1, i, q2) ∈ δ, we denote its
source q1 by s(d), its target q2 by t(d), and its label i

by i(d). A path in Aut is any sequence (dt)
N−1
t=0 ∈ δN

(where N can be infinite) such that t(dt) = s(dt+1)
for all t ∈ {0, . . . , N − 2}.

• A s.s. σ ∈ ΣN is admissible for Aut if there exists an
infinite path (dt)

∞
t=0 in Aut such that σ(t) = i(dt)

for every t ∈ N. Aut is path-complete for the SLS
(1) if every s.s. in ΣN is admissible for Aut.

The notion of path-complete automaton is illustrated in
Figure 1.

Given an automaton Aut = (Q,Σ, δ), we let {γd}d∈δ
be a set of positive rates (one per transition of the au-
tomaton). The property of path-complete p-dominance,
introduced below, extends the approach of cone invari-
ance (used in the analysis of positive and p-dominant
systems; see Section 1) by considering a set of quadratic
p-cones whose contraction properties are driven by an
automaton. The quadratic p-cones are represented by
symmetric matrices Pq with fixed inertia and the con-
traction properties are captured by matrix inequalities
driven by the automaton and the set of rates {γd}d∈δ.
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Fig. 1. Three automata with Σ = {1, 2}, and Q = {a} (for
Aut1) or Q = {a, b} (for Aut2, Aut3 and Aut4). The transi-
tions are represented by the edges (i.e., q1 i→ q2 if and only
if (q1, i, q2) ∈ δ). Aut1, Aut2 and Aut3 are path-complete for
the SLSs with set of modes Σ = {1, 2}, while Aut4 is not.

Definition 2. Let Aut = (Q,Σ, δ) be an automaton
together with a set of rates {γd}d∈δ ⊆ R>0. System (1) is
said to be p-dominant with respect to Aut and {γd}d∈δ
if there is a set of matrices {Pq}q∈Q ⊆ Sn×np (i.e., all Pq
have inertia (p, 0, n− p)) such that for every d ∈ δ,

A>i(d)Pt(d)Ai(d) − γ
2
d Ps(d) ≺ 0, (2)

where s(d), t(d), i(d) are as in Definition 1.

Remark 3. For a given automaton and a given set of
rates, there is at most one value of p for which the sys-
tem is p-dominant; see also Proposition 14-(i). However,
depending on the automaton and the set of rates, the
system can be p-dominant for different values of p. /

Letting Vq(x) = x>Pqx, q ∈ Q, the dissipation inequali-
ties (2) imply that there is ε > 0 such that for every tra-
jectory x(·) of (1) with s.s. σ ∈ ΣN, Vs(dt+1)(x(t+ 1)) ≤
γ2
dt
Vs(dt)(x(t))−ε‖x(t)‖2, where (dt)

∞
t=0 is a path in Aut

satisfying σ(t) = i(dt) for every t ∈ N. This implies that
the family of quadratic p-cones defined by

K(Pq) = {x ∈ Rn : Vq(x) ≤ 0}, q ∈ Q,

is contracted by the system, in the sense that

Aσ(t)(K(Ps(dt)) \ {0}) ⊆ intK(Ps(dt+1)) ∀ t ∈ N. (3)

The example below illustrates the concept of p-dominant
SLSs, and the contraction property (3).

Example 4. Consider System (1) with Σ = {1, 2},

A1 =

[
1 0

1− α α

]
and A2 =

[
α α− 1
0 1

]
,

and α = 0.1; which may occur for instance in the mod-
eling of opinion dynamics with antagonistic interactions
and switching topologies (Meng et al., 2016). This sys-
tem is 1-dominant with respect to the automaton Aut2
presented in Figure 1 and with the set of rates {γd}d∈δ
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defined by γd = 0.32 for all d ∈ δ, 1 meaning that there
are matrices Pa, Pb ∈ S2×2

1 satisfying (2) with Aut2 and
{γd}d∈δ. The quadratic 1-cones associated to Pa and Pb

are represented in Figure 2. We observe that the cones
satisfy the contraction property (3). /

Fig. 2. Quadratic 1-cones K(Pa) and K(Pb) and their images
by A1 and A2 (see Example 4).

2.1.1 The case of LTI systems

For an LTI system x(t + 1) = Ax(t), the property of
p-dominance reduces to the feasibility of the matrix in-
equality A>PA−γ2P ≺ 0 for some rate γ > 0 and some
matrix P ∈ Sn×np . It is well known that this inequality
implies that A has p eigenvalues with modulus |λi| > γ,
and n − p eigenvalues with modulus |λi| < γ; see, e.g.,
Theorem 20 (from Lancaster and Tismenetsky, 1985) in
Appendix A. In this case, the eigenvalue decomposition
of A implies that there is a splitting of the state space
Rn = E⊕F , where E is a subspace with dimension n−p
satisfying AE ⊆ E and F is a subspace with dimension
p satisfying AF = F . Furthermore, there are constants
C ≥ 1 and µ ∈ (0, 1) such that for any pair of trajec-
tories, x(·) and y(·), of the system, with x(0) ∈ E and
y(0) ∈ F \ {0}, it holds that

‖x(t)‖
‖y(t)‖

≤ ‖x(0)‖
‖y(0)‖

Cµt ∀ t ∈ N. (4)

The pair (E,F ) is called a dominated splitting as it en-
sures a decomposition into p dominant modes and n− p
transient modes of the system. Another name for this
property is that there is an exponential dichotomy (Bar-
reira and Valls, 2008) at the equilibrium point 0.

Remark 5. For early references on the geometric char-
acterization, see, e.g., Stern and Wolkowicz (1991) where
it is shown that an LTI system admits a pointed invari-
ant ellipsoidal cone if and only if it has a positive eigen-
value strictly larger in modulus than any other eigen-

1 The selection of the value of the rates will be discussed
in Example 15, after we have presented a set of constraints
that must be satisfied by the set of rates (Subsection 3.2).
The verification of p-dominance was achieved by using the
algorithm described in Subsection 3.1.

value. Important classes of LTI systems satisfying the
eigenvalue separation property of p-dominance include
relaxation systems (see, e.g., Willems, 1976, and Pates
et al., 2019), and totally positive systems (see, e.g., Mar-
galiot and Sontag, 2019, Grussler and Sepulchre, 2020,
and Grussler et al., 2021); indeed, for these systems, it
holds that λ1 > λ2 > . . . > λn ≥ 0, where λ1, . . . , λn are
the eigenvalues of A (see, e.g., Willems, 1976, Theorem
4, and Margaliot and Sontag, 2019, Theorem 1).

2.2 Asymptotic behavior of p-dominant SLSs

In this subsection, we show that p-dominant SLSs in-
herit the asymptotic properties of p-dominant LTI sys-
tems, in the sense that their asymptotic behavior is p-
dimensional (a property formalized with a condition sim-
ilar to (4)). The difference with the LTI case is that the
p-dimensional subspace attractor is not fixed anymore,
but may vary with time. To formalize this, we first in-
troduce the notion of time-varying splitting:

Definition 6. A time-varying splitting (or splitting for
short) of Rn is a pair (E ,F) consisting of two sequences
of linear subspaces E = (Et)

∞
t=0 and F = (Ft)

∞
t=0 satis-

fying Rn = Et ⊕ Ft for all t ∈ N.
We say that (E ,F) is a p-splitting if each Ft has dimen-
sion p (⇔ each Et has dimension n− p).

The following theorem is the first main result of this
paper. It generalizes (4) to p-dominant SLSs, and also
states the converse result, i.e., that any SLSs satisfying
a condition similar to (4) must be p-dominant.

Theorem 7. Consider System (1). The following are
equivalent:

(a) There is an automaton Aut = (Q,Σ, δ) that is path-
complete for (1) and a set of rates {γd}d∈δ ⊆ R>0

such that (1) is p-dominant with respect to Aut and
{γd}d∈δ.

(b) For every s.s. σ ∈ ΣN, there is a p-splitting (E ,F)
satisfying (i) Aσ(t)Et ⊆ Et+1 and Aσ(t)Ft = Ft+1

for all t ∈ N, and (ii) for every s ∈ N and every pair
of trajectories, x(·) and y(·), of (1) with s.s. σ and
with x(s) ∈ Es and y(s) ∈ Fs \ {0}, it holds that

‖x(t)‖
‖y(t)‖

≤ ‖x(s)‖
‖y(s)‖

Cµt−s ∀ s, t ∈ N, t ≥ s, (5)

for some C ≥ 1 and µ ∈ (0, 1), independent of σ.

The pair (E ,F) in Theorem 7-(b) is called a dominated
invariant splitting for (1) with s.s. σ. The interpretation
of (5) is that the sequence of subspaces given by F de-
fines a robust time-varying p-dimensional attractor for
the system. More precisely, for every trajectory of the
system, the component of x(t) in Et will become negligi-
ble compared to the component of x(t) in Ft as t→∞.
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The fact that (5) holds for every s ∈ N (and not only for
s = 0) ensures the robustness of the attractor; see also
Berger and Jungers (2019, Example 1).

An SLS that satisfies Theorem 7-(a) will be said to be
path-complete p-dominant. Theorem 7 can then be refor-
mulated as follows. An SLS is path-complete p-dominant
if and only if it has a robust time-varying p-dimensional
subspace attractor for every switching signal. This result
generalizes the one for LTI systems (see Subsubsection
2.1.1) to SLSs. However, by contrast to the LTI case,
the time-varying nature of the system implies that the
dominated invariant splitting may depend on time and
on the switching signal. Another difference with the LTI
case is that, while the reverse implication (b)⇒ (a) also
holds for SLSs (see Theorem 7), the automaton required
in (a) may be non-trivial. Indeed, in the LTI case, it is
always sufficient to take for Aut the trivial automaton
with one node and one transition, for (a) to be verified;
however, in the case of SLSs, (a) may require a nontriv-
ial automaton (i.e., with more than one node); this phe-
nomenon is illustrated in Example 16 (Section 4).

The dominance property (5) is illustrated in Figure 3,
which shows the behavior of the 1-dominant SLS of Ex-
ample 4 and of a 2-dominant SLS 2 . The 1-dominant
behavior of the first system is captured by the con-
vergence of the normalized trajectories to two opposite
“attracting trajectories” when t → ∞ and for any s.s.
σ ∈ {1, 2}N. The 2-dominant behavior of the second sys-
tem is captured by the convergence of the normalized
trajectories to a time-varying 2-dimensional plane, Ft,
when t→∞. Unlike stable SLSs, whose trajectories all
converge to a unique equilibrium, p-dominant SLSs al-
low for richer behaviors.

A straightforward consequence of the equivalence of (a)
and (b) in Theorem 7 is that the existence of a domi-
nated invariant p-splitting (E ,F) is robust to small per-
turbations of the system. The robustness property is in-
strumental for numerical analysis, and also shows that
the property of having a low-dimensional dominant be-
havior occurs with nonzero probability for SLSs.

Corollary 8. Property (b) in Theorem 7 is robust to
small perturbations of the matrices {Ai}i∈Σ.

Proof. Indeed, Property (a) is clearly robust to system
perturbations, as for any small enough perturbation of
the matrices {Ai}i∈Σ, the dissipation inequalities (2) will
still be satisfied. Hence, from the equivalence of (a) and
(b), we get the desired result.

2 The SLS is defined by the matrices
[

1 0.5 0
α 0.75 0.5

−0.5 0 1.0

]
, where

α ∈ {−1,−0.8,−0.6, . . . , 0}. This system can be shown to be
2-dominant using the algorithm presented in Section 3 (due
to space limitation, the details are omitted).

Fig. 3. Top: Normalized trajectories of the SLS from Example
4, starting from different initial conditions and for a random
s.s. σ. Bottom: Normalized trajectories of a 2-dominant SLS
starting from different initial conditions and for a random
s.s. σ. Each dot represents the projection on the sphere of a
trajectory x(·) at times t = 0, 1, . . . , 5.

An interesting situation is when the system has a sta-
ble transient behavior. This means that the system con-
verges to zero on the dominated component of the split-
ting (i.e., E), so that the asymptotic behavior of the
system is dictated by the dominant component (i.e., F)
only. In order to characterize SLSs with such a property,
we introduce the notion of cycle-stable automaton; see
also the maximum cycle mean problem in graph theory
(Karp, 1978) and applications in switched systems anal-
ysis (Ahmadi and Parrilo, 2012).

Definition 9. Given an automaton Aut = (Q,Σ, δ) to-
gether with a set of rates {γd}d∈δ ⊆ R>0, we say that
Aut is cycle-stable with respect to {γd}d∈δ if every cy-

cle 3 (dt)
N−1
t=0 in Aut satisfies γd0 . . . γdN−1

≤ 1.

We obtain the following characterization of SLSs with
stable dynamics on the dominated component E :

Theorem 10. Consider System (1). The following are
equivalent:

(a) The system satisfies Property (a) in Theorem 7 and
Aut is cycle-stable with respect to {γd}d∈δ.

(b) The system satisfies Property (b) in Theorem 7 and
there are constants D ≥ 1 and ρ ∈ (0, 1) such that
for every s.s. σ ∈ ΣN, s ∈ N and every trajectory

3 A cycle is a path (dt)
N−1
t=0 ∈ δN in Aut such that t(dN−1) =

s(d0) and s(ds) 6= s(dt) for all s 6= t.

5



x(·) of (1) with s.s. σ and with x(s) ∈ Es, it holds
that

‖x(t)‖ ≤ ‖x(s)‖Dρt−s ∀ s, t ∈ N, t ≥ s.

Summarizing, in this section, we introduced the concept
of path-complete p-dominance for SLSs, and showed that
this concept was key for the theoretical analysis of SLSs
with a low-dimensional asymptotic behavior, a property
made precise thanks to the notion of dominated split-
ting; see Theorems 7 and 10. In Section 3, we will address
the question of algorithmic verification of the property
of path-complete p-dominance. Before this, in the next
subsection, we discuss the connections of our approach
with other works in the literature.

2.3 Discussion and connections with the literature

Our work connects with several other concepts in control
and system theory. For instance, the use of a family of
quadratic forms whose decay properties are dictated by
an automaton is inspired from path-complete Lyapunov
functions introduced in the context of stability analysis
of switched systems (see, e.g., Ahmadi et al., 2014, and
Angeli et al., 2017), and from path-complete positivity
(see Forni et al., 2017) which extends the property of
positivity by moving from a single contracting cone to a
family of convex cones whose contraction properties are
driven by an automaton.

Another important concept in our analysis is the one
of dominated splitting, which was first introduced by
Mañé (1987) in the context of partial hyperbolicity and
exponential dichotomy theory (a generalization of the
celebrated works of Smale and Anosov on the horseshoe
map; see, e.g., Brin and Pesin, 1974, and Barreira and
Valls, 2008). Dominated splittings also received atten-
tion in the study of some particular cases of SLSs; see,
e.g., Avila et al. (2010), Bochi and Gourmelon (2009),
Brundu and Zennaro (2019) and Barreira and Valls
(2009). An important tool in these works is the notion
of invariant multicones. In fact, the proof of our con-
verse Lyapunov theorem for p-dominance is partially
grounded in the proof of Bochi and Gourmelon (2009,
Theorem B), which shows that an SLS with invertible
matrices admits a dominated splitting for every s.s. if
and only if it admits a contracting multicone. Our work
extends this result to SLSs involving singular matrices
and to families of quadratic p-cones whose contraction
properties are dictated by an automaton. Another dif-
ference with these references is that little attention is
given to the algorithmic decidability of the geometric
property, whereas our approach is meant to be trans-
lated into a practical algorithm for the computation of
the quadratic p-cones, as explained in the next section.

3 Algorithm for the verification of p-dominance
of switched linear systems

In this section, we consider the following question: “for
any fixed p and a given path-complete p-dominant SLS,
how can we compute a path-complete automaton and a
set of contracting quadratic p-cones that will allow us to
certify that the system is path-complete p-dominant?”
The section is organized as follows: in Subsection 3.1, we
describe an algorithm to compute a set of contracting
quadratic p-cones when the automaton and the set of
rates are given; in Subsection 3.2, we address the prob-
lem of computing the automaton and the set of rates;
finally, in Subsection 3.3, we discuss the application and
the complexity of the overall algorithmic framework.

3.1 Description of the algorithm

Consider System (1) and let Aut = (Q,Σ, δ) be a path-
complete automaton for the system. Let {γd}d∈δ be a set
of positive rates. Then, according to Definition 2, ver-
ifying that (1) is p-dominant with respect to Aut and
{γd}d∈δ can be addressed by solving the following opti-
mization problem:

max{Pq}q∈Q⊆Sn×n, ε∈R ε (6a)

s.t. A>i(d)Pt(d)Ai(d) − γ
2
d Ps(d) � −εI, ∀ d ∈ δ, (6b)

− I � Pq � I, ∀ q ∈ Q, (6c)

Pq ∈ Sn×np , ∀ q ∈ Q. (6d)

The subproblem (6a)–(6c) is a semidefinite optimiza-
tion problem. Semidefinite programming has become a
standard tool in control theory (see, e.g., Boyd et al.,
1994) and many different solvers are available to solve
these problems in polynomial time (see, e.g., Nesterov
and Nemirovskii, 1994, Ben-Tal and Nemirovski, 2001,
and Boyd and Vandenberghe, 2004). Unfortunately, the
constraints (6d) on the inertia of Pq cannot be expressed
as a semidefinite constraint (it is actually nonconvex).
However, as we will see below, this set of constraints can
in fact be dropped without any impact on the outcome
of the decision problem “is System (1) p-dominant with
respect to Aut and {γd}d∈δ?” This statement is formal-
ized in Corollary 13 below. To simplify its presentation,
let us make the following assumption on the automaton
Aut, without loss of generality (see, e.g., Lind and Mar-
cus, 1995, Proposition 2.2.10):

Assumption 11. We assume that Aut = (Q,Σ, δ) is
essential, meaning that every state q ∈ Q has an incoming
and an outgoing transition: i.e., there are q−, q+ ∈ Q and
i−, i+ ∈ Σ such that (q−, i−, q) ∈ δ and (q, i+, q+) ∈ δ.

The following theorem is the second main result of this
paper. It states that either there is no solution of (6a)–
(6c) with ε > 0 and with {Pq}q∈Q having uniform iner-
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tia, or all solutions of (6a)–(6c) with ε > 0 have matrices
{Pq}q∈Q with the same inertia.

Theorem 12. Let Assumption 11 hold. Assume there
is k ∈ {0, . . . , n} and a feasible solution ({Pq}q∈Q, ε) of
(6b)–(6c) with ε > 0 and {Pq}q∈Q ⊆ Sn×nk . Then, it
holds that every feasible solution ({Pq′}q∈Q, ε′) of (6b)–
(6c) with ε′ > 0 satisfies that {Pq′}q∈Q ⊆ Sn×nk .

It follows that to verify that (1) is p-dominant with re-
spect to Aut and the rates {γd}d∈δ, it suffices to solve
the semidefinite optimization problem (6a)–(6c).

Corollary 13. Under Assumption 11, any optimal so-
lution ({Pq?}q∈Q, ε?) of (6a)–(6c) satisfies ε? > 0 and
{Pq?}q∈Q ⊆ Sn×np if and only if System (1) is p-dominant
with respect to Aut and {γd}d∈δ.

Corollary 13 shows that, if the automaton and the rates
are given, then the verification of p-dominance for a given
SLS can be reduced to a semidefinite optimization prob-
lem, and thus can be solved efficiently (see Subsection 3.3
for a discussion of the complexity). Moreover, by Theo-
rem 7, we know that if the system admits a dominated p-
splitting, then there is a path-complete automaton and
a set of rates for which the system is p-dominant. How-
ever, nothing is said about the difficulty of computing
this automaton and the associated rates. This question
is discussed in the next subsection.

3.2 Constraints on the automaton and the set of rates

There is in general no systematic way to find an automa-
ton and a set of rates that will satisfy the dissipation
inequalities (2); see also Subsection 3.3 below. In some
cases, the structure of the problem can help us to guess
what the automaton and the set of rates will be (some
practical examples are given below). When a complete
determination of these parameters is not feasible from
the structure of the problem, it is nevertheless possible
to reduce to “search space” by using the fact that the
automaton and the set of rates must satisfy some con-
straints, as explained below.

To do this, let us consider an automaton Aut = (Q,Σ, δ)
and a set of positive rates {γd}d∈δ. Assume that System
(1) is p-dominant with respect to Aut and {γd}d∈δ, and
let {Pq}q∈Q be any set of matrices in Sn×np such that
(2) holds. We will derive constraints, depending on the
matrices of (1), that must be satisfied by {γd}d∈δ and
{Pq}q∈Q. 4

4 These constraints follow in fact from the observation that
any cycle in Aut defines a p-dominant LTI system (see also
Subsubsection 2.1.1 and the proofs in the appendix).

Proposition 14. With Aut, {γd}d∈δ, {Pq}q∈Q as above,

let (dt)
N−1
t=0 be a cycle in Aut, Φ = Ai(dN−1) · · ·Ai(d0) and

η = γd0 · · · γdN−1
. Then, it holds that

(i) The matrix Φ has p eigenvalues with modulus |λi| >
η and n− p eigenvalues with modulus |λi| < η;

(ii) the eigenspace associated to the p eigenvalues of Φ
with modulus |λi| > η is contained in K(Ps(d0)),
and the eigenspace associated to the other n − p
eigenvalues is contained in Rn \ intK(Ps(d0)).

Item (i) above is particularly useful to reduce the search
space for the rates if the automaton is given. Item (ii) is
useful to exclude automata that cannot satisfy the dissi-
pation inequalities (2), for any set of rates. The two ex-
amples below illustrate the use of Propositions 14 for the
selection of the automaton and of the set of rates. For in-
stance, Example 16 shows that the system of Example 4
cannot be 1-dominant with respect to a single quadratic
1-cone, i.e., with respect to the automaton with a single
node.

Example 15. In Example 4, we have used the set of
rates γd = 0.32 for all d ∈ δ to show that the system
is 1-dominant with respect to the automaton Aut2 in
Figure 1. These values of the rates were somehow the
most natural choice regarding the constraints obtained
from Proposition 14-(i) when p is fixed to 1:

• The rate associated to the loop (a, 1, a) must satisfy
λ1(A1) = 1 > γa1a > λ2(A1) = 0.1. In the example,
we have used the geometric mean of the bounds:
γa1a = γ̄ :=

√
0.1. Similarly, we have used γb2b = γ̄

for the rate associated to (b, 2, b).

• By looking at the cycle (a, 2, b, 1, a), we get that the
associated rates must satisfy |λ1(A1A2)| ≈ 0.6 >
γa2bγb2a > |λ2(A1A2)| ≈ 0.017. In the example, we

have used γa2b = γb1a = 4
√

0.6 · 0.017 (which in this
case can be shown to be equal to γ̄).

See also Figure 4-(a) for a representation of the eigenval-
ues of A1, A2, their product and γ̄. Note that these rates
are not the only ones satisfying the above constraints
and that 1-dominance of the system with respect to this
set of rates was not guaranteed a priori, but it happened
to be the case for this example.

When α increases, the eigenvalues of A1A2 (and A2A1)
get closer to each other; see Figure 4-(c). For α < 3 −
2
√

2 ≈ 0.1716, the system is still 1-dominant with re-
spect to the same automaton as above and with the rates
chosen in the same way as above. However, the contrac-
tion property (3) gets more “fragile”, in the sense that
the images of K(Pa) and K(Pb) get closer to the bound-

ary of the cones; see Figure 4-(d). When α ≥ 3−2
√

2, the
system is not path-complete 1-dominant anymore since
the matrix A1A2 has two complex conjugated eigenval-
ues (hence with the same modulus). /
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Fig. 4. a: Eigenvalues of A1, A2, A1A2 (see Example 4). b:
Eigenvectors of A1 and A2, associated to λ1 = 1 and λ2 = α.
c–d: A1 and A2 are as in Example 4 with α = 0.1715. c:
Eigenvalues of A1, A2, A1A2 and A2A1. d: Quadratic 1-cones
K(Pa) and K(Pb) and their images by A1 and A2 (the color
code is the same as in Figure 2).

Example 16. From Proposition 14-(ii), it follows that
the system of Example 4 cannot be 1-dominant with re-
spect to the automaton Aut1 in Figure 1 (for any set of
rates). Indeed, if it was the case, then the cone K(Pa)
would contain the dominant eigenvectors of A1 and A2.
Because K(Pa) consists of two convex components, this
would imply that K(Pa) also contains the eigenvectors
associated to λ2 = α of A1 or A2 (one can readily check
on Figure 4-(b) that any quadratic 1-cone containing the
two dominant eigenspaces (solid lines) will also contain
one of the dominated eigenspaces (dashed lines)), a con-
tradiction with (ii) in Proposition 14. /

3.3 Complexity and comparison with the literature

For a given automaton and a given set of rates, the ver-
ification of p-dominance with respect to this automaton
and this set of rates can be computed efficiently using
Corollary 13. The complexity, using, e.g., interior-point
algorithms, is in O(|Q|2|δ|1.5n6.5), where |Q| and |δ| are
the number of nodes and the number of transitions in
the automaton, and n is the dimension of the system
(Ben-Tal and Nemirovski, 2001, Section 6.6.3).

On the other hand, there is no automatic way to find—if
it exists—an automaton and a set of rates for which the
system is p-dominant. Moreover, the automaton and the
rates must be found “all at once”, as it is not possible in
general to build the automaton and find the associated
rates incrementally. Last but not least, there is no upper
bound on the size of the automata for which the system

is p-dominant, if it is; and thus one may not know when
to stop searching for a suitable automaton and conclude
that the system is not p-dominant.

These rather deceptive results must be contrasted with
the following two observations. The first one is that the
problem of p-dominance verification is a difficult prob-
lem in itself, as it supersedes the problem of stability of
SLSs, which is known to be undecidable (Tsitsiklis and
Blondel, 1997). Thus, one may not hope to have a com-
plete, let alone efficient, algorithm for the verification of
p-dominance of SLSs, in general.

The second one is that, despite these negative theoretical
results, it appears that in many practical situations, a
suitable automaton can be easily guessed from the struc-
ture of the problem and from Proposition 14-(ii). Simi-
larly, the search space for the rates can be considerably
reduced by using the symmetry of the problem (present
in many applications) and Proposition 14-(i). As a con-
sequence, finding the automaton and the rates was not
a serious limitation in the various numerical examples
presented in the paper.

The question of numerical verification of the property of
having a low-dimensional asymptotic behavior seems to
have not received much attention so far. Some contribu-
tions in that direction have been made for the specific
case of 1-dominance in the works by Forni et al. (2017)
and Brundu and Zennaro (2019). The first one presents
an algorithm for constructing a common convex cone
that is contracted by the system. Unfortunately, the re-
striction to a single common cone adds conservatism to
the approach, so that it is not able to capture every
SLS with a 1-dimensional asymptotic behavior. The sec-
ond one describes an algorithm for computing an invari-
ant multicone for SLSs, with invertible matrices, that
have a 1-dimensional asymptotic behavior. However, be-
cause the computed multicone is not strictly invariant,
this approach does not allow to deduce that the system
admits a dominated 1-splitting. 5 Closer to our work,
the algorithmic verification of p-dominance, with p gen-
eral, was addressed by Forni and Sepulchre (2019) for
continuous-time nonlinear dynamics. The existence of a
common quadratic p-cone contracted by the system is
formulated as the feasibility of a set of LMIs. The con-
cept of path-complete p-dominance introduced here ex-
tends this property to discrete-time SLSs and to fam-
ilies of quadratic p-cones whose contraction properties

5 Let us also mention that the approach used in Forni et al.
(2017) and Brundu and Zennaro (2019) for the computa-
tion of the cone/multicone—which relies on polyhedral set
methods, thriving on the fact that the involved sets can
be described as the finite union of disjoint convex poly-
hedral cones—is hardly generalizable to the verification of
p-dominance with p ≥ 2. Indeed, cones that are compati-
ble with p-dimensional attractors are in general not repre-
sentable as the finite union of convex cones.
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0.1 0.2 0.2 0 0 0

0.95 0 0 0.27 0 0

0 0.9 0 0 0.255 0

0 0 0 0.21 0.63 0.49

0 0 0 0.63 0 0

0 0 0 0 0.595 0





0.07 0.14 0.14 0 0 0

0.665 0 0 0 0 0

0 0.63 0 0 0 0

0 0 0 0.3 0.9 0.7

0.285 0 0 0.9 0 0

0 0.27 0 0 0.85 0


Fig. 5. Left : A1. Right : A2 (see Subsection 4.1).

are dictated by an automaton. Finally, let us mention
that a similar approach can be used for the computation
of hyperbolicity of discrete-time nonlinear systems (see
Berger and Jungers, 2020a).

4 Numerical examples and applications

4.1 1-dominance and population dynamics

Consider the six-dimensional SLS with matrices A1 and
A2 given in Figure 5. This system, adapted from Schmid-
bauer et al. (2012, Eq. 4), may appear for instance in
the study of aged-structured populations with migration
between the populations. In this example, x1(t), x2(t),
x3(t) (resp. x4(t), x5(t), x6(t)), represent the number
of individuals in each of the three age classes of some
urban (resp. rural) population at time t. Each popula-
tion evolves according to the Leslie model (see, e.g., Fa-
rina and Rinaldi, 2000, and Schmidbauer et al., 2012),
and there is migration either from villages to cities (A1)
or from cities to villages (A2). 6 A central question in
the study of population dynamics is whether the asymp-
totic composition of the population depends on the ini-
tial value of the population; see, e.g., Farina and Rinaldi
(2000), Golubitsky et al. (1975), Tuljapurkar (1982) and
Schmidbauer et al. (2012). The population composition
is represented by the normalized vector x(t)/‖x(t)‖1. Us-
ing dominance analysis, we will show that for any given
sequence of matrices A1 and A2, x(t)/‖x(t)‖1 is ulti-
mately independent of x(0).

To do this, we consider the automaton Aut1 in Figure 1,
together with the set of rates γa1a = 0.79 and γa2a = 0.95
(these rates were selected in the same way as explained in
Example 15). Using the algorithm described in Subsec-
tion 3.1, we can show that the system is 1-dominant with
respect to this automaton and this set of rates. Thus, by
Theorem 7, we may conclude that the normalized tra-
jectories of the system converge to the same trajectory.
In other words, for any given sequence of matrices A1

and A2), the asymptotic composition of the population

6 This is where our model differs from Schmidbauer et al.
(2012): instead of having a single matrix that encodes at the
same time the migrations from villages to cities and from
cities to villages, we have decomposed this matrix in two
matrices, A1 and A2, to get an SLS.

is independent of its initial value. This is illustrated in
Figure 6, where a random sequence of matrices was cho-
sen, and we observe that the different trajectories, start-
ing from different initial conditions, have ultimately the
same population composition.

Note that the automaton Aut1 and the above set of rates
are not the only ones satisfying the constraints (2) of p-
dominance and, even if the system has a 1-dimensional
asymptotic behavior, it was not guaranteed a priori that
the system is 1-dominant with respect to this automa-
ton and this set of rates. If it had not been the case,
then one would have needed to search for more complex
automata (like Aut2 or Aut3 for instance). This would
have increased the complexity of the problem, but not
the conclusion on the asymptotic behavior of the system.

Fig. 6. Normalized trajectories of the system, starting from
different initial conditions and for a random sequence of ma-
trices A1 and A2. The trajectories are normalized such that∑
i xi(t) = 1. We observe that all normalized trajectories

converge to the same trajectory when t→∞.

4.2 2-dominant nonlinear system

Consider the discrete-time nonlinear system x+ = f(x)
defined by: (discrete-time Duffing oscillator actuated by
a DC motor, adapted from Forni and Sepulchre, 2019)

x1
+ = x1 + 0.3x2,

x2
+ = 0.3 sin(x1)− 0.15x1 + 0.7x2 + 0.03x3,

x3
+ = −1.5x1 + 0.925x3.

(7)

We will use dominance analysis to show that the asymp-
totic behavior of any bounded trajectory of (7) is at
most 2-dimensional, in the sense that their ω-limit set
(see, e.g., Khalil, 2002) is contained in a 2-dimensional
manifold. This is achieved by considering the linearized
(aka. extended) system:

x(t+ 1) = f(x(t)), δx(t+ 1) = ∂fx(t)δx(t), (8)

where ∂fx is the Jacobian of f at x, which describes the
evolution of the sensitivity (δx(t)) of x(t) to the initial
condition x(0). The second equation of (8) is a linear
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system whose transition matrix depends on the state of
the system. It can thus be abstracted by the SLS with
set of matrices A = {∂fx : x ∈ R3} (this SLS consists
in an infinite number of matrices but this will not be
a problem for our analysis, as we will see below). We
will show that this SLS is path-complete 2-dominant.
Then, we will explain the consequence on the asymptotic
behavior of bounded trajectories of (7).

To show that the SLS is path-complete 2-dominant, we
first note that ∂fx depends on x only via cos(x1), and
we partition the setA into four subsets:Ai = {∂fx : x ∈
R3, cos(x1) ∈ Ii}, 1 ≤ i ≤ 4, where I1 = [−1,− 1

2 ], I2 =

[− 1
2 , 0], I3 = [0, 1

2 ], I4 = [ 1
2 , 1]. Based on these sets of

matrices, we consider the automaton depicted in Figure
7-(a) which is path-complete for the SLS defined byA, 7

and we consider the set of rates {γd}d∈δ given by γd =
γ̄ := 0.83. These rates were selected by trying different
values for γ̄ satisfying the constraints in Proposition 14-
(i); see also Figure 7-(b). By using a modification of the
algorithm presented in Subsection 3.1, accounting for the
fact that the edges are labeled with sets of matrices (see
Appendix D.1), it can be shown that the SLS defined
by A is 2-dominant with respect to this automaton and
this set of rates; and the quadratic 2-cones associated
to the symmetric matrices {Pq}q∈Q computed with the
algorithm are represented in Figure 7-(c). Note also that
the automaton is cycle-stable with respect to {γd}d∈δ,
since γ̄ < 1. Hence, the SLS defined by A admits a
dominated 2-splitting and is stable on the dominated
component of the splitting (see Theorem 10).

Using the above, we may show that the ω-limit set of
any bounded trajectory of (7) is at most 2-dimensional.
This follows from the following observation:

Proposition 17. With {Pq}q∈Q as above, if y, z are two
points in the ω-limit set Ω of some bounded trajectory
x(·) of (7), then z − y must belong to at least one of the
quadratic 2-cones K(Pq).

The proof relies on the cone contraction property (3) of
p-dominance, the cycle-stability of the automaton and
the fact that each K(Pq) includes a common 2D plane
(e.g., the x1x2-plane; see Figure 7-(c)), which implies
that if z − y does not belong to any K(Pq), then the
pre-image of the line segment joining y to z by fT is a
curve whose length grows exponentially with T ∈ N, a
contradiction with the assumption that x(·) is bounded
(thus Ω is compact); see Appendix D.2 for the details.
Proposition 17 implies that Ω must lie in a 2-dimensional
manifold: indeed, since the x3-axis is not contained in

7 The transitions are labeled with sets of matrices but the
principle remains the same: any sequence of matrices in A
can be generated by following a path in the automaton and
taking one matrix in the set Ai associated to each transition
of the path.

a b

c d

A1

A2

A3

A4

Fig. 7. a: Automaton used in Subsection 4.2 (the transitions
are labeled according to the legend on the right). b: The blue
dots represent the eigenvalues of 6 randomly selected matri-
ces inA. According to Proposition 14-(i), the value of γ̄ must
lie in the green strip. c: The surfaces represent the bound-
ary of the quadratic 2-cones K(Pq). Each surface divides the
state space into three regions; K(Pq) is the region of the state
space that contains the horizontal plane. d: Two trajectories
of the system (in blue and orange) and the quadratic 2-cone
K(Pc) (in green) centered at 2 different points of the ω-limit
set of the trajectory in blue.

any K(Pq) (see Figure 7-(c)), it follows from Proposition
17 that the projection of Ω on the x1x2-plane is injective,
and thus Ω is at most 2-dimensional.

To illustrate the above, we have represented in Figure 7-
(d) two trajectories of the system, starting from random
initial conditions. We verify that the ω-limit set of each
trajectory is at most 2-dimensional. We have also repre-
sented the cone K(Pc) centered at 2 different points of
the ω-limit set of the trajectory in blue. We observe that
these cones do not intersect the ω-limit set, as predicted
by Proposition 17.

5 Conclusions

In this work, we introduced the concept of path-com-
plete p-dominant SLSs, characterized by the existence of
a family of quadratic cones (described by symmetric ma-
trices) whose contraction properties (captured by matrix
inequalities) are dictated by an automaton that can gen-
erate all switching signals of the system. The goal was to
study SLSs with a low-dimensional asymptotic behavior
(formalized with the concept of dominated splitting). In
particular, we showed that path-complete p-dominant
SLSs are exactly the ones that have a p-dimensional
asymptotic behavior. Moreover, thriving on the descrip-
tion using symmetric matrices and matrix inequalities,
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we showed that the property of p-dominance can be for-
mulated as the feasibility of a semidefinite optimization
problem, and thus can be verified algorithmically. This
allowed us to provide a computational framework for
the analysis of SLSs and nonlinear systems with a low-
dimensional asymptotic behavior, as demonstrated with
several numerical examples.

For future work, we plan to investigate the integration
of the concept of p-dominance for other problems in con-
trol. We think for instance to the bisimulation (aka. ab-
straction) of nonlinear systems (Tabuada, 2009), or the
computation of the estimation entropy of SLSs (Berger
and Jungers, 2020b) and nonlinear systems (Matveev
and Pogromsky, 2016). Indeed, an important limitation
of the techniques available to address these problems is
that they do not scale well with the dimension of the sys-
tem, even if the system has a low-dimensional asymptotic
behavior because this information is not used properly.
We plan to bridges these gaps by using the algorithmic
tools of p-dominance analysis, and show that these tech-
niques can dramatically increase the scalability of these
techniques, at least for some classes of systems. We be-
lieve that the example of Subsection 4.2 is a proof-of-
concept that the theory developed here may have an im-
pact on the numerical and theoretical analysis of non-
linear complex systems, beyond the theory of switched
systems.
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A Results from linear algebra

Notation. For P ∈ Sn×n, we let ν(P ) be the number
of negative eigenvalues of P , and ν0(P ) the number of
nonpositive eigenvalues of P .

Theorem 18 (Sylvester inertia theorem; see, e.g., Horn
and Johnson, 1985, Section 4.5). Let Q = A>PA where
P ∈ Sn×n and A ∈ Rn×n. Then, ν(Q) ≤ ν(P ) and
ν0(Q) ≥ ν0(P ). 8

Theorem 19 (Min-max principle; see, e.g., Horn and
Johnson, 1985, Section 4.2). Let P ∈ Sn×n and k ∈
{0, . . . , n}. Then, ν(P ) ≥ k (resp. ν0(P ) ≥ k) if and only
if there is a subspace H ⊆ Rn with dimension k such that
x>Px < 0 (resp. ≤ 0) for all x ∈ H \ {0}.

8 The proof in Horn and Johnson (1985) is presented for A
invertible with the conclusion that ν(Q) = ν(P ) and ν0(Q) =
ν0(P ). The case of A singular follows by applying a small
perturbation on A and using the continuous dependence of
the eigenvalues of symmetric matrices.

Theorem 20 (Main inertia theorem; see, e.g., Lancaster
and Tismenetsky, 1985, Section 13.2). Let A ∈ Rn×n.
There isP ∈ Sn×n satisfyingA>PA−P ≺ 0 if and only if
A has no eigenvalue with modulus |λi| = 1. Moreover, in
this case, P ∈ Sn×np where p is the number of eigenvalues
of A with modulus |λi| > 1.

B Proofs of Section 2

B.1 Proof of Theorem 7. Part 1: (a)⇒ (b)

Assuming (a), let Aut and {γd}d∈δ be as in (a), and
let {Pq}q∈Q be as in Definition 2 for Aut and {γd}d∈δ.
Let ε > 0 be small enough so that the right-hand side
terms of (2) (in Definition 2) can be replaced by−εI. Fix
σ ∈ ΣN. We will build a p-splitting (E ,F) which satisfies
(5) for someC ≥ 1 and µ ∈ (0, 1) independent of σ. To do
this, the following notation will be useful: σ being fixed,
for s, t ∈ N, s < t, we let Φt,s = Aσ(t−1)Aσ(t−2) · · ·Aσ(s).
If s = t, we let Φt,s = I. Any trajectory x(·) of (1) with
s.s. σ satisfies x(t) = Φt,sx(s).

To build the p-splitting (E ,F), let (dt)
∞
t=0 be a path in

Aut such that σ(t) = i(dt) for all t ∈ N. For each t ∈ N,
let qt = s(dt), and for each q ∈ Q, let Vq(x) = x>Pqx.
Remember that (2) implies that

Vqt+1(Aσ(t)x) ≤ γ2
dtVqt(x)− ε‖x‖2 ∀x ∈ Rn. (B.1)

The component F is defined as follows. Let F0 be any
p-dimensional subspace satisfying x ∈ F0 ⇒ Vq0(x) ≤ 0
(see Theorem 19). Then, define the subspaces {Ft}t>0 as
follows: Ft = Φt,0F0 for all t ∈ N. By (B.1), it holds that
for every t ∈ N>0 and x ∈ F0 \ {0}, Vqt(Φt,0x) < 0. This
implies that KerΦt,0∩F0 = {0}, whence Ft has the same
dimension as F0: i.e., dimFt = p for all t ∈ N. The other
component E is defined as follows. For each s, t ∈ N,
s > t, let E′s,t = {x ∈ Rn : Vqs(Φs,tx) ≥ 0}, and for each
t ∈ N, define Et =

⋂
s>tE

′
s,t. We will show that each

Et contains at least one linear subspace with dimension
n−p (the proof that eachEt is actually a linear subspace
with dimension n − p will be obtained at the very end
of this proof). By Theorem 18, Φs,t

> PqsΦs,t has at least
n−p nonnegative eigenvalues, and thus by Theorem 19,
E′s,t contains at least one linear subspace with dimension
n − p. Moreover, (B.1) implies that E′s,t is decreasing
with respect to s (and for t fixed): E′s+1,t ⊆ E′s,t. Hence,
with a standard compactness argument (see, e.g., Berger
et al., 2018, Lemma 7), it follows that for each fixed t,
the intersection

⋂
s>tE

′
s,t also contains a subspace with

dimension n− p.

Now, we show that the pair (E ,F) defined above satisfies
the relation (5) for someC ≥ 1 and µ ∈ (0, 1). Therefore,
we will need the following lemma (the proof is presented
at the end of this subsection):

11



Lemma 21. Let Aut, {γd}d∈δ and {Pq}q∈Q be as
above. There is µ ∈ (0, 1) such that for every d ∈ δ,
Vt(d)(Ai(d)x) ≤ γ2

d ·min
{
µVs(d)(x), 1

µVs(d)(x)
}

.

Let µ be as in Lemma 21, and let K ≥ 0 be such that
|Vq(x)| ≤ K‖x‖2 for all x ∈ Rn, and q ∈ Q (by bounded-
ness of {Pq}q∈Q, suchK always exists). Let t ∈ N and let
y(·) be a trajectory of (1) with s.s. σ and with y(t) ∈ Ft.
Then, by Lemma 21 and (B.1), for every s ∈ N, s > t,

−K‖y(s)‖2 ≤ Vqs(y(s)) ≤ µt+1−sΓ2
t+1,sVqt+1(y(t+ 1))

≤ −µt+1−sΓ2
t+1,sε‖y(t)‖2,

where Γt+1,s = γdt+1
· · · γds−1

. Similarly, we get that for
every trajectory x(·) of (1) with s.s. σ and with x(t) ∈ Et,
it holds that for every s ∈ N, s > t,

ε‖x(s)‖2 ≤ γ2
dsVqs(x(s)) ≤ µs−tΓ2

t,sγ
2
dsVqt(x(t))

≤ µs−tΓ2
t,sγ

2
dsK‖x(t)‖2. (B.2)

Taking the quotient of ‖x(s)‖ and ‖y(s)‖, it follows that
(5) holds with µ and with C = ε−1Kµ−1/2 maxd∈δ γ

2
d .

In particular, µ and C are independent of σ and t. Since
t is arbitrary, this holds true for every t ∈ N.

Finally, we use (5) to show that each Et is a linear sub-
space with dimension n− p. Therefore, fix t ∈ N and as-
sume that dim(spanEt) > n−p. Thus, (spanEt)∩Ft 6=
{0}, so there is ȳ ∈ Ft \ {0} and x̄1, x̄2 ∈ Et such that
ȳ = x̄1 + x̄2. Letting y(·) [resp. x1(·), x2(·)] be the trajec-
tory of (1) with s.s. σ and with y(t) = ȳ [resp. x1(t) = x̄1

and x2(t) = x̄2], we have that for every s ∈ N, s ≥ t,
‖y(s)‖ ≤ 2 max {‖x1(s)‖, ‖x2(s)‖}; a contradiction with
(5). Hence, Et is a linear subspace with dimension n−p.
This concludes the proof that (a)⇒ (b).

PROOF of Lemma 21. Because Q is finite there is
α > 0 such that for every q ∈ Q, −εI � αPq � εI.
Hence, the RHS of (2) can be replaced by αPq1 or−αPq1 .
This concludes the proof, since by the finiteness of δ,
there is µ ∈ (0, 1) such that for every d ∈ δ, µγ2

d ≤
γ2
d − α < γ2

d + α ≤ µ−1γ2
d .

B.2 Proof of Theorem 7. Part 2: (b)⇒ (a)

Assuming (b), let C ≥ 1 and µ ∈ (0, 1) be as in (b). The
proof that (b) ⇒ (a) relies on the following technical
lemma (Berger and Jungers, 2019, Lemma 6):

Lemma 22. There is T∗ ∈ N and c > 0 such that for
every s.s. σ ∈ ΣN and every p-splitting (E ,F) satisfying
the assertion of (b) with σ, it holds that ‖Aσ(t)x‖ ≥ c‖x‖
for every t ∈ N≥T∗ and x ∈ Ft.

In the following, it will be convenient to describe the de-
compositions of Rn induced by a p-splitting (E ,F) with
projection matrices. More precisely, given a decomposi-
tionEt⊕Ft of Rn, we define the matrixRt ∈ Rn×n as the
projection on Ft parallel to Et. Note that Rt determines
Et and Ft completely since ImRt = Ft and KerRt = Et;
in particular, it holds that rankRt = p. The following
proposition, whose proof can be found in Berger and
Jungers (2019, Proposition 7) (and is a straightforward
consequence of Lemma 22), states that the set of matri-
ces Rt is bounded for all t ≥ T∗ and all s.s.:

Proposition 23. Let T∗ be as in Lemma 22. There is
M ≥ 0 such that for every s.s. σ ∈ ΣN and every p-
splitting (E ,F) satisfying the assertion of (b) with σ, it
holds that ‖Rt‖ ≤ M for every t ∈ N≥T∗ , where Rt is
the projection matrix associated to (Et, Ft).

Using the above definitions and results, we will build an
automaton, a set of rates and a set of symmetric matrices
satisfying (a) in Theorem 7.

Therefore, let T ∈ N>0 be such that CµT ≤ 1
4 and fix

α ∈ (0, 3
10 ). Let RM be the set of all projection matrices

R ∈ Rn×n of rank p and with ‖R‖ ≤M , where M is as
in Proposition 23. Since this set is relatively compact,
there is a finite subset {S1, . . . , Sm} of RM that is an
“α-cover” of RM (meaning that for any R ∈ RM , there
is q ∈ {1, . . . ,m} such that ‖R− Sq‖ ≤ α).

Now, using this set {S1, . . . , Sm}, we build an automaton
Aut∗ = (Q∗,ΣT , δ∗) and a set of symmetric matrices as
follows. The alphabet of Aut∗ is ΣT (the set of words
of length T over Σ, i.e., ΣT = {(i1, . . . , iT ) : ik ∈ Σ}).
The set of states of Aut is defined by Q∗ = {1, . . . ,m}.
Based on this set, for each q ∈ Q∗, we let

Pq = −S>q Sq +(I−Sq)>(I−Sq) = I−Sq−S>q . (B.3)

By construction, Pq is symmetric. Moreover, Pq is neg-
ative definite on ImPq and positive definite on KerPq.
Hence, Pq ∈ Sn×np (Theorem 19). Finally, we define the

set δ∗ ⊆ Q∗×ΣT ×Q∗ of transitions in Aut∗ as follows:
for every w = (i1, . . . , iT ) ∈ ΣT and q1, q2 ∈ Q∗, we let
(q1, w, q2) ∈ δ∗ if and only if there is κ > 0 such that
Φw
>Pq2Φw ≺ κ2Pq1 , where Φw = AiT · · ·Ai1 .

We show that every s.s. σ ∈ ΣN can be read as the juxta-
position of words obtained from a path in Aut∗. There-
fore, fix σ ∈ ΣN and decompose σ into blocks of length T :
that is, σ = w0w1w2 . . . , where wt = σ|[tT,tT+T ) ∈ ΣT .

Let w−1 ∈ ΣT∗ , where T∗ is as in Lemma 22, and define
σ′ = w−1σ ∈ ΣN. Let (E ,F) be a p-splitting satisfying
the assertion of (b) with σ′, and let {Rt}∞t=0 be the asso-
ciated sequence of projection matrices. Finally, for each
t ∈ N, let qt = min {q ∈ Q∗ : ‖RtT+T∗−Sq‖ ≤ α}, which
always exists since ‖RtT+T∗‖ ≤M (Proposition 23).
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We claim that (qt, wt, qt+1) ∈ δ∗ for every t ∈ N, which
would prove the assertion at the beginning of the above
paragraph. To prove this claim, we fix t ∈ N, and we will
show that there is κ > 0 such that

Φ>wt
Pqt+1

Φwt
− κ2Pqt ≺ 0, (B.4)

where Φwt
= Aσ(tT+T−1) · · ·Aσ(tT ). Indeed, let κ be any

positive number satisfying

2 sup
x∈EtT+T∗
‖x‖=1

‖Φwt
x‖ ≤ κ ≤ 1

2
inf

x∈FtT+T∗
‖x‖=1

‖Φwt
x‖, (B.5)

The existence of κ is ensured by (5) and CµT ≤ 1
4 . Also,

Lemma 22 ensures that the right-hand side term of (B.5)
is positive, so that κ can always be chosen to be posi-
tive. To show that (B.4) holds, we let x ∈ Rn \ {0} and
y = Φwt

x, and we will show that y>Pqt+1
y < κ2x>Pqtx.

Therefore, let x1 ∈ FtT+T∗ and x2 ∈ EtT+T∗ such that
x = x1 + x2, and let y1 = Φwtx1 and y2 = Φwtx2. Then,
since ‖RtT+T∗−Sqt‖ ≤ α and ‖R(t+1)T+T∗−Sqt+1‖ ≤ α,
we get from (B.3) the following relations (we use capi-
tal letters, X1, X2, Y1 and Y2, to denote the norm of the
related vectors; e.g., X1 = ‖x1‖):

x>Pqtx ≥ −X2
1 +X2

2 − 2α(X2
1 +X2

2 ),

y>Pqt+1y ≤ −Y 2
1 + Y 2

2 + 2α(Y 2
1 + Y 2

2 ).

We also have the relations Y1 ≥ 2κX1 and Y2 ≤ 1
2κX2

from (B.5). Hence,

κ−2y>Pqt+1y − x>Pqtx
≤ (−1 + 2α)(κ−1Y1)2 + (1 + 2α)(κ−1Y2)2

+ (1 + 2α)X2
1 + (−1 + 2α)X2

2

≤ 4(−1 + 2α)X2
1 + (1 + 2α)X2

1

+ 1
4 (1 + 2α)X2

2 + (−1 + 2α)X2
2

= (−3 + 10α)X2
1 + 1

4 (−3 + 10α)X2
2 < 0.

The latter follows from α < 3
10 . This proves (B.4), and

thus it follows that (qt, wt, qt+1) ∈ δ∗, proving the claim
at the beginning of this paragraph.

Finally, to conclude the proof of the theorem, it remains
to show that, from Aut∗ defined in Step 1, we can build
a path-complete automaton Aut = (Q,Σ, δ) such that
(1) is p-dominant with respect to Aut and some rates
{γd}d∈δ ⊆ R>0. This is done by splitting each transition
(q1, w, q2) ∈ δ∗ of Aut∗ into T sub-transitions (one per
symbol of w ∈ ΣT ).

More precisely, for each transition d = (q1, w, q2) ∈ δ∗,
we add to Q∗ = {1, . . . ,m} the states (d, 1), . . . , (d, T −
1). This gives the set of statesQ = Q∗∪(δ∗×{1, . . . , T−

1}). Because Q contains states from Q∗ and states in-
duced by the transitions in δ∗, we introduce the follow-
ing unifying notation: for d = (q1, w, q2) ∈ δ∗ and k ∈
{0, . . . , T}, we let q̄(d, k) = q1 if k = 0, q̄(d, k) = (d, k)
if 1 ≤ k ≤ T − 1, and q̄(d, k) = q2 if k = T , and for
each k ∈ {0, . . . , T − 1}, we let w̄(d, k) = ik+1, where
w = (i1, . . . , iT ). Finally, we define the set δ ⊆ Q×Σ×Q
of transitions in Aut as δ = {(q̄(d, k), w̄(d, k), q̄(d, k +
1)) : d ∈ δ∗, 0 ≤ k ≤ T − 1}. By construction, it is
clear that Aut = (Q,Σ, δ) is path-complete for (1). It re-
mains to show that that (1) is p-dominant with respect
to Aut and some set of positive rates {γd}d∈δ. There-
fore, we build a set of rates {γd}d∈δ and a set of matrices
{P̄q}q∈Q ⊆ Sn×np such that the dissipation inequalities
(2) are satisfied.

To do this, fix a transition d = (q1, w, q2) ∈ δ∗ in Aut∗

and let ηd = κ1/T where κ > 0 is such that Φw
>Pq2Φw ≺

κ2Pq1 ; see (B.4). Let P̄q̄(d,0) = Pq1 and P̄q̄(d,T ) = Pq2 .
Then, for each k = T − 1, T − 2, . . . , 1, we define the
matrices Pq̄(d,k) recursively as follows:

P̄q̄(d,k) = η−2
d A>w̄(d,k)P̄q̄(d,k+1)Aw̄(d,k) + θI

with θ > 0. By construction, we have that for all k ∈
{1, . . . , T − 1},

A>w̄(d,k)P̄q̄(d,k+1)Aw̄(d,k) − η
2
dP̄q̄(d,k) ≺ 0. (B.6)

Now, observe that

A>w̄(d,0)P̄q̄(d,1)Aw̄(d,0) = η
2(1−T )
d Φ>w P̄q̄(d,T )Φw + ∆

where ∆ ∈ Sn×n satisfies ‖∆‖ → 0 as θ → 0. Hence,
since A>w P̄q2Aw ≺ κ2P̄q1 , it follows that (B.6) also holds
for k = 0, provided θ is small enough.

Summarizing, we have shown that the automaton
Aut, together with the rates {γd′}d′∈δ defined by
γd′ = ηd if d′ = (q̄(d, k), w̄(d, k), q̄(d, k + 1)) ∈ δ and
with the matrices {P̄q}q∈Q defined as above, satis-
fies (2). Hence, to show that (a) in Theorem 7 holds,
it remains to show that {P̄q}q∈Q ⊆ Sn×np . By using
(B.6) and Theorem 18, we get that for every d ∈ δ∗,
p = ν(P̄q̄(d,T )) ≥ ν0(P̄q̄(d,T−1)) ≥ ν(P̄q̄(d,T−1)) ≥ . . . ≥
ν0(P̄q̄(d,1)) ≥ ν(P̄q̄(d,1)) ≥ ν0(P̄q̄(d,0)) = p, whence for

all k ∈ {0, . . . , T}, ν(P̄q̄(d,k)) = ν0(P̄q̄(d,k)) = p, which
concludes the proof that (b)⇒ (a).

B.3 Proof of Theorem 10. Part 1: (a)⇒ (b)

Assuming (a), the first assertion in (b) follows directly
from Theorem 7. The second assertion in (b) follows from
(B.2) and the fact that since Aut is cycle-stable with
respect to {γd}d∈δ there isM ≥ 1 such that Γs,t ≤M for

every s, t ∈ N, s ≤ t. Hence, it suffices to take ρ = µ1/2

and D = (ε−1KM)1/2.
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B.4 Proof of Theorem 10. Part 2: (b)⇒ (a)

The proof is very similar to the proof that (b) ⇒ (a)
in Theorem 7 (Subsection B.2). We just need to make
the following modifications: (i) We let T ∈ N be such
that CµT ≤ 1

4 and DρT < 1
2 (the second constraint will

imply that there is κ ∈ (0, 1) satisfying (B.5)); (ii) We
let (q1, w, q2) ∈ δ∗ if and only if Φw

>Pq2Φw ≺ κ2Pq1 for
some κ ∈ (0, 1). The rest of the proof is exactly the same
as in Subsection B.2. Observe that since κ < 1 we have
ηd < 1 and thus γd′ < 1. Hence, the automaton Aut is
cycle-stable with respect to {γd′}d′∈δ.

C Proofs of Section 3

C.1 Proof of Theorem 12

We consider an automaton Aut = (Q,Σ, δ) satisfying
Assumption 11. We say that q ∈ Q is recurrent if there
is a path (dt)

N−1
t=0 with length N ≥ 1 from q to q, i.e.,

with s(d0) = t(dN−1) = q. Let ({Pq}q∈Q, ε) be a feasible
solution of (6b)–(6c) with ε > 0.

We will first show that for any recurrent state q ∈ Q the
inertia of Pq depends only on the automaton, the rates
and the matrices {Ai}i∈Σ. To show this, fix a recurrent

state q ∈ Q and let (dt)
N−1
t=0 be a path from q to itself.

For each k ∈ {0, . . . , N − 1}, let Φk = Ai(dk) · · ·Ai(d0)

and ηk = γdN−1
· · · γdk . Then, from (6b) and using that

Pq = Ps(q0) = Pt(qN−1), we get that

Φ>N−1PqΦN−1 ≺ η2
N−1Φ

>
N−2Pt(qN−2)ΦN−2

≺ η2
N−2Φ

>
N−3Pt(qN−3)ΦN−3 ≺ . . . ≺ η2

0Pq. (C.1)

By Theorem 20, it follows that Pq ∈ Sn×nkq
where kq is the

number of eigenvalues of ΦN−1 with modulus |λi| > η0.
Because ΦN−1 and η0 depend only on Aut, {γd}d∈δ, and
{Ai}i∈Σ, and by the hypothesis of Theorem 12, it follows
that for every recurrent state q ∈ Q, Pq ∈ Sn×nk .

Now, let q ∈ Q be any state. By Assumption 11, there
is a recurrent state r and a path (dt)

N−1
t=0 from r to q

(since any backward infinite path from q will eventually
loop on itself). By the same argument as above, it holds
that Φ>PqΦ − η2Pr ≺ 0, where Φ = Ai(dN−1) · · ·Ai(d0)

and η = γdN−1
· · · γd0 . Hence, by Theorem 18, it follows

that ν(Pq) ≥ ν0(Pr) = k. By proceeding in a similar way
(using a path from q to a recurrent state), we can show
that ν0(Pq) ≤ k. Hence, ν(Pq) = ν0(Pq) = k, and thus
Pq ∈ Sn×nk , concluding the proof of the theorem.

C.2 Proof of Corollary 13

The “only if” direction is clear: if the optimal solution
({Pq?}q∈Q, ε?) satisfies the assertions of the corollary,

then (2) holds with {Pq?}q∈Q and thus the system is p-
dominant with respect to Aut and {γd}d∈δ.

The “if” direction is also straightforward: if the system
is p-dominant with respect to Aut and {γd}d∈δ, then
(6a)–(6c) has a feasible solution with ε > 0 and with
{Pq}q∈Q ⊆ Sn×np . It follows that any optimal solution
({Pq?}q∈Q, ε?) satisfies ε? > 0, and thus, by Theorem
12, it holds that {Pq?}q∈Q ⊆ Sn×np .

C.3 Proof of Proposition 14

Let P = Ps(d0). By using the same argument as in (C.1),

we get that Φ>PΦ − η2P ≺ 0. Hence, by Theorem 20,
Φ has p eigenvalues with modulus > η and n− p eigen-
values with modulus < η. This proves (i). Now, in or-
der to prove (ii), let the columns of H ∈ Rn×p be a ba-
sis of the eigenspace, denoted by F , associated to the
eigenvalues of Φ with modulus > η. Then, it holds that
ΦH = HΦp for some Φp ∈ Rp×p with eigenvalues equal
to the eigenvalues of Φ with modulus > η. It follows that
Φp
>H>PHΦp−η2H>PH ≺ 0, and thus by Theorem 20,

H>PH is negative definite. This implies that any vector
x ∈ F satisfies x>Px ≤ 0, so that F ⊆ K(P ). A similar
reasoning shows that any vector x in the eigenspace as-
sociated to the n− p eigenvalues of Φ with modulus < η
satisfies x>Px ≥ 0. This concludes the proof of (ii).

D Addendum to Section 4

D.1 Automaton labeled with sets of matrices

Let Ai ⊆ Rn×n be sets of matrices indexed by i ∈ Σ :=
{1, . . . , N}. Consider an automaton Aut = (Q,Σ, δ) and
a set of positive rates {γd}q∈δ. Assume that there exists
a set of matrices {Pq}q∈Q ⊆ Sn×np such that for every
d ∈ δ and A ∈ Ai(d),

A>Pt(d)A− γ2
d Ps(d) ≺ 0. (D.1)

These inequalities generalize the ones of p-dominance
to SLSs with an infinite number of matrices. From the
proof of (a) ⇒ (b) in Theorem 7 (see Appendix B.1), it
is clear that this implication also holds for SLSs with an
infinite set of matrices satisfying (D.1).

Regarding the algorithmic verification of (D.1), assume
that each matrix set Ai can be represented as a convex
set Ai = Ai+conv {∆i,1, . . . ,∆i,Ni

} where Ai,∆i,1, . . . ,
∆i,Ni

∈ Rn×n, and consider the following semidefinite
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optimization problem:

max{Pq}q∈Q⊆Sn×n, {Eq}q∈Q⊆Sn×n, ε∈R ε (D.2a)

s.t. A>i(d)Pt(d)Ai(d) +A>i(d)Pt(d)∆i(d),j + ∆>i(d),jPt(d)Ai(d)

+ ∆>i(d),jEd∆i(d),j − γ
2
d Ps(d) � −εI,

∀ d ∈ δ, j ∈ {1, . . . , Ni(d)}. (D.2b)

− I � Pt(d) � Ed � I, Ed � 0, ∀ d ∈ δ. (D.2c)

By using a similar argument as in the proof of Theo-
rem 12, we may show that if (D.2) admits a solution
({Pq}q∈Q, {Eq}q∈Q, ε) with ε > 0 and {Pq}q∈Q ⊆ Sn×np ,
then the system satisfies (D.1) with such Pq and ε. The
proof (omitted due to space limitation) is based on the
convexity of the set of matrices ∆ satisfying (D.2b) with
Pq and Eq fixed (this is why we need Ed � 0).

D.2 Proof of Proposition 17

Assume, for a contradiction, that z − y /∈
⋃
q∈QK(Pq).

Fix T ∈ N, and let α : [0, 1] → Rn be the line segment
from y to z and let β : [0, 1] → Rn be the pre-image of
α by fT (which exists by the Inverse Function theorem;
see, e.g., Robinson, 1999, Theorem V.2.4). By invari-
ance of Ω, it holds that β(0) = f−T (y) ∈ Ω and β(1) =
f−T (z) ∈ Ω. Fix r ∈ [0, 1]. By the contraction property
(3), it holds that β′(r) /∈

⋂
q∈QK(Pq), as otherwise we

would have α′(r) = ∂fT (β(r))β′(r) ∈
⋃
q∈QK(Pq), a

contradiction with the definition of α. Moreover, since
the automaton is cycle-stable, it holds that ‖β′(r)‖ ≥
Dρ−T ‖α′(r)‖ with D > 0 and ρ ∈ (0, 1) independent
of T and r (Theorem 10). Moreover, from the shape of
the cones K(Pq) which contain the x1x2-plane in their
interior (see Figure 7-(c)), there is c > 0, independent
of T and r, such that |e>3 β′(r)| ≥ c‖β′(r)‖, where e3 =
[0, 0, 1]>. Furthermore, by continuity of β′(r) with re-
spect to r, e>3 β

′(r) has the same sign for all r. Thus, by
integration of e>3 β

′, we find that |e>3 [β(1) − β(0)]| in-
creases exponentially with T . Since T is arbitrarily, this
is a contradiction with the boundedness of x(·).
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Lúıs Barreira and Claudia Valls. Stability of nonau-
tonomous differential equations. Springer, Berlin,
2008. doi: 10.1007/978-3-540-74775-8.
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Jungers. Path-complete p-dominant switching linear
systems. In 2018 IEEE 57th IEEE Conference on De-
cision and Control (CDC), pages 6446–6451. IEEE,
2018. doi: 10.1109/CDC.2018.8619703.

Abraham Berman, Michael Neumann, and Ronald J
Stern. Nonnegative matrices in dynamic systems.
John Wiley & Sons, New York, NY, 1989.

Jairo Bochi and Nicolas Gourmelon. Some characteriza-
tions of domination. Mathematische Zeitschrift, 263
(1):221–231, 2009. doi: 10.1007/s00209-009-0494-y.

Stephen Boyd and Lieven Vandenberghe. Convex op-
timization. Cambridge University Press, Cambridge,
UK, 2004. doi: 10.1017/CBO9780511804441.

Stephen Boyd, Laurent El Ghaoui, Eric Feron,
and Venkataramanan Balakrishnan. Linear
matrix inequalities in system and control the-
ory. SIAM, Philadelphia, PA, 1994. doi:
10.1137/1.9781611970777.

Michael I Brin and Yakov B Pesin. Partially
hyperbolic dynamical systems. Mathematics of
the USSR-Izvestiya, 8(1):177–218, 1974. doi:

15



10.1070/IM1974v008n01ABEH002101.
Michela Brundu and Marino Zennaro. Invariant multi-

cones for families of matrices. Annali di Matematica
Pura ed Applicata (1923–), 198(2):571–614, 2019. doi:
10.1007/s10231-018-0790-4.

Lorenzo Farina and Sergio Rinaldi. Positive linear sys-
tems: theory and applications. John Wiley & Sons,
New York, NY, 2000. doi: 10.1002/9781118033029.

Fulvio Forni and Rodolphe Sepulchre. Differen-
tially positive systems. IEEE Transactions on
Automatic Control, 61(2):346–359, 2016. doi:
10.1109/TAC.2015.2437523.

Fulvio Forni and Rodolphe Sepulchre. Differential dissi-
pativity theory for dominance analysis. IEEE Trans-
actions on Automatic Control, 64(6):2340–2351, 2019.
doi: 10.1109/TAC.2018.2867920.
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