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Abstract

This item explains a technical problem in the justification of Theorem 10 in Kenanian et al. (2019). The theorem refers to a
result in chance-constrained convex programming, but the hypotheses for applying this result are not satisfied since the the
optimization problem involved in Theorem 10 is nonconvex. However, under an additional mild assumption on the system,
the conclusions of Theorem 10 hold, as shown in this item.
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1 Problem in the proof of Theorem 10

Theorem 10 in Kenanian et al. (2019) is provided
without proof, but with a reference to Theorem 3.3
in Calafiore (2010), suggesting that the former is a
particular case of the latter. However, Theorem 3.3
in Calafiore (2010) assumes that the underlying opti-
mization problem is convex, but (8) in Kenanian et al.
(2019) is nonconvex (because of the term γ∗(ωN )), so
that Theorem 10 in Kenanian et al. (2019) cannot be
derived from Theorem 3.3 in Calafiore (2010).

Remark 1. If γ∗(ωN ) in (8) in Kenanian et al. (2019)
is replaced by a fixed value (say γ), then the problem
becomes convex. In that case, the conclusion that can be
drawn from Theorem 3.3 in Calafiore (2010) is that with
probability β(ε,N) on the sampling of ωN , either (8) in
Kenanian et al. (2019) with γ∗(ωN ) replaced by γ is not
feasible, or when it is feasible, then a guarantee similar
to (9) in Kenanian et al. (2019) holds. However, there
is no way to guarantee in advance that (8) in Kenanian
et al. (2019) with γ∗(ωN ) replaced by γ is feasible, so that
this modified problem cannot be used for the problem
at stake.
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2 A proof based on chance-constrained quasi-
convex optimization

It happens that (8) in Kenanian et al. (2019) is very
close to being a quasi-convex optimization problem. To
see this, let M = {Ai : i ∈ M} ⊆ Rn×n be as in (2) in
Kenanian et al. (2019) and let ωN be as in (6) in Kena-
nian et al. (2019), and consider the following optimiza-
tion problem:

min
P∈Sn,γ

(γ, ‖P‖F )

s.t. (Ajx)>PAjx ≤ γ2`x>Px, ∀ (x, j) ∈ ωN ,
I � P � CI, γ ≥ 0,

(1)

where C > 1 is a parameter, and Aj is defined as in
(7) in Kenanian et al. (2019). The objective of (1) is to
minimize γ and then, if there is more than one feasible
solution with the optimal γ, find the one such that ‖P‖F
(Frobenius norm) is the smallest; hence, this is the same
as (8) in Kenanian et al. (2019) with η = 0 and with
λmax(P ) replaced by ‖P‖F (the latter is just a technical
fix made to ensure that the optimal solution is unique).
We have also added a constraint P � CI, to ensure
that the set of feasible P is compact, so that an optimal
solution is always guaranteed to exist.

Problem (1) is a quasi-linear optimization problem, as
defined in (2) in Berger et al. (2021). Therefore, we may
apply Theorem 6 in Berger et al. (2021) to get the fol-
lowing result (which relies on Assumption 4, discussed
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below):

Theorem 2 (Corollary 12 in Berger et al., 2021). Con-
sider Problem (1) and letM satisfy Assumption 4. Let

d = n(n−1)
2 . For any ε ∈ (0, 1] and N ≥ d+ 1, the bound

(9) in Kenanian et al. (2019) holds, where P (ωN ) and
γ∗ωN

are understood as the optimal solutions of (1).

Remark 3. Note that d in Theorem 2 is smaller by
one unit than the d used in Theorem 10 in Kenanian
et al. (2019). Hence, the bound, similar to (9) in Ke-
nanian et al. (2019), obtained by using Theorem 2 is
stronger than the bound (9) in Kenanian et al. (2019)
since β(ε,N) is decreasing with d.

Theorem 2 relies on the following assumption:

Assumption 4 (Assumption 8 in Berger et al., 2021).
M contains no Barabanov matrix.

We recall that, by Proposition 9 in Berger et al. (2021),
a real square matrix is Barabanov if and only if it is di-
agonalizable and all its eigenvalues have the same mod-
ulus. Hence, Assumption 4 can be assumed to hold in
most practical situations. We are currently working on
alleviating this assumption.
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ing Wang. Chance-constrained quasi-convex opti-
mization with application to data-driven switched sys-
tems control. In Proceedings of the 3rd Conference
on Learning for Dynamics and Control, volume 144
of Proceedings of Machine Learning Research, pages
571–583. PMLR, 2021. http://proceedings.mlr.
press/v144/berger21a.html.

Giuseppe Carlo Calafiore. Random convex programs.
SIAM Journal on Optimization, 20(6):3427–3464,
2010. doi: 10.1137/090773490.

Joris Kenanian, Ayca Balkan, Raphaël M Jungers, and
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