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Abstract— We present an algorithmic framework for the
identification of candidate invariant subspaces for switched
linear systems. Namely, the framework allows to compute an
orthonormal basis in which the matrices of the system are close
to block-triangular matrices, based on a finite set of observed
one-step trajectories and with a priori confidence level. The link
between the existence of an invariant subspace and a common
block-triangularization of the system matrices is well known.
Under some assumptions on the system, one can also infer
the existence of an invariant subspace when the matrices are
close to be block-triangular. Our approach relies on quadratic
Lyapunov analysis and recent tools in scenario optimization.
We present two applications of our results for problems of
consensus and opinion dynamics; the first one allows to identify
the disconnected components in a switching hidden network,
while the second one identifies the stationary opinion vector of
a switching gossip process with antagonistic interactions.

I. INTRODUCTION

Data-driven control systems have a rich and long history,
encompassing system identification [1], controller synthesis
[2]–[4], formal verification [5], etc. In recent years, we have
seen a paradigm shift from learning models (system iden-
tification) to learning solutions (or certificates, like control
barrier functions [6], abstractions [7], etc.). This has been
enabled by the development of new techniques for learning,
such as PAC (Probably Approximately Correct) Learning
[8], [9] and scenario optimization [10], [11], which allow to
provide solutions that are satisfactory with a high confidence
level. This is particularly relevant for cyber-physical systems
because system identification is in general very hard for these
systems [1], and so are most control problems, even if the
model of the system is known [12].

In this paper, we study the problem of identifying invariant
subspaces for black-box switched linear systems in a data-
driven way. Switched linear systems are systems described
by a finite set of linear modes among which the system
can switch over time. They constitute a paradigmatic class
of cyber-physical systems, and appear naturally in many
engineering applications or as abstractions of more complex
systems [13]. Invariant subspaces are a central concept in
linear system analysis; e.g., for safety verification, to perform
dimensionality reduction in system analysis, or because
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they contain important information about the system (as in
consensus [14] or Markov chains [15]).

Our approach for subspace identification draws on sce-
nario optimization [11]. In particular, the existence of a
candidate invariant subspace is inferred from the existence
of a degenerate Lyapunov function for the system. More pre-
cisely, the zero level-set of the Lyapunov function provides
an orthonormal basis in which the matrices of the system are
close (with bounded distance) to be block-triangular. Under
some assumptions on the system, one can then infer the
existence of an invariant subspace for the system; examples
of such assumptions are discussed in the applications. By
restricting to quadratic Lyapunov functions, the existence of
such a function can be formulated as an SDP optimization
problem. Because the system is black-box, the function has
to be computed using a finite amount of data, and thus it
is not guaranteed that the obtained quadratic function is a
valid Lyapunov function for the system. However, by using
results from scenario optimization, we can estimate with a
priori-fixed confidence level, the probability of the set of
one-step trajectories that are compatible with the obtained
function. Using this estimation, we can bound the distance
of the system matrices (in the appropriate orthonormal basis)
to the set of block-triangular matrices. Note that a similar
approach has been used in [16]–[19] for the data-driven
computation of quadratic Lyapunov functions for stability
analysis of switched linear systems. However, to the best
of our knowledge, this work is the first one addressing the
problem of common triangularization and invariant subspace
identification for switched linear systems, without passing
through a system identification phase.

We apply our technique on two problems in opinion
dynamics. The first one is a problem of consensus over a
switching hidden network [20]: by estimating the dimension
of the dominant invariant subspace of the system, we are able
to infer, from a finite set of observed one-step trajectories,
the number of disconnected components in the network. The
second application is a problem of opinion dynamics with
antagonistic interactions [21]. The attracting opinion vector,
if it exists, corresponds to a 1-dimensional invariant subspace
of the system. Our technique allows us to identify, in a data-
driven way, with high confidence level, such a subspace.

Outline. The paper is organized as follows. In Section II,
we introduce the problem of interest. Several intermediate
results follow, leading eventually to the main result of
the paper in Subsection II-D, which allows to identify an
orthonormal basis in which the system matrices are close to
be block-triangular. Finally, in Section III, we present two



applications of our framework for problems of consensus and
opinion dynamics.

Notation. For vectors, ∥·∥ denotes the Euclidean norm, and
for matrices, it denotes the spectral norm (largest singular
value). ∥·∥F denotes the Frobenius norm. For a set X ⊆
Rd, X⊥ denotes its orthogonal complement and conv(X )
its convex hull. Sd−1 is the unit Euclidean sphere in Rd.

II. PROBLEM SETTING AND MAIN RESULT

A. Switched linear systems and invariant subspaces

We consider a discrete-time switched linear system, de-
scribed by

ξ(t+ 1) = Aσ(t)ξ(t), ξ(t) ∈ Rn, t ∈ N, (1)

where σ : N → Q := {1, . . . , Q} and for each q ∈ Q,
Aq ∈ Rn×n. The function σ is called the switching signal1

of the system and specifies which mode (i.e., which transition
matrix Aq) is used by the system at each time t ∈ N.

An invariant subspace for System (1) is a (non-trivial)
linear subspace U ⊆ Rn satisfying that for every trajectory
ξ of (1) with ξ(0) ∈ U , it holds that for all t ∈ N, ξ(t) ∈
U . The existence of an invariant subspace is related to the
common block-triangularization of the system matrices, as
explained in the proposition below.

Proposition 1 [22, p. 12]: Let U ⊆ Rn be a non-trivial
linear subspace with dimension r, and let U ∈ Rn×n be an
orthogonal matrix whose first r columns are a basis of U .
The following are equivalent:

1) U is invariant for System (1);
2) For each q ∈ Q, there is A

(11)
q ∈ Rr×r, A(12)

q ∈
Rr×(n−r) and A(22)

q ∈ R(n−r)×(n−r) such that

U⊤AqU =

[
A

(11)
q A

(12)
q

0 A
(22)
q

]
. (2)

Finding an invariant subspace from a finite set of trajecto-
ries is generally impossible if none of the trajectories starts
inside the subspace. Therefore, we focus on finding a com-
mon “near” block-triangularization, that is, an orthogonal
change of basis U in which the norm of the lower-left blocks
— the would-be A(21)

q blocks in (2) — is bounded.
In our framework, the available data is a set of N one-step

trajectories (xi, yi), where yi = Aqixi for some unobserved
mode qi; i.e., we observe N starting points xi and their
respective images yi by some latent mode qi.

B. Quadratic Lyapunov approach

A common block-triangularization of System (1) can be
obtained from a positive semi-definite (PSD) matrix P sat-
isfying that for all q ∈ Q, A⊤

q PAq ⪯ γ2P for some γ > 0.
Indeed, in that case, the kernel U of P gives an invariant

1In our framework (worst-case scenario analysis), the switching signal
is an external input on which the user has no control, and the objective is
to deduce properties of the systems that will be valid for every switching
signal.

subspace.2 Note that γ can be seen as a Lagrange multiplier
arising in the S-procedure [23].

When the matrices Aq are not available, we consider the
data-driven version of the above approach. Namely, for a set
Ω = {(xi, yi)}Ni=1 of observations and γ > 0, we consider
the following optimization problem:

min
P

∥P∥2F
s.t. yi

⊤Pyi ≤ γ2 xi
⊤Pxi, ∀ i ∈ {1, . . . , N},

P ⪰ 0, trace(P ) = 1.

(3)

We let P ⋆
Ω,γ be the optimal solution of (3), if it exists. In the

following, we will assume that γ > 0 is fixed, and thus we
will omit it in the notation.

The rationale of minimizing ∥P∥2F (which is equal to the
sum of the squared eigenvalues of P ) is to reduce the gap
between the largest and smallest nonzero eigenvalues of P ⋆

Ω.
In particular, if one defines the skewness of a PSD matrix P
as in Definition 1 below, then minimizing ∥P∥F induce its
skewness to be small, which will be desirable in Theorems 4
and 5.

Definition 1: Let P ∈ Rn×n be PSD with eigenvalues
λ1 ≥ . . . ≥ λn−r > 0 = λn−r+1 = . . . = λn. We define the
skewness of P by χ(P ) = λ−1

n−r

∏n−r
j=1 λ

1/n
j .

We now establish the link between a solution of (3) and the
existence of an orthogonal change of basis allowing to near
block-triangularize the matrices of System (1). Therefore,
define the set

ΨΩ = {(x, q) ∈ Rn ×Q :

(Aqx)
⊤P ⋆

Ω(Aqx) ≤ γ2x⊤P ⋆
Ωx} (4)

of point–mode pairs compatible with P ⋆
Ω.

It holds that if ΨΩ is sufficiently covering the set Rn×Q,
then one can bound the norm of the lower-left blocks in a
decomposition of System (1) akin to (2), where U is given
by the kernel of P ⋆

Ω. This is stated in Theorem 2 below, but
first we formalize the notion of “sufficiently covering” with
the following concept of homogeneity (see also Figure 1 for
an illustration).

Definition 2: Let X ⊆ Rn, ϵ > 0 and P1, P2 ∈ Rn×n be
PSD. We say that X is (ϵ, P1, P2)-homogeneous if for every
x ∈ Rn, there is V ⊆ Rn such that 0 ∈ conv(V) and for
every v ∈ V , v⊤P1x = 0, v⊤P1v ≤ ϵ2x⊤P2x and x+v ∈ X .

Theorem 2: Consider System (1). Let Ω ⊆ Rn × Rn and
ϵ ∈ (0, 1). Let P ⋆

Ω be the optimal solution of (3) and let ΨΩ

be as in (4). Let P ⋆
Ω = UΣ2U⊤ with U ∈ Rn×n orthogonal,

Σ = diag(01, . . . , 0r, λ1, . . . , λn−r) and λ1, . . . , λn−r > 0.
Let Σ̃ = diag(11, . . . , 1r, λ1, . . . , λn−r) and P̃ = U Σ̃2U⊤.
For each q ∈ Q, let Xq = {x : (x, q) ∈ ΨΩ} and assume that
Xq is (ϵ, P ⋆

Ω, P̃ )-homogeneous. Then, for each q ∈ Q, there
is A(11)

q ∈ Rr×r, A(12)
q ∈ Rr×(n−r), A(21)

q ∈ R(n−r)×r and
A

(22)
q ∈ R(n−r)×(n−r) such that

U⊤AqU =

[
A

(11)
q A

(12)
q

A
(21)
q A

(22)
q

]
, (5)

2This is easily seen, as for any x ∈ Ker(P ), (Aqx)⊤P (Aqx) ≤
γ2x⊤Px = 0, so that PAqx = 0 and thus Aqx ∈ Ker(P ).



Fig. 1. (ϵ, P1, P2)-homogeneity. The red region is the intersection of X
with x+{v ∈ Rn : v⊤P1x = 0, v⊤P1v ≤ ϵ2x⊤P2x}. X is (ϵ, P1, P2)-
homogeneous if for every x, there are vectors (here, e.g., v1, v2, v3) whose
convex hull contains x.

and ∥ΛA(21)
q ∥ ≤ ϵγ and ∥ΛA(22)

q Λ−1∥ ≤
√
1 + ϵ2γ, where

Λ = diag(λ1, . . . , λn−r).
Proof: See the extended version [24].

C. Scenario approach and probabilistic guarantees

Theorem 2 states that if the set ΨΩ satisfies some ho-
mogeneity assumption, then we can obtain a common near
block-triangularization of System (1) with a bound on the
norm of the lower-left blocks. The difficulty is that it is
in general impossible to compute the set ΨΩ from Ω =
{(xi, yi)}Ni=1 if we do not have access to the matrices of
the system. Nevertheless, if the point–mode pairs (xi, qi)
generating Ω are sampled independently at random, then we
can obtain probabilistic guarantees on the probability of ΨΩ.
This is presented in the following theorem, which is the first
main result of this subsection.

Theorem 3: Consider System (1) and let P be a probability
measure on Rn×Q. Let β ∈ (0, 1) be a confidence level and
N ∈ N a number of samples. Let Ω = {(xi, yi)}Ni=1, where
yi = Aqixi and {(xi, qi)}Ni=1 is sampled i.i.d. according
to P. Let P ⋆

Ω be the optimal solution of (3) and ΨΩ be
as in (4). Then, with probability 1 − β on the sampling of
{(xi, qi)}Ni=1, it holds that P(ΨΩ) ≥ 1 − ϵ̄(n(n+1)

2 ), where
ϵ̄ : {0, . . . , N} → [0, 1] is defined by ϵ̄(N) = 1 and for all
k ∈ {0, . . . , N − 1}, ϵ̄(k) is the solution of the equation(
N

k

)
(1− ϵ̄(k))N−k − β

N

N−1∑
i=k

(
i

k

)
(1− ϵ̄(k))i−k = 0. (6)

Proof: The proof uses tools from scenario optimization
[11] and convex optimization [25]. The proof is presented in
the extended version [24].

The dependence of ϵ̄(n(n+1)
2 ) on N for several values of

β and n is presented in the extended version [24]. We see
there that 1/ϵ̄(n(n+1)

2 ) grows polynomially with N .
Remark 1: In some situations, it is useful to constrain the

variable P in (3); e.g., to include prior information on P or
to reduce the computation time by lowering the dimension
of the problem. If the additional constraints are convex, then
Theorem 3 applies in the very same way; the only thing that
needs to be changed is to use ϵ̄(d+1) instead of ϵ̄(n(n+1)

2 ),
where d is the number of degrees of freedom of the variable
P . Furthermore, if one does not want to fix γ a priori, but
rather wants to find the smallest γ for which (3) is feasible
(e.g., to make the bound on the norm of the lower blocks in

(5) as small as possible), then the problem becomes quasi-
convex and one has to use ϵ̄(2d+1) instead of ϵ̄(d+1); see
the extended version [24] for details. This approach is used
for instance in the applications in Section III.

Theorem 3 states that with enough observations (N large),
we can assume with high confidence that P(ΨΩ) is close
to 1. Now, we show that we can ensure homogeneity of
the components of ΨΩ for each q ∈ Q from this property.
Therefore, we assume in the following that P is the uniform
spherical probability distribution on Rn × Q, denoted by
P◦ and defined by: P◦(X × {q}) = µn−1(X ∩ Sn−1)/Q,
where µn−1 is the uniform spherical measure on Sn−1 (see
the extended version [24] for details) and Q = |Q|.

Theorem 4: Consider System (1). Let Ω ⊆ Rn × Rn and
ϵ̂ ∈ (0, 1). Let P ⋆

Ω be the optimal solution of (3) and ΨΩ be
as in (4). Assume that P◦(ΨΩ) ≥ 1− ϵ̂. Let P ⋆

Ω = UΣ2U⊤,
Σ̃ and P̃ be as in Theorem 2. Let η = Qχ(P ⋆

Ω)ϵ̂, where
χ(P ⋆

Ω) is the skewness of P ⋆
Ω (see Definition 1). Assume

that η < 1
2 and let

s̄ =
√
1− Ĩn−1

2 , 12
(2η), (7)

where Ĩa,b is the inverse regularized beta function.3 It holds
that for each q ∈ Q, Xq is (ϵ, P ⋆

Ω, P̃ )-homogeneous with
ϵ =

√
s̄−2 − 1, where Xq is as in Theorem 2.

Proof: See the extended version [24].
The relation (7) between s̄ and η is presented in the

extended version [24].

D. Main result

We are now able to state the main result of the paper.
Theorem 5 (Main result): Consider System (1). Let Ω =

{(xi, yi)}Ni=1, where yi = Aqixi and {(xi, qi)}Ni=1 is sam-
pled i.i.d. according to the uniform spherical probability
distribution P◦. Let P ⋆

Ω be the optimal solution of (3).
Let P ⋆

Ω = UΣ2U⊤ with U ∈ Rn×n orthogonal, Σ =
diag(01, . . . , 0r, λ1, . . . , λn−r) and λ1, . . . , λn−r > 0. Let
β ∈ (0, 1) and η = Qχ(P ⋆

Ω)ϵ̄(
n(n+1)

2 ), where ϵ̄ is as in
(6) and χ(P ⋆

Ω) is the skewness of P ⋆
Ω. Assume that η < 1

2
and let s̄ be as in (7). Then, with probability 1 − β on the
sampling of {(xi, qi)}Ni=1, it holds that for each q ∈ Q, there
is A(11)

q ∈ Rr×r, A(12)
q ∈ Rr×(n−r), A(21)

q ∈ R(n−r)×r and
A

(22)
q ∈ R(n−r)×(n−r) such that

U⊤AqU =

[
A

(11)
q A

(12)
q

A
(21)
q A

(22)
q

]
,

and ∥ΛA(21)
q ∥ ≤ ϵγ and ∥ΛA(22)

q Λ−1∥ ≤
√
1 + ϵ2γ, where

Λ = diag(λ1, . . . , λn−r) and ϵ =
√
s̄−2 − 1.

Proof: Let ϵ̂ = ϵ̄(n(n+1)
2 ). By Theorem 3, it holds that

with probability 1 − β on the sampling, P◦(ΨΩ) ≥ 1 − ϵ̂.
Whenever this is the case, it holds by Theorem 4 that for
each q ∈ Q, Xq is (ϵ, P ⋆

Ω, P̃ )-homogeneous, where Xq is as

3The inverse regularized beta function is the function Ĩa,b : [0, 1] →
[0, 1] defined by Ĩa,b(x) = y if and only if

∫ y
0 ta−1(1−t)b−1 dt∫ 1
0 ta−1(1−t)b−1 dt

= x [26].



in Theorem 2. Hence, we can apply Theorem 2, concluding
the proof.

Theorem 5 says that if we sample enough points (N large),
then, unless we are unlucky in our sampling (which happens
with probability at most β), we can find an orthonormal basis
in which we can bound the deviation of System (1) from
an exact block-triangular form as in (2). A flowchart of the
framework and the computation of the different quantities is
presented in the extended version [24].

There are several sources of conservatism in the derivation
of Theorem 5, the main ones are:

• The condition of homogeneity (Definition 2) involves
every x ∈ Rn, while in the proof of Theorem 2, we
need the property of homogeneity to hold only for x ∈
Ker(P ⋆

Ω) ∪ Im(P ⋆
Ω). The reason we do not refine the

definition of homogeneity is that uniform homogeneity
is the best that can be deduced from the knowledge that
P◦(ΨΩ) ≥ 1− ϵ̄ (Theorem 4).

• In the proof of Theorem 3, we use the upper bound
s∗(ψ) ≤ d+1 with d = n(n+1)

2 −1, while in practice the
value of s∗(ψ) can be much smaller. However, as noted
in [11, p. 609], computing the exact value of s∗(ψ) can
be difficult as it amounts to look at all possible sub-
sequences φ of ψ, whose number grows combinatorially
with N . For this reason, we have considered only the
upper bound in the numerical examples.

• In the proof of Theorem 4, it is actually shown that Xq

is (ϵ, P̃ , P̃ )-homogeneous, while only the (ϵ, P ⋆
Ω, P̃ )-

homogeneity (which follows from P ⋆
Ω ⪯ P̃ ) is used.

When P ⋆
Ω has many zero eigenvalues, the difference

between P ⋆
Ω and P̃ can be large. The reason we do not

refine this result is that the derivation of Theorem 4 (see
the extended version [24] for details) requires to take
slices of a sphere, which can be obtained (after a change
of coordinates) only from a non-degenerate ellipsoid.

III. APPLICATION TO CONSENSUS AND OPINION
DYNAMICS

The link between the existence of an invariant subspace
for the system and a common block-triangularization of the
system was established in Proposition 1. However, we have
not discussed this link when one has only a common near
block-triangularization of the system as the one provided in
Theorem 5. In fact, in general, it is not possible to ensure the
existence of an invariant subspace from a non-exact block-
triangularization of the system, without further information
about the system. However, there are applications for which
the available prior information about the system allows us to
do so. We discuss two such applications in this section.

A. Consensus over switching hidden network

We consider the problem of consensus over a switching
hidden network. The evolution of the value of the nodes in
the network over time can be modeled as a switched linear
system (1), where ξ(t) is the state vector (n is the number
of nodes) at time t and Aσ(t) is the unknown interaction
matrix at time t (see, e.g., [20]). For example, let us consider

Fig. 2. Networks of nodes. A node j1 is adjacent to a node j2 if there is
an edge from j2 to j1 in the network.

the system described by the networks {Gq}q∈Q depicted in
Figure 2 (n = 8, Q = 3), and where the value of each node
j ∈ {1, . . . , n} is updated following the rule

ξ(j)(t+ 1) =
1

1 + |N σ(t)
j |

(
ξ(j)(t) +

∑
j′∈N σ(t)

j

ξ(j
′)(t)

)
, (8)

with N q
j the set of nodes adjacent to j in Gq .

In our setting, the networks are not known. The only things
we know are the dimension n and the number of modes Q
(or an upper bound on Q). The goal is to identify groups
of nodes that do not interact with each other, that is, groups
of nodes that are disconnected in the networks {Gq}q∈Q. To
address this problem with an invariant subspace approach,
let us introduce the following result.

Proposition 6: Let G be a simple directed graph with n
nodes, and let A ∈ Rn×n be the matrix of the associated
linear system given by (8). Let V ⊆ {1, . . . , n} and let u ∈
{0, 1}n be the vector defined by, for all j ∈ {1, . . . , n},
u(j) = 1 if and only if j ∈ V . Then, V and {1, . . . , n} \ V
are disconnected if and only if Au = u.

Proof: The “only if” direction is clear. For the “if”
direction, we proceed by contraposition. Therefore, assume
that there is an edge from a node j1 ∈ V to a node j2 /∈ V
in G. Then, [Au](j1) < u(j1), so that Au ̸= u. Similarly, if
there is an edge from a node j1 /∈ V to a node j2 ∈ V in G,
then [Au](j1) > u(j1), so that Au ̸= u.

To find an invariant subspace of the system given by
Figure 2 and (8), we use the data-driven quadratic Lyapunov
framework described in Section II. First, we compute the
optimal solution of (3) with a relatively small sample set of
one-step trajectories {(xi, yi)}Nsmall

i=1 , Nsmall = 2000, of the
system. The kernel of the associated matrix P ⋆

small is given
by

Im

[
0.26 0.25 0.25 0.22 0.29 −0.48 −0.49 −0.46
0.38 0.33 0.39 0.31 0.42 0.32 0.33 0.33

]⊤
,

which is close to the subspace U := span{u1, u2} where
u1 = [1, 1, 1, 1, 1, 0, 0, 0]⊤ and u2 = [0, 0, 0, 0, 0, 1, 1, 1]⊤.4

Hence, we suspect that for all q ∈ Q, the connected
components of Gq have the form V = {1, . . . , n}, or V ⊆
{1, . . . , 5}, or V ⊆ {6, . . . , 8}.

To verify this hypothesis with high confidence, we solve
(3) with a larger sample set of one-step trajectories (Nlarge =
247 122 000) and fixing P = U (2)(U (2))⊤ where the

4Here, we used, in a compressed sensing fashion, the prior information
that the invariant subspace of interest, if it exists, is spanned by binary
vectors.



columns of U (2) ∈ Rn×(n−2) are an orthonormal basis of
U⊥. This time, we also try to minimize γ (see also Re-
mark 1). This provides γ⋆ = 0.69. By fixing the confidence
level to β = 0.01, it follows that ϵ̄(1) = 1.86 · 10−8.5 By
Theorem 5, it then follows that the matrices of the system
admit a decomposition (5), with ϵ = 0.122, γ = 0.69,
Λ = In−2 and U =

[
u1√
5
, u2√

3
, U (2)

]
.

From this decomposition, we can now deduce that for each
q ∈ Q, the connected components of Gq have the form V =
{1, . . . , n}, or V ⊆ {1, . . . , 5}, or V ⊆ {6, . . . , 8}. Indeed,
assume there is a connected component V ⊆ {1, . . . , n}
which has not this form, and let u ∈ {0, 1}n be defined
by, for all j ∈ {1, . . . , n}, u(j) = 1 if and only if j ∈ V .
Let n1 = |V ∩ {1, . . . , 5}| and n2 = |V ∩ {6, . . . , 8}|. By
assumption on V , n1, n2 ≥ 1 and n1 + n2 ≤ 7. Now, let
u′ = U⊤u = [(u′(1:2))⊤, (u′(3:8))⊤]⊤, where u′(1:2) ∈ R2

and u′(3:8) ∈ R6. It holds that u′(1:2) =
[
n1√
5
, n2√

3

]
. Fix q ∈ Q.

If V is a connected component of Gq , it holds by Proposition
6 that Aqu = u, so that A(21)

q u′(1:2) +A
(22)
q u′(3:8) = u′(3:8).

By the above, it follows that

∥u′(1:2)∥ ≥ 1−
√
1 + ϵ2γ

ϵγ
∥u′(3:8)∥ ≥ 3.62∥u′(3:8)∥.

This implies that ∥u′(1:2)∥ ≥ (1 + (1/3.62)2)−1/2∥u′∥ ≥
0.96∥u′∥, so that n2

1

5 +
n2
2

3 ≥ 0.962(n1+n2). The maximum
of (n

2
1

5 +
n2
2

3 )/(n1 + n2) is reached for n1 = 5 and n2 = 2,
and equals 0.905. The latter is smaller than 0.962 = 0.9216.
Hence, it follows that u cannot satisfy Au = u, thus we can
assert, with confidence level 99%, that V is not a connected
component of Gq .

B. Opinion dynamics with antagonistic interactions

We consider a problem of opinion dynamics, where many
agents (e.g., the population of a country) are divided into
four groups (e.g., based on their political affinity), and
these agents exchange opinions about topics. The interactions
between the agents influence their opinion, and the relation-
ships can be either friendly (in which case interaction of
A with B increases the opinion of A with the opinion of
B) or antagonistic (in which case interaction of A with B
increases the opinion of A with the opposite of the opinion
of B) [21]. More precisely, for this example, the interaction
patterns between the different groups can take three different
values (Q = 3), represented in Figure 3, and the value of the
opinion of each group j ∈ {1, . . . , 4} is updated as follows:

ξ(j)(t+1) =
1

1 + n
σ(t)
j

(
ξ(j)(t)+

∑
j′ ̸=j

sign
σ(t)
j,j′ ξ

(j′)(t)
)
, (9)

where nqj is the number of groups with which j interacts in
the pattern q, signqj,j′ = 1 (resp. −1) if there is a friendly
(resp. antagonistic) interaction of j with j′, and signqj,j′ = 0
if there is no interaction.

In our setting, we do not know what are the interaction
patterns; we only know an upper bound on Q. But, we have

5We use ϵ̄(1) because P is fixed, so that d = 0; see Remark 1.

Fig. 3. Interaction patterns. A solid (dashed) arrow from A to B indicates
an interaction of A with B with friendly (antagonistic) relationship.

access to the opinion vector (e.g., via polls or by counting
the number of likes on social networks) at different time
instants, which allows us to collect sample trajectories of
the system. We are interested in deciding whether there is a
stable opinion vector, that is, whether there is a normalized
vector u ∈ R4, such that Aqu = u for all q ∈ Q (where Aq

is given by (9) with the interaction pattern q). Our results do
not allow us to ensure the existence of such a stable opinion
vector; however, we are able to decide what will be this
stable vector if it exists.6

To identify such a potential stable vector, we apply
the data-driven quadratic Lyapunov framework described in
Section II. First, we compute the optimal solution of (3)
with a relatively small sample set of one-step trajectories
{(xi, yi)}Nsmall

i=1 , Nsmall = 2000, of the system. The as-
sociated optimal matrix satisfies Ker(P ⋆

small) = span{u},
where u = [1,−1, 1, 1]⊤. Hence, we suspect that u is a
stable vector of the system. To verify this hypothesis with
high confidence, we solve (3) with a larger sample set of
one-step trajectories (Nlarge = 8142 000) and fixing P =
U (2)(U (2))⊤ where the columns of U (2) ∈ Rn×(n−1) are
an orthonormal basis of {u}⊥. This time, we also try to
minimize γ (see also Remark 1). This provides γ⋆ = 0.334.
By fixing the confidence level to β = 0.01, it follows that
ϵ̄(1) = 5.67 · 10−7.7 By Theorem 5, it then follows that
the matrices of the system admit a decomposition (5), with
ϵ = 0.02, γ = 0.334, Λ = In−1 and U = [u, U (2)].

From this decomposition, we deduce that if the system has
a stable vector, then it must be close to u. Indeed, assume
there is a normalized stable vector v ∈ R4 and let v′ =
U⊤v = [v′(1), (v′(2:3))⊤]⊤, where v′(1) ∈ R and v′(2:3) ∈
R3. Fix q ∈ Q. Since v is a stable vector, it holds that
Aqv = v, so that A(21)

q v′(1) + A
(22)
q v′(2:3) = v′(2:3). By the

above, it follows that

|v′(1)| ≥ 1−
√
1 + ϵ2γ

ϵγ
∥v′(2:3)∥ ≥ 99∥v′(2:3)∥.

This implies that |v′(1)| ≥ (1 + (1/99)2)−1/2 ≥ 0.9999.
Hence, we finally deduce, with confidence level 99%, that
any normalized stable vector v for the system, if it exists,
must be close to u, in the sense that ∥u−±v∥ ≤ 0.0001.

IV. CONCLUSIONS

We introduced a quadratic Lyapunov framework for data-
driven identification of potential invariant subspaces of black-

6Once a potential stable vector is identified, one can apply further data-
driven analysis to get a high confidence that this vector is indeed a stable
one; however, for the sake of brievety and simplicity, we restrict here to the
identification of potential stable vectors.

7We use ϵ̄(1) because P is fixed, so that d = 0; see Remark 1.



box switched linear systems. This framework allows us to
identify a potential invariant subspace for the system without
knowing any mathematical model, by computing a quadratic
Lyapunov function from a data-driven optimization program.
We then leverage results from scenario optimization, quasi-
convex optimization, and geometric analysis, to come up
with probabilistic guarantees on the identification accuracy.
We demonstrated the applicability of our framework on
problems of consensus and opinion dynamics, for which the
existence of an invariant subspace bears useful information
about the system, thereby allowing us to study the dynamics
of these systems in a data-driven way.

For further work, we plan to further investigate the pos-
sibility of adding constraints in the optimization program
in order to leverage prior information about the system
or the sampling (for instance, in the case of adaptive
sampling), and also to fight the curse of dimensionality.
Another angle of attack to fight the curse of dimensionality
is to refine the result asserting the homogeneity of a set
from its probability measure, or to relax the condition of
homogeneity while keeping the property of a bound on the
identification accuracy. Finally, we plan to provide other
data-driven analysis results for the identification of invariant
subspaces, for instance, regarding the minimal growth rate of
the trajectories on the identified subspace, thereby allowing
us to provide guarantees on the existence of an invariant
subspace without relying on prior knowledge or assumptions
as in the presented applications.
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Cham: Springer, 2017, pp. 441–461.

[6] A. Robey, L. Lindemann, S. Tu, and N. Matni, “Learning robust hybrid
control barrier functions for uncertain systems,” IFAC-PapersOnLine,
vol. 54, no. 5, pp. 1–6, 2021.

[7] A. Makdesi, A. Girard, and L. Fribourg, “Efficient data-driven abstrac-
tion of monotone systems with disturbances,” IFAC-PapersOnLine,
vol. 54, no. 5, pp. 49–54, 2021.

[8] M. J. Kearns, U. V. Vazirani, and U. Vazirani, An introduction to
computational learning theory. Cambridge, MA: MIT press, 1994.

[9] S. Shalev-Shwartz and S. Ben-David, Understanding machine learn-
ing: from theory to algorithms. Cambridge, UK: Cambridge Univer-
sity Press, 2014.

[10] K. Margellos, P. Goulart, and J. Lygeros, “On the road between
robust optimization and the scenario approach for chance constrained
optimization problems,” IEEE Transactions on Automatic Control,
vol. 59, no. 8, pp. 2258–2263, 2014.

[11] S. Garatti and M. C. Campi, “The risk of making decisions from
data through the lens of the scenario approach,” IFAC-PapersOnLine,
vol. 54, no. 7, pp. 607–612, 2021.

[12] V. D. Blondel and J. N. Tsitsiklis, “Complexity of stability and
controllability of elementary hybrid systems,” Automatica, vol. 35,
no. 3, pp. 479–489, 1999.

[13] D. Liberzon, Switching in systems and control. Boston, MA:
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