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Abstract

Invariance transformations of polyadic decompositions of matrix multiplication
tensors define an equivalence relation on the set of such decompositions. In
this paper, we present an algorithm to efficiently decide whether two polyadic
decompositions of a given matrix multiplication tensor are equivalent. With
this algorithm, we analyze the equivalence classes of decompositions of several
matrix multiplication tensors. This analysis is relevant for the study of fast
matrix multiplication as it relates to the question of how many essentially dif-
ferent fast matrix multiplication algorithms there exist. This question has been
first studied by de Groote, who showed that for the multiplication of 2× 2 ma-
trices with 7 active multiplications, all algorithms are essentially equivalent to
Strassen’s algorithm. In contrast, the results of our analysis show that for the
multiplication of larger matrices, (e.g., 2 × 3 by 3 × 2 or 3 × 3 by 3 × 3 matri-
ces), two decompositions are very likely to be essentially different. We further
provide a necessary criterion for a polyadic decomposition to be equivalent to
a polyadic decomposition with integer entries. Decompositions with specific in-
teger entries, e.g., powers of two, provide fast matrix multiplication algorithms
with better efficiency and stability properties. This condition can be tested al-
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gorithmically and we present the conclusions obtained for the decompositions
of small/medium matrix multiplication tensors.

Keywords: Fast matrix multiplication, polyadic tensor decompositions,
eigenvalue decomposition.
2010 MSC: 15A69, 14Q20, 68W30.

1. Introduction

The straightforward way to multiply two N ×N matrices costs O(N3) op-
erations. In particular, multiplying two 2 × 2 matrices requires 8 scalar mul-
tiplications. However, as first remarked by V. Strassen [1] in 1969, the arith-
metic operations can be grouped cleverly to reduce the work to 7 multiplications5

only. By doing this recursively, we can reduce the cost for the multiplication
of N × N matrices to O(N2.81) operations. Strassen’s discovery opened the
door to a considerable amount of research on the algorithmic complexity of ma-
trix multiplication (see paragraphs below for a survey). The reduction of the
complexity may actually become so significant that a new architecture for large10

matrix multiplication is emerging. Essential is first that we find inexpensive
schemes for the multiplication of relatively small matrices.

The multiplication of m× p matrices by p × n matrices can be represented
by a third-order tensor. Finding inexpensive schemes for the multiplication of
such matrices can be approached by decomposing the associated tensor as a sum15

of rank-1 terms (such a decomposition is called polyadic decomposition). The
minimal number of rank-1 terms necessary to decompose a tensor is its rank.
In the case of matrix multiplication, the rank of the associated tensor is equal
to the smallest number of active multiplications needed to compute the matrix
product. (By active multiplication, we mean a multiplication of two scalars that20

both depend on the matrices to be multiplied.) As a consequence, determining
the rank of the associated tensor allows us to find an exponent α such that
the complexity for the multiplication of N × N matrices is at most of O(Nα)
arithmetic operations [2].

Although the problem of matrix multiplication complexity is quite old, only25

partial results are known so far. Even for the multiplication of small matrices,
determining the rank of the associated tensor is still an open problem. The
largest case that is completely understood is the multiplication of 2×2 matrices
by 2× 2 matrices. The rank of the associated tensor is 7 [3] (so that Strassen’s
algorithm is optimal), and it was proved by de Groote [4] that the decomposition30

induced by Strassen’s algorithm is essentially unique (with respect to a class of
transformations acting on polyadic decompositions of matrix multiplication; see
the paragraph hereunder). For the multiplication of 3×3 matrices, an algorithm
using 23 active multiplications was proposed by Laderman [5] in 1976, and by
Makarov in 1986 [6]; see also [7]. This means that the rank of the associated35

tensor is at most 23. On the other hand, Bläser proved [8] in 2003 that the rank
for the multiplication of 3×3 matrices should be at least 19. The gap 19–23 has
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not been reduced since then. Other algorithms for the multiplication of matrices
with small and medium sizes are proposed in [9], [10], [11], [12]; also the paper
[13] of Ballard et al. gives a good overview of the practical algorithms that are40

available in 2016. Further reductions of the exponent of matrix multiplication
complexity have been achieved, e.g., by Pan [14, 15], Bini et al. [16], Schönhage
[17], and Coppersmith and Winograd [18] by means of more advanced techniques
(including namely the study of the “border rank” of the associated tensor; see
also [19, 20]). Currently, the best known upper bound for the complexity of45

matrix multiplication is O(N2.3729) by Le Gall [21].
The aim of this paper is to study the connections between polyadic decom-

positions for matrix multiplication tensors. In particular, we consider three
types of transformations, called invariance transformations, acting on the set of
polyadic decompositions of a given matrix multiplication tensor, and we study50

the equivalence relation induced by these transformations. These transforma-
tions have been studied by de Groote [22, 4] who has shown that Strassen’s
algorithm is essentially unique in the sense that every other decomposition with
7 rank-1 terms is equivalent to it. In contrast, for the multiplication of 3 × 3
matrices, Johnson and McLoughlin [23] showed that Laderman’s algorithm [5]55

is not essentially unique. They provided two parametrized families of decompo-
sitions (with 23 rank-1 terms) of the 3× 3 matrix multiplication tensor that are
mutually inequivalent and also inequivalent to Laderman’s. Later, Oh, Kim and
Moon [24] discovered other decompositions of the 3 × 3 matrix multiplication
tensor inequivalent to the previous ones, and Sedoglavic [7] showed that La-60

derman’s algorithm can be constructed using Strassen’s algorithm and related
tensor’s transformations.

The techniques used by de Groote, Johnson and McLoughlin, and Oh et
al. to prove the equivalence/inequivalence of decompositions are either too spe-
cific [4, 23] or too conservative [24] (some inequivalent decompositions are not65

recognized as such) to be applied to general decompositions of matrix multi-
plication tensors of arbitrary size. In this paper, we present an algorithm for
deciding whether two given decompositions are equivalent through invariance
transformations. Thanks to this algorithm, we were able to study the equiva-
lence classes of large sample sets of matrix multiplication tensor decompositions70

(computed with numerical methods, see Section 6). This allows us to get a bet-
ter understanding of the equivalence relation of decompositions: for instance,
the numerical experiments (Section 6.3) suggest that for tensors larger than the
2× 2 by 2× 2 case, two “generic” decompositions are inequivalent.

In addition, we describe a necessary criterion for a matrix multiplication75

tensor decomposition to be discretizable, that is, to be equivalent to a decompo-
sitions whose rank-1 terms can be factorized into vectors or matrices whose
entries only take a few distinct values (for instance, we may want that all
entries of the factor vectors/matrices of the rank-1 terms belong to the set
{−1, 0,+1}). Such decompositions are called discrete decompositions [25]. Our80

interest in discretizable decompositions originates from the observation that for
small/medium matrix multiplication, the decompositions proposed in the liter-
ature are generally discrete: Strassen’s and Laderman’s algorithms are discrete
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with factor matrices coefficients belonging to {−1, 0,+1}, other (inequivalent)
decompositions with coefficients in {−1, 0,+1} are proposed, e.g., in [13, 24, 26]85

for the multiplication of 2×3 by 3×2, 2×3 by 3×3, and 3×3 by 3×3 matrices.
In particular, all the decompositions listed in [13] are discrete.

Discrete decompositions provide matrix multiplication algorithms with bet-
ter efficiency and stability properties. However, the classical iterative processes
for computing tensor decompositions do not lead in general to solutions of this90

kind. A reasonable approach to compute discrete decompositions is then to
(i) compute a general decomposition, and (ii) use invariance transformations to
obtain an equivalent discrete decomposition. Closely related methods are used,
e.g., in [23, 26]. The necessary criterion for discretizability allows us to identify
some decompositions that cannot be transformed via invariance transforma-95

tions into a discrete decomposition with a given “target set” for the coefficients.
By applying the necessary criterion to the sample sets of decompositions, we
observed that, contrary to what the decompositions available in the literature
suggest, most of the decompositions for tensors larger than the 2 × 2 by 2 × 2
case are not discretizable with respect to the commonly-used target sets (e.g.,100

{0,±1} or {0,±1/2,±1}).
The paper is organized as follows. In Section 2, we introduce the notation

and recall the definitions of matrix multiplication tensors and polyadic decom-
positions. Invariance transformations and the induced equivalence relations are
introduced in Section 3. In Section 4, we describe the algorithm for deciding105

whether two decompositions are equivalent and if so, computing the invariance
transformations involved in their equivalence. The necessary criterion for dis-
cretizability is discussed in Section 5. Numerical experiments are presented in
Section 6.

2. Preliminaries110

2.1. Matrix multiplication tensors and polyadic decompositions

Let U , V and W be vector spaces over a field F. We denote by Bil(U, V ;W )
the set of F-bilinear maps from U × V to W . For positive integers m, p, n, the
multiplication of m × p matrices by p × n matrices can be represented by the
bilinear map Φm,p,n ∈ Bil(Fm×p,Fp×n;Fm×n) defined by

Φm,p,n(A,B) = AB.

From the identification between multilinear maps and tensors, Φm,p,n is some-
times referred to as the (m, p, n) matrix multiplication tensor.

The concept of rank of a bilinear map Φ ∈ Bil(U, V ;W ) is central in the
analysis of the asymptotic complexity of matrix multiplication. We say that
Φ 6= 0 has rank 1 if Φ(u, v) = f(u)g(v)w for some f ∈ U∗, g ∈ V ∗ and w ∈ W ,
where U∗ and V ∗ are the dual spaces of U and V respectively. For a general
Φ ∈ Bil(U, V ;W ), an F -term polyadic decomposition (in short F -PD) of Φ is a
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decomposition of Φ as the sum of F rank-1 terms [27, 28]:

Φ(u, v) =

F∑
r=1

fr(u)gr(v)wr (1)

for some fr ∈ U∗, gr ∈ V ∗ and wr ∈ W . The rank of Φ is the smallest F such
that Φ admits an F -term polyadic decomposition (1).115

For a matrix multiplication tensor Φm,p,n, a polyadic decomposition like (1)
requires fr ∈ (Fm×p)∗, gr ∈ (Fp×n)∗ and wr = Wr ∈ Fm×n. We may identify
fr with the unique matrix Ur ∈ Fp×m such that

fr(A) = trace(UrA) =

p∑
i=1

m∑
j=1

U(i,j)
r A(j,i) (2)

for every A ∈ Rm×p, where M(i,j) denotes the (i, j)th entry of a matrix M.
In the same way, gr can be identified with a unique matrix Vr ∈ Fn×p. If
U1, . . . ,UF , V1, . . . ,VF and W1, . . . ,WF give rise to a decomposition (1) of
Φm,p,n, we will say with slight abuse of notation that the triple (U[F ],V[F ],W[F ])

2

is an F -term polyadic decomposition (F -PD) of Φm,p,n.120

The link between matrix multiplication complexity and the rank of matrix
multiplication tensors is nicely explained in [2, Chapter 15]. Especially, it is
shown how to build from an F -term polyadic decomposition (F -PD) of Φm,p,n
a recursive algorithm for the multiplication of N × N matrices over F with
complexity in O(Nω+ε) arithmetic operations {+,−,×}, with ω = 3 logmpn(F )125

and for any ε > 0. For instance, Strassen’s algorithm can be obtained from
a decomposition of Φ2,2,2 with 7 terms. This directly gives the well-known
upper bound ω = 3 log8(7) ≈ 2.81 for the exponent of matrix multiplication
complexity [1].

2.2. Discrete decompositions130

In this paper, we focus on algorithms for matrix multiplication over the field
of real numbers, i.e., on the case F = R and Ur, Vr and Wr are real matrices.

For the problem of matrix multiplication over R (or C), two decompositions
might be not equally useful even if they have the same number of rank-1 terms.
For instance, decompositions with “structured” values in the rank-1 terms are135

more useful in practice. This leads us to the following definition:

Definition 2.1. A decomposition (U[F ],V[F ],W[F ]) of Φm,p,n is said to be
discrete if the entries of Ur, Vr and Wr belong to qZ for some q ∈ R.

Discrete decompositions are favorable for two reasons. The first reason con-
cerns the exactness of the decomposition: if (U[F ],V[F ],W[F ]) is computed140

2The rational behind this notation is that if X1,X2, . . . ,XF are F mathematical objects,
then X[F ] denotes the ordered set, or F -uple, (X1,X2, . . . ,XF ).
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with numerical methods, then this will give a decomposition of Φm,p,n only up
to some finite accuracy (and also up to machine precision, due to floating-point
arithmetic computations). Hence, the matrix multiplication algorithm obtained
from this decomposition will compute the product of A ∈ Rm×p and B ∈ Rp×n
with a small error, even in exact arithmetic. This is not advisable because this145

error will accumulate when we will apply the algorithm in a recursive way to
compute the product of general N ×N matrices [2, Chapter 15]. These limited-
accuracy issues can be overcome if we know a priori that Ur, Vr and Wr have
their entries in a known discrete set.

The second reason to favor discrete decompositions is that the obtained150

algorithm for matrix multiplication will have better stability and computational
cost properties. Indeed, if the entries of Ur, Vr and Wr belong to qZ, then
it is not hard to show (we do not go into the details) that, modulo some pre-
and post multiplication of A ∈ Rm×p and B ∈ Rp×n by q, the product AB
can be computed using only additions and multiplications of the entries of A155

and B by integers. (For example, in Strassen’s algorithm, fr(A) [resp. gr(B)]
can be obtained using only additions and subtractions of the entries of A [resp.
B].) Multiplication by integers is more rapid and stable than multiplication
by arbitrary floating-point numbers (for instance, multiplication by a power of
2 is equivalent to changing the exponent in the floating point representation).160

For more detailed information on the forward normwise error induced by a fast
matrix multiplication algorithm, we refer the interested reader to [13].

3. Invariance transformations

The main goal of this paper is to study relations between decompositions
of a given matrix multiplication tensor. We describe three types of operations165

that transform an F -PD of a matrix multiplication tensor into another F -PD
of the same tensor. These transformations will be referred to as invariance
transformations.

Proposition 3.1 (Invariance transformations). Let (U[F ],V[F ],W[F ]) be an
F -PD of Φm,p,n. The following transformations produce matrices U′r, V′r and170

W′
r (1 ≤ r ≤ F ) such that (U′[F ],V

′
[F ],W

′
[F ]) is also an F -PD of Φm,p,n:

� Permutation transformations: let σ ∈ SF (where SF is the set of permuta-
tions of {1, . . . , F}) and define

U′r = Uσ(r), V′r = Vσ(r), W′
r = Wσ(r).

� Scaling transformations: choose coefficients λr, µr, νr ∈ R such that λrµrνr =
1 for each 1 ≤ r ≤ F and define

U′r = λrUr, V′r = µrVr, W′
r = νrWr.

� Trace transformations: let P ∈ GL(m), Q ∈ GL(p) and R ∈ GL(n) (where
GL(h) denotes the set of invertible h× h matrices), and define

U′r = Q−1UrP, V′r = R−1VrQ, W′
r = P−1WrR.
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The first two classes of invariance transformations (permutations and scal-
ing) provide invariance transformations for the decompositions of any tensors.
However, the third class (trace transformations) is somehow specific to matrix
multiplication tensors, as it originates from the invariance of the trace operator175

(see proof below); hence the name “trace transformations”.

Proof of Proposition 3.1. (See, e.g., [22]). The invariance of the permutation
and scaling transformations is straightforward. For the trace transformations,
let f ′r ∈ (Rm×p)∗, g′r ∈ (Rp×n)∗ and Φ′ ∈ Bil(Rm×p,Rp×n;Rm×n) be given by
(2) and (1) with (U′[F ],V

′
[F ],W

′
[F ]). Then

f ′r(A) = trace(U′rA) = trace(Ur[PAQ−1]) = fr(PAQ−1)

where we have used the invariance property of the trace operator with respect
to cyclic permutations. Similarly, g′r(B) = gr(QBR−1). It follows that

Φ′(A,B) = P−1
[ F∑
r=1

fr(PAQ−1)gr(QBR−1)Wr

]
R

= P−1Φm,p,n(PAQ−1,QBR−1)R = P−1(PAQ−1)(QBR−1)R = AB.

Thus Φ′ = Φm,p,n showing that (U′[F ],V
′
[F ],W

′
[F ]) is an F -PD of Φm,p,n.

Invariance transformations define an equivalence relation on the set of F -
PDs of a given matrix multiplication tensor. For fixed m, p, n and F , two
polyadic decompositions (U[F ],V[F ],W[F ]) and (U′[F ],V

′
[F ],W

′
[F ]) of Φm,p,n180

are equivalent if there exist permutation, scaling and/or trace transformations
that allow one to transform (U[F ],V[F ],W[F ]) into (U′[F ],V

′
[F ],W

′
[F ]). We

will also say that (U[F ],V[F ],W[F ]) and (U′[F ],V
′
[F ],W

′
[F ]) are permutation-

equivalent if there exists a permutation transformation allowing us to transform
(U[F ],V[F ],W[F ]) into (U′[F ],V

′
[F ],W

′
[F ]). Similarly, we define the notion of185

(scaling+trace)-equivalence.
We have just seen that invariance transformations can be used to produce

many different decompositions (i.e., many fast matrix multiplication algorithms)
from a given one. This raises the following questions that we will address in
this paper:190

How many inequivalent polyadic decompositions does Φm,p,n admit? In other
words, how many essentially different fast matrix multiplication algorithms are
there for the multiplication of m× p matrices by p×n matrices? We will tackle
this question in Sections 4 and 6.3.

Starting from a given algorithm for the multiplication of m× p matrices by195

p×n matrices, can we obtain with invariance transformations another algorithm
with better performance (e.g., in terms of stability and efficiency)? We will
tackle this question in Sections 5 and 6.2.
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Remark 3.1. At first sight, it might look like the scaling transformations act as
a particular case of the trace transformations with

P =

(
λ

ν

)1/3

Im, Q =
(µ
λ

)1/3
Ip, R =

(
ν

µ

)1/3

In

for example. In fact, this is not the case since the above P,Q,R will rescale all
the matrices Ur,Vr,Wr with the same coefficients λ, µ, ν (provided λµν = 1)200

while the scaling transformations admit different coefficients λ1, . . . , λF , µ1, . . . , µF
and ν1, . . . , νF . /

4. An algorithm for checking equivalence

In this section, we present an algorithm for deciding whether two F -PDs
of a matrix multiplication tensor are equivalent. Under mild assumptions on205

the input F -PDs, the algorithm will either return the permutation, scaling and
trace transformations that allow one to connect both F -PDs or conclude that
the two F -PDs are not equivalent to each other. The working assumptions were
satisfied for 100% of the samples on which we performed numerical experiments
(see Section 6.3), motivating the qualifier “mild” assumptions.210

We start this section by introducing the concept of clustering number of a
matrix. This number can be computed efficiently and is used in the assumption
to guarantee proper working of the algorithm.

4.1. The clustering number of a matrix

Let A be an m × n matrix. Let {U1, . . . , US} be a family of linearly inde-215

pendent subspaces of Rm (i.e., u1 + · · ·+uS = 0 with ui ∈ Ui for each 1 ≤ i ≤ S
implies ui = 0 for every 1 ≤ i ≤ S). If each column of A belongs to some Ui (in
fact, except the case where the column contains only zeros, it may belong to at
most one Ui since they are linearly independent), then we say that {U1, . . . , US}
is a cover of A. The largest integer S∗ such that there exists a cover of A with220

S∗ linearly independent subspaces is called the clustering number of A and is
denoted by cl⊕(A) = S∗ (the choice of the symbol ⊕ comes from the fact that
if {U1, . . . , US} is a cover of A with S = S∗ then U1 ⊕ · · · ⊕ US = Rm).

Example 4.1. Let U1 = colspan(A) and suppose that the rank of A is r. Then it
is easy to build a cover {U1, U

′
1, . . . , U

′
m−r} where the U ′i ’s are one-dimensional225

subspaces. Hence, we conclude that cl⊕(A) ≥ m+ 1− rank(A). /

Suppose that A has full row-rank, i.e., rank(A) = m. We give a characteri-
zation of the clustering number of A in terms of the connected components of
a graph. Denote by a1, . . . ,an the columns of A. Without loss of generality, we
may assume that the first m columns of A span Rm. Let A′ = [a1, . . . ,am] and230

A′′ = [am+1, . . . ,an].
Define the undirected graph G as follows. The integers {1, . . . ,m} are the

nodes of G and for each column aj of A′′, let qj = (qj,1, . . . , qj,m)> be its
coordinates in the basis defined by A′, i.e., qj = (A′)−1aj . For each i1, i2 ∈
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Figure 1: Example of matrix A and the associated graph G.

{1, . . . ,m}, draw an edge between the nodes i1 and i2 if and only if there is a235

column aj of A′′ such that its coordinate vector has a nonzero component in
both ai1 and ai2 , i.e., if qj,i1 6= 0 and qj,i2 6= 0 (clearly, there might be multiple
edges and also loops). Moreover, each edge receives a label : this label is simply
j, the index of the column of A′′ that led to this edge. An example is represented
in Figure 1. This construction allows us to state the following lemma:240

Proposition 4.1. Let A and G be defined as above. Then the clustering number
of A is equal to the number of connected components of G.

Proof. Let {G1, . . . ,GT } be the connected components of G. First, we show
that cl⊕(A) ≥ T . For each 1 ≤ t ≤ T , let It be the set of all column indices
involved in the nodes of Gt. (For example, considering the graph in Figure 1,245

we would have I1 = {1, 2} and I2 = {3}.) For each t, define the subspace Ut
as the subspace spanned by the columns ai with i ∈ It. By hypothesis on A′

having full rank, the subspaces Ut satisfy Rm = U1⊕· · ·⊕UT . We have to show
that each column aj of A′′ belongs to some Ut.

Therefore, we show that the label j appears in the edges of at most one250

component Gt. Indeed, if j appears in Gt1 and Gt2 , then aj has a nonzero
component in at least one node i1 of Gt1 and one node i2 of Gt2 . Hence, there
must be an edge between i1 and i2 and thus Gt1 and Gt2 are connected, a
contradiction. Thus cl⊕(A) ≥ T .

To show that cl⊕(A) ≤ T , let S = cl⊕(A) and let {U1, . . . , US} be a cover255

of Rm. For each 1 ≤ s ≤ S, let Is be the set of the indices of the columns of
A′ belonging to Us. Since A′ has full rank, it is clear that Us = span({ai}i∈Is).
We show that {I1, . . . , IS} defines connected components of G. Indeed, if there
is an edge, say with label j, between nodes i1 ∈ Is1 and i2 ∈ Is2 , then aj has
nonzero components in ai1 and in ai2 and thus it belongs to the subspaces Us1260

and Us2 . However, by definition, the subspaces Us are linearly independent.
Hence, we must have s1 = s2. We conclude that there are at least S connected
components in G and thus T ≥ cl⊕(A).
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Proposition 4.1 above gives an efficient way to compute the clustering num-
ber of a matrix. We describe below another way to efficiently compute the
clustering number of a matrix using linear algebra only (and that will be useful
in the proof of Lemma 4.5 below). To do this, let A be an m × n matrix and
consider the following linear system:

MA = A diag(ξ1, . . . , ξn) (3)

with variables M ∈ Rm×m and ξ[n] = (ξ1, . . . , ξn) ∈ Rn. Clearly the system (3)
is homogeneous. Let us denote by S the vector space of solutions (M, ξ[n]) to265

(3).

Lemma 4.2. Let A have full row-rank and no zero columns and let S be defined
as above. Then cl⊕(A) = dim(S ).

Proof. First note that if A ∈ Rm×n has full row-rank then m ≤ n. Let A′ and
A′′ be defined as previously. Without loss of generality, we may again assume
that A′ has full rank. Let ξ[n] = (ξ1, . . . , ξn) be fixed. Then we have

M = A′ diag(ξ1, . . . , ξm) A′−1

whence M is completely determined by ξ[n]. Reversely, if M is known, then
every ξ1, . . . , ξn are also determined since A has no zero columns. Hence, we270

only have to compute the number of degrees of freedom in ξ[n] to compute the
dimension of S .

Let G be the graph associated to A. Suppose that i1 and i2 are two nodes
that are adjacent to each other with an edge labeled by j. Then, we have

Maj =
[
A′ diag(ξ1, . . . , ξm) A′−1

]
aj =

m∑
i=1

aiξiqj,i = ajξj = ξj

m∑
i=1

aiqj,i.

Since a1, . . . ,am are linearly independent and qj,i1 6= 0 and qj,i2 6= 0, the only
solution provides that ξi1 = ξi2 = ξj . We conclude that if two nodes i1, i2 belong
to the same connected component Gt, then ξi1 = ξi2 . Hence, using Lemma 4.1,275

the dimension of S is lower than or equal to cl⊕(A).
On the other hand, let S = cl⊕(A) and let {U1, . . . , US} be a cover of A.

Then for each 1 ≤ s ≤ S, let Ms be the projection on Us, i.e.,

Ms(x + y) = x for all x ∈ Us and y ∈
⊕
s′ 6=s

Us′ .

Let (η1, . . . , ηS) be a fixed vector and define M =
∑S
s=1 ηsMs. For each 1 ≤ i ≤

n, let ξi = ηsi where si is the unique index 1 ≤ si ≤ S such that ai ∈ Usi . Then
(M, ξ[n]) is a solution of (3). Hence, the dimension of S is at least cl⊕(A).

We are now able to state and prove the main theorem for this subsection:280
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Theorem 4.3. Let A be an m× n matrix with rank r and let Z be the number
of zero columns in A. Then the clustering number of A and the dimension of
the solution space S of (3) satisfy

dim(S ) = cl⊕(A) + (m− 1)(m− r) + Z.

Proof. First we suppose that there are no zero columns in A. Let X ∈ GL(m)
and observe that cl⊕(XA) = cl⊕(A). Consider the linear system

MXA = XA diag(ξ1, . . . , ξn) (4)

and note that (M, ξ[n]) is a solution of (4) if and only if (X−1MX, ξ[n]) is
a solution of (3). Hence, taking an appropriate matrix X, we may assume
without loss of generality that the last m− r rows of A are zero.

Let Ã be the r × n matrix consisting of the first r rows of A. Then Ã has
full row-rank and it is easy to check that cl⊕(A) = cl⊕(Ã) +m− r. The matrix
M may be partitioned into the following blocks:

M =




M1

M2

M3 with


M1 ∈ Rr×r
M2 ∈ R(m−r)×r

M3 ∈ Rm×(m−r)
.

It is clear that (M, ξ[n]) is a solution of (3) if and only if

M1Ã = Ã diag(ξ1, . . . , ξn) and M2Ã = 0. (5)

From Lemma 4.2 and the fact that Ã has full row-rank, the solutions (M1, ξ[n],M2)

of (5) form a vector space with dimension cl⊕(Ã). On the other hand, there285

are no constraints on M3 ∈ Rm×(m−r). This proves the assertion when Z = 0.
Finally, observe that appending a zero column to A does not change its

clustering number and also does not change the space of solutions M of (3).
The only thing that changes is that the coefficient ξn+1 affected to this zero
column might take any value. Hence, the dimension of S is increased by one.290

This concludes the proof of the theorem.

Remark 4.1. For the interested reader, let us mention that the clustering number
has an interpretation in terms of matroids: considering A as a linear matroid
with ground set given by the columns of A [29, Chapter 39], then we can show
that the clustering number of A is in fact equal to the number of connected295

components (in the matroid sense [29, Chapter 39]) of the matroid A. Dedicated
softwares exist to compute the connected components of a matroid. See, e.g.,
[30]. In fact, in the case of a linear matroid, the implementation in [30] is
equivalent to dynamically computing the connected components of the graph G
in Proposition 4.1. /300
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4.2. Computation of the scaling and trace transformations

Let (U[F ],V[F ],W[F ]) and (U′[F ],V
′
[F ],W

′
[F ]) be two F -PDs of a matrix

multiplication tensor Φm,p,n. We would like to know whether they are equiv-
alent (see Section 3) and, if they are, to compute the invariance transforma-
tions connecting (U[F ],V[F ],W[F ]) to (U′[F ],V

′
[F ],W

′
[F ]). At first, we assume305

that the permutation transformation is given and we focus on the computation
of the scaling and trace transformations. (We will see in the next subsection
how we can compute this permutation transformation without trying all per-
mutations of {1, . . . , F}.) Under mild assumptions on (U[F ],V[F ],W[F ]) and
(U′[F ],V

′
[F ],W

′
[F ]), we will see how to do this computation using linear algebra310

only.
First, we make two important comments. In the sequel, we will always

assume that the rank-1 terms3 (fr ⊗ gr)wr, 1 ≤ r ≤ F , in the F -PDs (1)
are linearly independent. Indeed, if one of the rank-1 terms (fr ⊗ gr)wr can
be decomposed as a linear combination of the other rank-1 terms, then it is315

easy to build a polyadic decomposition (1) of Φm,p,n with F − 1 terms (which
would be extremely lucky and never happened in the numerical experiments we
performed; see Section 6).4

The second comment is summarized in the following theorem:

Theorem 4.4. Let Φm,p,n be a matrix multiplication tensor and let (U[F ],V[F ],W[F ])320

be an F -PD of Φm,p,n. Let I ⊆ {1, . . . , F} be a subset of indices with |I|+ n ≥
F + 1. Then the family {Ur}r∈I fully spans Rp×m.

Proof. Suppose, on the contrary, that there exists a subset I ⊆ {1, . . . , F} with
size ` such that ` + n ≥ F + 1 and span({Ur}r∈I) 6= Rp×m. Then there exists
A∗ ∈ Rm×p \ {0} such that trace(UrA∗) = 0 for each r ∈ I. Denote by Y the325

vector space of p× n matrices B such that trace(VrB) = 0 for each r ∈ F \ I.
Since |F \ I| = F − ` ≤ n− 1, we have that dim(Y ) ≥ pn− n+ 1.

Now define Z as the vector space of all matrices Z = (CA∗)
> ∈ Rp×n for

some C ∈ Rn×m. Since A∗ 6= 0, the dimension of Z is at least n. Now let

3fr⊗gr denotes the tensor product of functions fr and gr, i.e., (fr⊗gr)(u, v) = fr(u)gr(v).
4Even in this eventuality, if the decompositions (U[F ],V[F ],W[F ]) and

(U′[F ],V
′
[F ],W

′
[F ]) are equivalent and if the rank-1 terms of (U[F ],V[F ],W[F ]) are

linearly dependent, then the rank-1 terms of (U′[F ],V
′
[F ],W

′
[F ]) are also linearly de-

pendent. Moreover, the F∗-term polyadic decompositions (U[F∗],V[F∗],W[F∗]) and
(U′[F∗],V

′
[F∗],W

′
[F∗]), 1 ≤ F∗ < F , obtained by removing in (U[F ],V[F ],W[F ]) the

linearly dependent rank-1 terms and the corresponding terms in (U′[F ],V
′
[F ],W

′
[F ]), are

equivalent and contain both linearly independent rank-1 terms. Hence, modulo a little extra
work (due to the non-uniqueness in the choice of linearly dependent terms to remove), we
may always reduce to the case where (U[F ],V[F ],W[F ]) contains only linearly independent
rank-1 terms.
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B ∈ Y and Z = (CA∗)
> ∈ Z and observe that

trace(BZ>) = trace(A∗BC) = trace
(
Φm,p,n(A∗,B)C

)
=

F∑
r=1

trace(UrA∗) trace(VrB) trace(WrC).

From the definitions of A∗ and Y , we conclude that trace(BZ>) = 0. Thus
Y ∩ Z = {0}, so dim(Y ) + dim(Z) = pn − n + 1 + n > pn. This contradicts
Y,Z ⊆ Rp×n.330

Remark 4.2. Note that Theorem 4.4 applies, mutatis mutandis, to V[F ] and
W[F ]. To see this, it suffices to observe that if (U[F ],V[F ],W[F ]) is an F -PD of
Φm,p,n then (W[F ],U[F ],V[F ]) and (V[F ],W[F ],U[F ]) provide F -PDs of Φn,m,p
and Φp,n,m respectively. /

Among other conclusions of this theorem, we get that span({Ur}1≤r≤F ) =335

Rp×m. Indeed, it suffices to apply Theorem 4.4 with I = {1, . . . , F}. Similar
conclusions hold for V[F ] and W[F ].

We now present the algorithm to compute the scaling and trace transforma-
tions between (U[F ],V[F ],W[F ]) and (U′[F ],V

′
[F ],W

′
[F ]) or conclude that no

such transformations exist. To simplify the notation, it will be useful to consider
Ur, Vr and Wr as column vectors and gather them into matrices. Therefore,
we define

Ũ = [vec(U1), . . . , vec(UF )] ∈ Rpm×F (6)

where vec(·) is the vectorization (column stacking) operator. Similarly, we de-
fine Ṽ ∈ Rnp×F and W̃ ∈ Rmn×F , and also Ũ′ ∈ Rpm×F , Ṽ′ ∈ Rnp×F and
W̃′ ∈ Rmn×F . The algorithm is guaranteed to work if we make the following340

assumption on (U[F ],V[F ],W[F ]):

Assumption 4.1. Let Ũ, Ṽ and W̃ be defined as above. We assume that
either Ũ, Ṽ or W̃ has clustering number equal to one.

Remark 4.3. It is not difficult to see that if (U[F ],V[F ],W[F ]) and (U′[F ],V
′
[F ],W

′
[F ])

are equivalent, then cl⊕(Ũ) = cl⊕(Ũ′), cl⊕(Ṽ) = cl⊕(Ṽ′) and cl⊕(W̃) =345

cl⊕(W̃′). Thus the clustering numbers (which can be efficiently computed)
already offer us a way to eliminate F -PDs that are not equivalent. Therefrom,
Assumption 4.1 can be rephrased (without loss of generality) as follows: either
cl⊕(Ũ) = cl⊕(Ũ′) = 1, or cl⊕(Ṽ) = cl⊕(Ṽ′) = 1, or cl⊕(W̃) = cl⊕(W̃′) = 1. /

We will see in Section 6.3 that Assumption 4.1 is satisfied for 100% of the ran-
domly computed samples on which we have performed numerical experiments.
The goal of the algorithm presented in this subsection is to compute matrices
P ∈ GL(m), Q ∈ GL(p) and R ∈ GL(n), and scaling coefficients λ1, . . . , λF ,
µ1, . . . , µF and ν1, . . . , νF such that λrµrνr = 1 and

λrU
′
r = Q−1UrP, µrV

′
r = R−1VrQ, νrW

′
r = P−1WrR (7)
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for every 1 ≤ r ≤ F . The above conditions are nonlinear in P, Q, R, λr,350

µr and νr. However, relying on the assumptions on (U[F ],V[F ],W[F ]) and
(U′[F ],V

′
[F ],W

′
[F ]), these conditions can be reduced to linear matrix equations.

First of all, we show that the requirement λrµrνr = 1 can be dropped.
Indeed, suppose that (U[F ],V[F ],W[F ]) and (U′[F ],V

′
[F ],W

′
[F ]) satisfy (7),

and let f ′r, g
′
r and w′r be given by (2) with (U′[F ],V

′
[F ],W

′
[F ]). Also let Φ′′ be

given by (1) and (2) with U′′r = Q−1UrP, V′′r = R−1VrQ, W′′
r = P−1WrR.

Then Φ′′ = Φm,p,n (trace transformations) and

Φ′′(u, v) =

F∑
r=1

λrµrνr f
′
r(u)g′r(v)w′r.

From the linear independence assumption on the rank-1 terms (f ′r ⊗ g′r)w
′
r,

1 ≤ r ≤ F , we conclude that λrµrνr = 1 is trivially satisfied if (7) holds.
According to Assumption 4.1, we assume for the rest of this subsection that

cl⊕(Ũ) = cl⊕(Ũ′) = 1. We denote by A ⊗ B the Kronecker product of two
matrices A and B, and we will use the following property of the vectorization
operator:

vec(AXB) = (B>⊗A) vec(X).

Then the first equation of (7) is equivalent to

(P>⊗Q−1)Ũ = Ũ′ diag(λ1, . . . , λF ). (8)

Considering P>⊗Q−1 as a single matrix M ∈ Rpm×pm, (8) becomes

MŨ = Ũ′ diag(λ1, . . . , λF ) (9)

which is linear in M and λ[F ] = (λ1, . . . , λF ). The fact that no unwanted355

solutions are created by this linearization is shown in the following developments.
Let A and A′ be two m× n matrices with full row-rank, containing no zero

columns and with cl⊕(A) = cl⊕(A′) = 1. Then consider the linear system

MA = A′ diag(ξ1, . . . , ξn) (10)

with variables M ∈ Rm×m and ξ[n] = (ξ1, . . . , ξn) ∈ Rn. This problem is close
to problem (3) except that we allow A 6= A′. Let S be the vector space of
(M, ξ[n]) that are solutions of (10).

Lemma 4.5. Let S be defined as above. If S contains a solution (M, ξ[n])360

such that ξi 6= 0 for every 1 ≤ i ≤ n, then dim(S ) = 1.

Proof. Let (M, ξ[n]) be a solution of (10) with ξi 6= 0 for every 1 ≤ i ≤ n.
We have assumed that A′ has full row-rank and thus A′ diag(ξ1, . . . , ξn) has
full row-rank as well. Hence, M must be invertible. In a similar way as in the
proof of Lemma 4.2, we may assume without loss of generality that the first m365

columns of A span Rm. Hence, the first m columns of A′ span Rm too. We
conclude the proof with a similar reasoning as for the first part of the proof of
Lemma 4.2.

14



Hence, two cases can happen when solving (8): (i) either the linearized
system (9) admits no solutions with λr 6= 0 for every 1 ≤ r ≤ F ; in this case,370

we conclude that the two F -PDs are not (scaling+trace)-equivalent; or (ii) the
solution space S of (9) is one-dimensional and thus taking an arbitrary nonzero
(M, λ[F ]) ∈ S , it is easy to check whether M has the form M = P>⊗Q−1 for
some P ∈ GL(m) and Q ∈ GL(p). If the latter does not hold, then the two F -
PDs are not (scaling+trace)-equivalent. Otherwise, P and Q are the unique (up375

to a scalar multiplication) matrices involved in the invariance transformations
(7).

Now that we have determined P and Q, we consider the following linear
system: {

RV′r = µ̃rVrQ for all 1 ≤ r ≤ F ,
W′

rR = ν̃rPWr for all 1 ≤ r ≤ F ,
(11)

where the unknowns are R ∈ Rn×n and µ̃[F ], ν̃[F ] ∈ RF for 1 ≤ r ≤ F . If
(11) admits no solutions (R, µ̃[F ], ν̃[F ]) with µ̃r 6= 0 and ν̃r 6= 0 for every 1 ≤
r ≤ F , then we conclude that (U[F ],V[F ],W[F ]) and (U′[F ],V

′
[F ],W

′
[F ]) are380

not (scaling+trace)-equivalent. On the other hand, if µ̃r 6= 0 and ν̃r 6= 0 for
every 1 ≤ r ≤ F , then R is invertible because span({VrQ}1≤r≤F ) = Rn×p (see
Remark 4.2). The 6-tuple (P,Q,R, λ[F ], µ[F ], ν[F ]) with µr = µ̃−1r and νr = ν̃−1r
then provides a solution to the (scaling+trace)-equivalence problem (7).

4.3. Computation of the permutation transformation385

In the previous subsection, we have described a procedure to compute the
scaling and trace transformations connecting two F -PDs (U[F ],V[F ],W[F ]) and
(U′[F ],V

′
[F ],W

′
[F ]) or conclude that no such transformations exist. The equiv-

alence of (U[F ],V[F ],W[F ]) and (U′[F ],V
′
[F ],W

′
[F ]) can then be decided in fi-

nite time by trying every permutation σ ∈ SF and testing the (scaling+trace)-390

equivalence of σ((U[F ],V[F ],W[F ]))
5 and (U′[F ],V

′
[F ],W

′
[F ]). Due to the com-

binatorial growth of |SF |, an exhaustive exploration of SF is generally not fea-
sible in practice. In this section, we explain how to efficiently decide whether
the two F -PDs are equivalent without trying all permutations σ ∈ SF .

Definition 4.1. Let A[m] = (A1, . . . ,Am) and B[m] = (B1, . . . ,Bm) be two395

ordered sets of n × n matrices. We say that A[m] and B[m] are simultaneously
similar if there exists X ∈ GL(n) such that Ai = X−1BiX for every 1 ≤ i ≤ m.

Let (U[F ],V[F ],W[F ]) and (U′[F ],V
′
[F ],W

′
[F ]) be two F -PDs of the ma-

trix multiplication tensor Φm,p,n. For each 1 ≤ r ≤ F , define the matrices Mr =
WrVrUr and M′

r = W′
rV
′
rU
′
r. If σ((U[F ],V[F ],W[F ])) and (U′[F ],V

′
[F ],W

′
[F ])

are (scaling+trace)-equivalent for some σ ∈ SF , then from (7) we have

M′
r = λrµrνr M′

r

= (P−1Wσ(r)R)(R−1Vσ(r)Q)(Q−1Uσ(r)P) = P−1Mσ(r)P.
(12)

5where σ((U[F ],V[F ],W[F ])) = (σ(U[F ]), σ(V[F ]), σ(W[F ])) and σ(X[F ]) is the permuted
F -uple (Xσ(1), . . . ,Xσ(F )).
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In other words, σ(M[F ]) and M′
[F ] are simultaneously similar.

We define a partial permutation of {1, . . . , F} as any injective function π
from I ⊆ {1, . . . , F} into {1, . . . , F}. We say that π coincides with the (total)
permutation σ ∈ SF if π(r) = σ(r) for every r ∈ I. If σ is as in (12) and π
coincides with σ, then it is clear that

π
(
(Mr)r∈I

)
and (M′

r)r∈I are simultaneously similar. (13)

The following notation will be useful for the description of the algorithm for
computing σ. For F ′ ∈ {0, . . . , F}, we denote by Inj(F ′, F ) the set of injective400

functions from {1, . . . , F ′} into {1, . . . , F}. Each function of Inj(F ′, F ) is seen
as a subset of {1, . . . , F ′} × {1, . . . , F}. The length of π ∈ Inj(F ′, F ) is simply
|π| = F ′, and the range of π ∈ Inj(F ′, F ) is defined as Range(π) = {π(r) : 1 ≤
r ≤ F ′ }.

The idea behind the algorithm to compute σ is the following. First, we start405

from a partial permutation π ∈ Inj(F ′, F ) with F ′ small. We check whether
π is susceptible to coincide with σ by checking whether (13) is satisfied or not
(see also Remark 4.4). If (13) is satisfied, then we try to extend π to a larger
partial permutation π+ = π ∪ {(F ′ + 1, `)} with ` ∈ {1, . . . , F} \ Range(π).
We check again whether π+ is susceptible to coincide with σ according to (13).410

If this is the case, we repeat the process with π+. Otherwise, we try other
extensions π ∪ {(F ′ + 1, `′)}. If all possible extensions π ∪ {(F ′ + 1, `)}, ` ∈
{1, . . . , F} \Range(π), have been tried and none of them coincides with σ, then
we restart the process with the restriction π− = π|{1,...,F ′−1} ∈ Inj(F ′ − 1, F )
and try to extend π− to π− ∪ {(F ′, `)} with ` ∈ {1, . . . , F} \ Range(π).415

When we reach a full permutation π ∈ Inj(F, F ) = SF , then we can decide
whether the permuted decomposition π(U[F ],V[F ],W[F ]) and the decompo-
sition (U′[F ],V

′
[F ],W

′
[F ]) are (scaling+trace)-equivalent using the procedure

of the previous subsection. If they are, then we have found the correct per-
mutation transformation between (U[F ],V[F ],W[F ]) and (U′[F ],V

′
[F ],W

′
[F ]).420

Otherwise, we continue to search for another permutation π.
When the algorithm terminates, if the two F -PDs are equivalent, the algo-

rithm is guaranteed to give the corresponding scaling, trace and permutation
transformations. If they are not equivalent, the algorithm will also detect it
because all permutations π ∈ SF will be rejected: either because the partial425

permutation π|{1,...,F ′−1} has been rejected previously in the algorithm, or be-
cause π does not lead to (scaling+trace)-equivalent decompositions. Clearly,
the computational savings (compared to trying all permutations) are interest-
ing if most of the “incorrect” permutations π are rejected in a early stage, i.e.,
π|{1,...,F ′−1} is rejected for F ′ � F . The computational aspects are discussed430

in the paragraphs below.
We have implemented the algorithm as the recursive function described in

Algorithm 1. The recursive function must be called with (π, b) = FnRecursive(∅, false).
If the output b is true, then the two decompositions are equivalent and the per-
mutation transformation is given by π. On the other hand, if b is false, then the435

two F -PDs are not equivalent.
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Algorithm 1: Recursive function to decide whether two F -PDs are
equivalent.

Data: π ∈
⋃F
n=0 Inj(n, F ) and b is a boolean.

Function FnRecursive(π, b)
if b = true then

Return (π, b);
else if |π| = F then /* [?] */

if π(U[F ],V[F ],W[F ]) and (U′[F ],V
′
[F ],W

′
[F ]) are

(scaling+trace)-equivalent then /* [♣] */

Return (π, true);
else

Return (∅, false);
end if

else
foreach ` ∈ {1, . . . , F} \ Range(π) do

Let π+ = π ∪ {(|π|+ 1, `)};
if (13) holds with π+ then

Let (π′, b′) = FnRecursive(π+, b);
if b′ = true then

Return (π′, true);
end if

end if

end foreach
Return (∅, false); /* [♠] */

end if

end function

Remark 4.4. Checking the simultaneous similarity of A[m] = (A1, . . . ,Am) and
B[m] = (B1, . . . ,Bm) can be approached by solving a linear system

XAi −BiX = 0 for all 1 ≤ i ≤ m,

with unknown X ∈ Rn×n, and check whether there exists a solution X that is
invertible. However, this approach is not efficient and not robust to rounding
errors. Therefore, we have used a different approach. Consider scalar coeffi-
cients α1, . . . , αm ∈ R. A necessary condition for A[m] and B[m] to be simul-440

taneously similar is that
∑m
i=1 αiAi and

∑m
i=1 αiBi have the same eigenvalues

counted with multiplicity. By doing this for randomly generated sets of coeffi-
cients α1, . . . , αm ∈ R, this gives a very efficient way to check the simultaneous
similarity of A[m] and B[m] with high probability. /

Remark 4.5. Strictly speaking, the use of Algorithm 1 supposes that Assump-445

tion 4.1 is satisfied. One could wonder whether we can still obtain some infor-
mation from Algorithm 1 even if the assumption is not satisfied. The answer
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is yes. We modify the algorithm as follows. If condition [?] is satisfied, then
instead of testing whether the F -PDs are (scaling+trace)-equivalent, we directly
output (π, true) and exit the function. With this modified algorithm, if the call450

of the function (π, b) = FnRecursive(∅, false) returns the value b = true, then
we cannot say anything about the equivalence of the two F -PDs. However, if
b = false, then we are sure that the two F -PDs are not equivalent. /

Numerical experiments for the algorithm described in this section are pre-
sented in Section 6.3. Regarding the complexity of the algorithm, the compu-455

tation of the scaling and trace transformations relies only on solving linear sys-
tems of equations. The system (9) consists of mpF equations with (mp)2 + F
variables. Because F ≥ mp (consequence of Theorem 4.4), the complexity
of solving (9) is at most O([Fmp]3). Similarly, solving (11) requires at most
O([F (pn+nm)]3). Therefore, the complexity of the (scaling+trace)-equivalence460

part of the algorithm is bounded by O([F max{mp, pn, nm}]3).
The complexity of the permutation computation part is more difficult to

evaluate. It is obviously bounded by F !. Hence, an upper bound for the global
complexity of the algorithm is O(F ![F max{mp, pn, nm}]3). However, in all
the numerical experiments we have performed (see Section 6.3), it appears that465

Algorithm 1 never reaches step [?] more than once. In fact, all the partial
permutations π for which the algorithm reaches step [♠] satisfy |π| ≤ 9 (see
Table 2–Depth). In other words, whenever π ∈ Inj(F ′, F ) could not lead to a
correct permutation, then the algorithm detected it rapidly. Hence, in practice
(for our numerical experiments), the computational complexity of the complete470

algorithm is O([F max{mp, pn, nm}]3).

5. Characteristic polynomials and discretizable decompositions

Drawing upon the simultaneous similarity property (12) of equivalent de-
compositions, we introduce a simple necessary criterion for a decomposition of
a matrix multiplication tensor to be equivalent to a discrete decomposition.475

Definition 5.1. A decomposition (U[F ],V[F ],W[F ]) is discretizable if it is
equivalent to a discrete decomposition (U′[F ],V

′
[F ],W

′
[F ]). [Clearly, it is nec-

essary and sufficient to require that (U[F ],V[F ],W[F ]) is only (scaling+trace)-
equivalent to (U′[F ],V

′
[F ],W

′
[F ]).]

We refer the reader to Section 2 for the definition and relevance of discrete480

decompositions in the context of fast matrix multiplication. Numerical algo-
rithms for computing polyadic decompositions of matrix multiplication tensors
do not lead in general to solutions of this kind. The possibility to transform a
general decomposition into a discrete one using invariance transformation opens
the door to a new generation of algorithms to compute discrete solutions relying485

on a two-step approach (first compute a general decomposition and then dis-
cretize it). However, it is not clear when a decomposition can be discretized with
invariance transformations so that the two-step approach may be inapplicable
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in some cases. The aim of this section is not to describe algorithms for trans-
forming general decompositions into discrete decompositions but we propose a490

necessary criterion for a decomposition to be discretizable.
The criterion draws upon the observations made in Section 4.3: if (U[F ],V[F ],W[F ])

and (U′[F ],V
′
[F ],W

′
[F ]) are (scaling+trace)-equivalent, then the families M[F ]

and M′
[F ], defined by Mr = WrVrUr and M′

r = W′
rV
′
rU
′
r, are simultane-

ously similar (Definition 4.1). In particular,
∑F
r=1 βrMr and

∑F
r=1 βrM

′
r are495

also similar for every coefficients βr ∈ R (cf. Remark 4.4) and thus they have
the same characteristic polynomial.

Assume that (U′[F ],V
′
[F ],W

′
[F ]) is a discrete F -PD. Then U′r ∈ (qZ)p×m,

V′r ∈ (qZ)n×p and W′
r ∈ (qZ)m×n for some q ∈ R. Hence, M′

r ∈ (q3Z)m×m for
every 1 ≤ r ≤ F . Let the coefficients βr in the paragraph above be integers. If
we denote the characteristic polynomial of 1

q3

∑F
r=1 βrMr by

p(t) = p(t;β1, . . . , βF )

= det

(
tI − 1

q3

F∑
r=1

βrMr

)
= tm + αm−1t

m−1 + . . .+ α0,
(14)

it is not hard to see that the coefficients αi ∈ Z for every 0 ≤ i < m.

Definition 5.2. Let the matrices Mr be defined as above. We say that the
decomposition (U[F ],V[F ],W[F ]) satisfies the discretizability criterion with pa-500

rameter q if for every integer coefficients βr, 1 ≤ r ≤ F , the coefficients of the
characteristic polynomial (14) satisfy αi ∈ Z for every 0 ≤ i < m.

From the developments above, it is clear that satisfying the discretizabil-
ity criterion with some parameter q ∈ R is a necessary condition for being
discretizable. In the following section, we will see that most of the sample de-505

compositions on which we have performed numerical experiments do not satisfy
the discretizability criterion with q = 1 or q = 1/2 for tensors larger than the
2× 2 by 2× 2 case, contrasting with the abundance in the literature of discrete
decompositions with q = 1 or q = 1/2 for these tensors (see also Section 1).

6. Numerical experiments510

We have applied the results of Sections 4 and 5 on large sample sets of
decompositions for matrix multiplication tensors up to the m = p = n = 3 case.
The goal is to get for the first time a view on the distributions of essentially
unique decompositions and the distributions of discretizable decompositions:
how many essentially unique decompositions do there exist? If two different515

decompositions are computed with a numerical algorithm, are they likely to be
equivalent? Likely to be discretizable for some given q?

The way to obtain these samples is described in the next subsection. The
reason we restrict to cases smaller than or equal to the m = p = n = 3 case is
explained in the next subsection as well. All computations were performed in520
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Matlab. The computation-intensive part, namely, the generation of the samples,
was executed on a Linux machine with 28 cores and 128 GBytes of RAM. The
other computations were done on a laptop having 4 cores and 16 GBytes of
RAM running Linux.

6.1. Computing polyadic decompositions525

In the numerical experiments, we considered the six different cases (m, p, n;F )
summarized in Table 1 (first two columns), where (m, p, n) is the size of the
matrix multiplication tensor and F is the number of rank-1 terms, i.e., we con-
sidered F -PDs of Φm,p,n. For each (m, p, n), the associated F is the smallest
F for which we know there exists in the literature a decomposition of Φm,p,n530

with F terms (see, e.g., [13, 25]).6 For each case, we want to obtain large sets
of decompositions on which to apply the results of Sections 4 and 5.

Computing polyadic decompositions of matrix multiplication tensors is no-
toriously difficult (see, e.g., [25, 26] and references therein). Quite a few papers
in the literature about tensor decompositions are devoted to this specific prob-535

lem. For the numerical experiments of this paper, we have used the method
proposed by Tichavský et al. [26] to compute Ns = 10 000 samples (decompo-
sitions) for the six cases listed in Table 1. For an alternative method, we refer
the reader to [25]. See also [32]. We have used Ur,0 ∈ Rp×m, Vr,0 ∈ Rn×p
and Wr,0 ∈ Rm×n with entries chosen uniformly at random in [−1, 1] as initial540

iterates for Tichavský et al.’s method. The method does not always converge to
a global minimum; hence we sometimes had to try more than one initial iterate
to converge to an exact solution (the third and fourth columns give an idea of
the effort required to compute the Ns decompositions). In the end, we have
at our disposal for each case Ns samples of F -term polyadic decompositions of545

Φm,p,n. We denote them by (Uκ
[F ],V

κ
[F ],W

κ
[F ]) with κ ∈ {1, . . . , Ns}.

In the numerical computations, the tensors Φ ∈ Bil(Rm×p,Rp×n;Rm×n) are
represented by the three-dimensional arrays Φ̃ ∈ Rmp×pn×nm obtained from the
canonical identifications Rm×p ∼= Rmp, etc. Regarding floating-point arithmetic
limitations, a sample (Uκ

[F ],V
κ
[F ],W

κ
[F ]) is considered as an F -PD of Φm,p,n

if
|Φ̃κ(i, j, k)− Φ̃m,p,n(i, j, k)| < 10−9 ∀i, j, k

where Φκ is the tensor defined by (1) and (2) with (Uκ
[F ],V

κ
[F ],W

κ
[F ]).

Remark 6.1. For matrix multiplication tensors larger than the (3, 3, 3) case, it
becomes very difficult to compute polyadic decompositions of these tensors: the
global convergence of the algorithm decreases significantly while the cost for a550

6Note that for the first four cases in Table 1, F is equal to the rank of the associated tensor
and thus cannot be decreased; see, e.g., [2, Chapter 15] for the (1, 2, 1) and (2, 1, 2) cases; for
(2, 2, 2), see [3, Theorem 11]; and for (2, 3, 2), see [31]. For the (3, 2, 3) case, the best known
lower bound on the rank of Φ3,2,3 is rank(Φ3,2,3) ≥ 14 (see, e.g., [3, Theorem 11]), and for
(3, 3, 3) the best known lower bound is rank(Φ3,3,3) ≥ 19, shown by Bläser [8]. However, no
F -term polyadic decompositions of Φ3,2,3 and Φ3,3,3 with F < 15 and F < 23 respectively
are known for the moment.
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(m, p, n) F # trials Elapsed time [hours]

(1, 2, 1) 2 10 000 0.017

(2, 1, 2) 4 10 000 0.05

(2, 2, 2) 7 10 762 0.32

(2, 3, 2) 11 10 133 0.51

(3, 2, 3) 15 18 003 40

(3, 3, 3) 23 15 829 16.8

Table 1: First and second columns: different cases considered in the numerical experi-
ments. Fourth column: total time required to compute the Ns = 10 000 decompositions
with Tichavský et al.’s method [26]. Third column: number of randomly generated initial
guesses (trials) (U[F ],0,V[F ],0,W[F ],0) we had to use to compute the Ns = 10 000 samples.

single iteration of Tichavský et al.’s method grows as O([F (mp+ pn+ nm)]3).
It becomes thus unrealistic to compute large sets of decompositions for these
tensors. /

6.2. Discretizable decompositions

We start with the analysis of the discretizability property of the sample555

decompositions (Uκ
[F ],V

κ
[F ],W

κ
[F ]). For instance, we would like to find the

decompositions that are not equivalent to a discrete decomposition with q = 1/2
(Definition 2.1). To do this, we will apply the necessary criterion for discretiz-
ability with parameter 1/2.

For every κ ∈ {1, . . . , Ns}, let p(t) = p(t;β1, . . . , βF ) be as in (14) where
the βr’s are randomly chosen integer coefficients. In our experiments, we use 16
sets of coefficients sampled uniformly at random in {−5,−4, . . . , 5}F , providing
thus 16 polynomials

pκj (t) = tm + ακj,m−1t
m−1 + . . .+ ακj,0, j = 1, . . . , 16.

For each κ ∈ {1, . . . , Ns}, we let

NDκ = max
1≤j≤16

max
0≤i<m

|ακj,i − round(ακj,i)|

where round(α) is the closest integer to α. The value of NDκ is thus a measure560

of how close are the polynomials pκj (t) to polynomials with integer coefficients.
From the results of Section 5, a decomposition (Uκ

[F ],V
κ
[F ],W

κ
[F ]) for which

NDκ is (significantly) nonzero is not equivalent to a discrete decomposition with
q = 1/2.

The histograms in Figure 2 show the distribution of decompositions based565

on the value of NDκ. More precisely, each bar of the histograms represents
the number of decompositions (Uκ

[F ],V
κ
[F ],W

κ
[F ]) with NDκ in the corre-

sponding range. For the (1, 2, 1), and (2, 2, 2) cases, we observe that, for all the
decompositions, the polynomials pκj (t) have integer coefficients (within a very
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small tolerance). Hence, 100% of the decompositions satisfy the discretizability570

criterion with q = 1/2. This is not surprising since all the 2-PDs (resp. 7-
PDs) of Φ1,2,1 (resp. Φ2,2,2) are equivalent (see [4] and Remark 6.2), and Φ1,2,1

(resp. Φ2,2,2) admits a discrete decomposition with q = 1.7

In contrast, for the (2, 1, 2), (2, 3, 2), (3, 2, 3) and (3, 3, 3) cases, we observe
that most of the decompositions do not satisfy the necessary criterion for dis-575

cretizability with q = 1/2. This implies that most of the decompositions are
not equivalent to a discrete decompositions with parameter q = 1/2. This
last observation has to be put in contrast with the abundance of decomposi-
tions (U[F ],V[F ],W[F ]) for which the entries of Ur, Vr and Wr belong to
{0,±1/2,±1} in the literature [13, 5, 26, 24].580

Further experiments can be conducted to investigate the discretizability of
the decompositions with respect to other parameters q. However, due to space
limitations, we do not present them in this paper.

6.3. Equivalence classes of decompositions

In the previous subsection, we have seen that, except for the (1, 2, 1) and585

(2, 2, 2) cases, most of the decompositions are not equivalent to a discrete decom-
position with coefficients in {0,±1/2,±1}. In this section, we will analyze the
pairwise equivalence of the decompositions. This will reveal the distributions of
the equivalence classes among the sample sets of decompositions. Therefore, we
use the algorithm developed in Section 4.590

First, in order to apply Algorithm 1, we need to ensure that Assumption 4.1
is satisfied for every decomposition (Uκ

[F ],V
κ
[F ],W

κ
[F ]), κ ∈ {1, . . . , Ns}.

Therefore, for each decomposition (Uκ
[F ],V

κ
[F ],W

κ
[F ]), we have computed

(using Theorem 4.3) the clustering vector of the decomposition defined as the
vector [cl⊕(Ũκ), cl⊕(Ṽκ), cl⊕(W̃κ)]. The results are summarized in Figure 3.595

As we can see, for each case, 100% of the decompositions have at least one
matrix Ũκ, Ṽκ or W̃κ with clustering number equal to one and thus satisfy
Assumption 4.1.

We can thus apply Algorithm 1 to check the equivalence between pairs of
decompositions for the different cases. The results are gathered in Table 2. We600

observe that for the (1, 2, 1) and (2, 2, 2) cases, every decompositions are pairwise
equivalent (see also Remark 6.2). As a consequence, it is not surprising that
all the decompositions are discretizable. This situation is more surprising for
(2, 1, 2), (2, 3, 2), (3, 2, 3) and (3, 3, 3) cases. For these cases, the decompositions
seem to be pairwise equivalent with probability zero.605

The third column of Table 2 gives the average computation time to check the
equivalence between two decompositions. We observe that the algorithm takes

7For Φ1,2,1, take, e.g.,
U1 = [1, 0], V1 = [1, 0]>, W1 = 1,

U2 = [0, 1], V2 = [0, 1]>, W2 = 1,

(see also Remark 6.2). For Φ2,2,2, take, e.g., Strassen’s algorithm.
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(1, 2, 1) (2, 1, 2)

(2, 2, 2) (2, 3, 2)

(3, 2, 3) (3, 3, 3)

Figure 2: Distribution of decompositions based on how close the polynomials pκj (t) are to
characteristic polynomials with integer coefficients. Horizontal axis: NDκ. Vertical axis: #
decompositions (Uκ

[F ],V
κ
[F ],W

κ
[F ]) with NDκ in the corresponding range. Remember that

the total number of decompositions is equal to Ns = 10 000. The insets provide a zoom on
the decompositions (Uκ

[F ],V
κ
[F ],W

κ
[F ]) with NDκ < 0.1. Note the logarithmic scale of the

horizontal axis in the inset.
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(1, 2, 1) (2, 1, 2) (2, 2, 2)

(2, 3, 2) (3, 2, 3) (3, 3, 3)

Figure 3: Clustering vectors [cl⊕(Ũκ), cl⊕(Ṽκ), cl⊕(W̃κ)] of the decompositions.

Percentage of
equivalent pairs

Mean elapsed
time [sec]

Depth∗

Max. Mean

(1, 2, 1) 100% 4.74 · 10−4 1 1

(2, 1, 2) 0% 1.02 · 10−3 1 1

(2, 2, 2) 100% 2.68 · 10−3 4 0.55

(2, 3, 2) 0% 4.94 · 10−3 6 1.08

(3, 2, 3) 0% 2.66 · 10−2 9 2.91

(3, 3, 3) 0% 2.82 · 10−2 5 1.51

Table 2: Equivalence of decompositions. For each case, we have used Algorithm 1 to check
the equivalence between 10 000 randomly chosen pairs of decompositions inside the cluster.
The second column gives the percentage of pairs of equivalent decompositions. The third
column gives the average time required to check the equivalence of the decompositions with
Algorithm 1. ∗The depth of the algorithm is the maximal length of a partial permutation
π ∈ Inj(n, F ) that is rejected (see Algorithm 1).
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no more than 30 ms. In comparison, for the (3, 3, 3) case for example, the naive
method (testing all possible permutations) would have required to test condition
[♣] in Algorithm 1, which has a complexity of O([F max{mp, pn, nm}]3), 23! =610

2.59 · 1022 times.

Remark 6.2. It can be shown that all the decompositions of Φ1,2,1 and Φ2,2,2

(respectively) are pairwise equivalent, which corroborates the results of the nu-
merical experiments using Algorithm 1. For the (2, 2, 2) case, we refer the reader
to [4]. For the (1, 2, 1) case, let (U[F ],V[F ],W[F ]) and (U′[F ],V

′
[F ],W

′
[F ]) be

two 2-PDs of Φ1,2,1. Observe that Φ1,2,1 maps 2-dimensional vectors to their
scalar product and thus can be represented with the identity matrix:

Φ1,2,1(u, v) = u>
[

1 0
0 1

]
v.

Since (U[F ],V[F ],W[F ]) is a decomposition, it is not hard to see that[
1 0
0 1

]
= Ũ diag(W1,W2) Ṽ>

where we remind that Ũ and Ṽ are defined as (6). Using a scaling transforma-
tion, we may assume that W1 = W2 = 1. Hence Ũ and Ṽ> are inverses of
each other, and so are Ũ′ and Ṽ′>. Then let P = ŨṼ′> and observe that

P−1Ũ =
[
Ũ′Ũ−1

]
Ũ = Ũ′,

P>Ṽ =
[
Ṽ′Ṽ−1

]
Ṽ = Ṽ′.

Hence, we have found a trace transformation with Q = R = 1 ∈ GL(1) between
the two decompositions. /

7. Conclusions

In this paper, we have described an algorithm for efficiently deciding whether615

two decompositions of a given matrix multiplication tensor are equivalent through
invariance transformations. We have introduced the notion of clustering number
of a matrix and we have demonstrated the correctness of the algorithm provided
some conditions on the clustering number of the factor matrices of the decom-
positions are satisfied. This condition was satisfied for 100% of the numerical620

samples on which we have applied our algorithm.
The analysis of the equivalence classes of decompositions is relevant in the

context of fast matrix multiplication as it sheds light on the diversity of essen-
tially unique fast matrix multiplication algorithms. In the numerical experi-
ments we have performed, it appears that two decompositions are equivalent625

with probability zero (except for the multiplication of 1 × 2 by 2 × 2 matrices
and the multiplication of 2 × 2 matrices for which we can prove the essential
uniqueness of their decompositions) indicating that there are many essentially
different algorithms for the fast multiplication of 3× 3 matrices for example.
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Drawing upon the observation that decompositions with coefficients in a630

discrete set provide fast matrix multiplication with better performance, we have
also provided a necessary criterion for a decomposition to be equivalent to a
decomposition with these properties. We have applied the criterion on numerical
samples and observed that the majority of the decompositions do not satisfy
the criterion for being equivalent to a decomposition with coefficients in, e.g.,635

{0,±1} or {0,±1/2,±1}.
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