Convex and Conic Optimization

Duality Theorems

CHEATSHEET: DECEMBER 16, 2022

1 INTRODUCTION AND DEFINITIONS

Let n be a fixed positive integer.
Definition 1.1. A set $K \subseteq \mathbb{R}^{n}$ is a cone if for every $x \in K$ and $\alpha \in \mathbb{R}_{\geq 0}, \alpha x \in K$.
Definition 1.2. Let $C \subseteq \mathbb{R}^{n}$. The dual cone of C, denoted by C^{*}, is the set defined by $C^{*}=\{y \in$ $\left.\mathbb{R}^{n}: y^{\top} x \geq 0 \forall x \in C\right\}$.

2 DUALITY IN CONIC OPTIMIZATION

Fix $m_{1} \in \mathbb{N}$ and $m_{2} \in \mathbb{N}$. Fix $c \in \mathbb{R}^{n}, A_{1} \in \mathbb{R}^{m_{1} \times n}, A_{2} \in \mathbb{R}^{m_{2} \times n}, b_{1} \in \mathbb{R}^{m_{1}}$ and $b_{2} \in \mathbb{R}^{m_{2}}$. Let $K \subseteq \mathbb{R}^{n}$ be a fixed closed convex cone.

Consider the following optimization problem:

$$
\begin{array}{lll}
\mathbb{P}: & \inf _{x} & c^{\top} x \\
& \text { s.t. } & A_{1} x=b_{1}, \\
& A_{2} x \geq b_{2}, \tag{1}\\
& x \in K
\end{array}
$$

with variable $x \in \mathbb{R}^{n}$. The dual of (1) is the problem:

$$
\begin{array}{lll}
\mathbb{D}: & \sup _{y_{1}, y_{2}} & b_{1}^{\top} y_{1}+b_{2}^{\top} y_{2} \\
\text { s.t. } & c-A_{1}^{\top} y_{1}-A_{2}^{\top} y_{2} \in K^{*}, \tag{2}\\
& y_{2} \geq 0,
\end{array}
$$

with variables $y_{1} \in \mathbb{R}^{m_{1}}$ and $y_{2} \in \mathbb{R}^{m_{2}}$.
Proposition 2.1 (Weak duality). For any feasible solutions x and $\left(y_{1}, y_{2}\right)$ of \mathbb{P} and \mathbb{D} respectively, it holds that $c^{\top} x \geq b_{1}^{\top} y_{1}+b_{2}^{\top} y_{2}$.

Proof. By definition of K^{*}, it holds that $c^{\top} x \geq\left(y_{1}^{\top} A_{1}+y_{2}^{\top} A_{2}\right) x$. Now, since $y_{2} \geq 0$, it holds that $\left(y_{1}^{\top} A_{1}+y_{2}^{\top} A_{2}\right) x \geq b_{1}^{\top} y_{1}+b_{2}^{\top} y_{2}$.

Corollary 2.2. If \mathbb{P} is unbounded, then \mathbb{D} is infeasible. If \mathbb{D} is unbounded, then \mathbb{P} is infeasible.
Definition 2.3. \mathbb{P} is said to be strictly feasible if there is $x \in \mathbb{R}^{n}$ such that $A_{1} x=b_{1}, A_{2} x \geq b_{2}$ and $x \in \operatorname{int}(K)$.

Theorem 2.4 (Strong duality). Assume that \mathbb{P} is strictly feasible and bounded. Then, \mathbb{D} has an optimal solution and $\inf \mathbb{P}=\max \mathbb{D}$.

Proof. Consider the sets $K_{1}=K \times \mathbb{R}_{\geq 0}$ and $K_{2}=\left\{(x, t) \in \mathbb{R}^{n} \times \mathbb{R}_{\geq 0}: A_{1} x=t b_{1}, A_{2} x \geq t b_{2}\right\}$. It holds that K_{1} and K_{2} are closed convex cones. Let $p^{*}=\inf \mathbb{P}$ and define $d=\left[c^{\top},-p^{*}\right]^{\top}$. It holds that for all $(x, t) \in K_{1} \cap K_{2}, d^{\top}\left[x^{\top}, t\right]^{\top} \geq 0$. Hence, $d \in\left(K_{1} \cap K_{2}\right)^{*}$. Moreover, since int $\left(K_{1}\right) \cap K_{2} \neq \emptyset$, it holds (Propositions A. 3 and A.5) that $\left(K_{1} \cap K_{2}\right)^{*}=K_{1}^{*}+K_{2}^{*}$. It holds that $K_{1}^{*}=K^{*} \times \mathbb{R}_{\geq 0}$ and

$$
K_{2}^{*}=\left\{\left[y_{1}^{\top} A_{1},-y_{1}^{\top} b_{1}\right]^{\top}+\left[y_{2}^{\top} A_{2},-y_{2}^{\top} b_{2}\right]^{\top}: y_{1} \in \mathbb{R}^{m_{1}}, y_{2} \in\left(\mathbb{R}_{\geq 0}\right)^{m_{2}}\right\}
$$

(Corollary A.4). Hence, there is $y_{1} \in \mathbb{R}^{m_{1}}$ and $y_{2} \in\left(\mathbb{R}_{\geq 0}\right)^{m_{2}}$ such that $d-\left[y_{1}^{\top} A_{1},-y_{1}^{\top} b_{1}\right]^{\top}+$ $\left[y_{2}^{\top} A_{2},-y_{2}^{\top} b_{2}\right]^{\top} \in K_{1}^{*}$. The latter is equivalent to $c-A_{1}^{\top} y_{1}-A_{2}^{\top} y_{2} \in K^{*}$ and $p^{*} \leq b_{1}^{\top} y_{1}+b_{2}^{\top} y_{2}$, concluding the proof.

Example 2.5 (\mathbb{P} is strictly feasible and bounded, but has no optimal solution). Let \mathbb{P} have variables $x_{1}, x_{2}, x_{3} \in \mathbb{R}$, constraints $x_{1} x_{2} \geq x_{3}^{2}, x_{1} \geq 0, x_{2} \geq 0$ and $x_{3}=1$, and objective to minimize x_{1}. Then $\inf \mathbb{P}=0$, but the infimum cannot be reached because for any point $\left(x_{1}, x_{2}, x_{3}\right)$ with $x_{1}=0$, it holds that $x_{1} x_{2}=0 \nsupseteq 1$. The dual of \mathbb{P} is the problem \mathbb{D} with variable $y \in \mathbb{R}$, constraint $1 \cdot 0 \geq(-y)^{2}$, and objective to maximize y. We see that \mathbb{D} has an optimal solution.

A SOME RESULTS FROM CONVEX ANALYSIS

Proposition A.1. For any $C \subseteq \mathbb{R}^{n}, C^{*}$ is closed and convex.
Proof. Straightforward.
Proposition A.2. Let $K \subseteq \mathbb{R}^{n}$ be a closed convex cone. It holds that $\left(K^{*}\right)^{*}=K$.
Proof. It is clear that $K \subseteq\left(K^{*}\right)^{*}$. Now, we show by contradiction that $\left(K^{*}\right)^{*} \subseteq K$. Therefore, assume there is $x^{\prime} \in\left(K^{*}\right)^{*} \backslash K$. Then, since K is closed and convex, there is $y^{\prime} \in \mathbb{R}^{n}$ such that $y^{\prime \top} x \geq 0$ for all $x \in K$ and $y^{\prime \top} x^{\prime}<0$. In other words, $y^{\prime} \in K^{*}$ and $y^{\prime \top} x^{\prime}<0$, a contradiction with $x^{\prime} \in\left(K^{*}\right)^{*}$.

Proposition A.3. Let $K_{1}, \ldots, K_{m} \subseteq \mathbb{R}^{n}$ be closed convex cones. Assume that $K_{1}^{*}+\ldots+K_{m}^{*}$ is closed. Then, $\left(K_{1} \cap \ldots \cap K_{m}\right)^{*}=K_{1}^{*}+\ldots+K_{m}^{*}$.

Proof. It is clear that $K_{1}^{*}+\ldots+K_{m}^{*} \subseteq\left(K_{1} \cap \ldots \cap K_{m}\right)^{*}$. Now, we show that $\left(K_{1} \cap \ldots \cap K_{m}\right)^{*} \subseteq$ $K_{1}^{*}+\ldots+K_{m}^{*}$. Therefore, we show that $\left(K_{1}^{*}+\ldots+K_{m}^{*}\right)^{*} \subseteq K_{1} \cap \ldots \cap K_{m}$, and we use the fact that $\left(\left(K_{1}^{*}+\ldots+K_{m}^{*}\right)^{*}\right)^{*}=K_{1}^{*}+\ldots+K_{m}^{*}$ (Proposition A.2) and that, for any $A, B \subseteq \mathbb{R}^{n}, A \subseteq B$ implies $B^{*} \subseteq A^{*}$. Let $x \in\left(K_{1}^{*}+\ldots+K_{m}^{*}\right)^{*}$. Fix $i \in\{1, \ldots, m\}$. It holds that for all $y \in K_{i}^{*}, y^{\top} x \geq 0$; hence $x \in\left(K_{i}^{*}\right)^{*}=K_{i}$ (Proposition A.2). Since i was arbitrary, this concludes the proof.

Corollary A.4. Let $A \in \mathbb{R}^{m \times n}$ and $K=\left\{x \in \mathbb{R}^{n}: A x \geq 0\right\}$. It holds that $K^{*}=\left\{A^{\top} y: y \in\right.$ $\left.\left(\mathbb{R}_{\geq 0}\right)^{m}\right\}$.
Proof. Follows from the fact $K^{*}=\left\{A^{\top} y: y \in\left(\mathbb{R}_{\geq 0}\right)^{m}\right\}$ is closed, as that the conic hull of a finite set of vectors (proof omitted).

Proposition A.5. Let $K_{1} \subseteq \mathbb{R}^{n}$ and $K_{2} \subseteq \mathbb{R}^{n}$ be closed convex cones. Assume that $\operatorname{int}\left(K_{1}\right) \cap K_{2} \neq \emptyset$. Then, $K_{1}^{*}+K_{2}^{*}$ is closed.
Proof. Let $\left(y_{1, k}\right)_{k \in \mathbb{N}} \subseteq K_{1}^{*}$ and $\left(y_{2, k}\right)_{k \in \mathbb{N}} \subseteq K_{2}^{*}$, and let $\left(y_{k}\right)_{k \in \mathbb{N}}$ be defined by $y_{k}=y_{1, k}+y_{2, k}$. Assume that $y_{k} \rightarrow y_{*}$. We show that $y_{*} \in K_{1}^{*}+K_{2}^{*}$. For that, we show that $\left(y_{1, k}\right)_{k \in \mathbb{N}}$ is bounded. Indeed, let $x \in \operatorname{int}\left(K_{1}\right) \cap K_{2}$. There is $D \in \mathbb{R}$ such that for all $k \in \mathbb{N}, y_{k}^{\top} x=y_{1, k}^{\top} x+y_{2, k}^{\top} x \leq D$. Thus, for all $k \in \mathbb{N}, y_{k, 1}^{\top} x \leq D$. Since, for all $y^{\prime} \in K_{1}^{*}$, with $\left\|y^{\prime}\right\|=1, y^{\top \top} x>0$, it follows that $\left(y_{1, k}\right)_{k \in \mathbb{N}}$ is bounded. Now, since $\left(y_{k}\right)_{k \in \mathbb{N}}$ and $\left(y_{1, k}\right)_{k \in \mathbb{N}}$ are bounded, $\left(y_{2, k}\right)_{k \in \mathbb{N}}$ is too. Thus, $\left(y_{1, k}\right)_{k \in \mathbb{N}}$ and $\left(y_{2, k}\right)_{k \in \mathbb{N}}$ converge in K_{1}^{*} and K_{2}^{*} respectively. It follows that $y_{*} \in K_{1}^{*}+K_{2}^{*}$.

