
Convex and Conic Optimization
Duality Theorems

CHEATSHEET: DECEMBER 16, 2022

1 INTRODUCTION AND DEFINITIONS
Let 𝑛 be a fixed positive integer.

Definition 1.1. A set 𝐾 ⊆ R𝑛 is a cone if for every 𝑥 ∈ 𝐾 and 𝛼 ∈ R≥0, 𝛼𝑥 ∈ 𝐾 .

Definition 1.2. Let 𝐶 ⊆ R𝑛 . The dual cone of 𝐶 , denoted by 𝐶∗
, is the set defined by 𝐶∗ = {𝑦 ∈

R𝑛 : 𝑦⊤𝑥 ≥ 0 ∀𝑥 ∈ 𝐶}.

2 DUALITY IN CONIC OPTIMIZATION
Fix𝑚1 ∈ N and𝑚2 ∈ N. Fix 𝑐 ∈ R𝑛 , 𝐴1 ∈ R𝑚1×𝑛

, 𝐴2 ∈ R𝑚2×𝑛
, 𝑏1 ∈ R𝑚1

and 𝑏2 ∈ R𝑚2
. Let 𝐾 ⊆ R𝑛

be a fixed closed convex cone.

Consider the following optimization problem:

P : inf𝑥 𝑐⊤𝑥
s.t. 𝐴1𝑥 = 𝑏1,

𝐴2𝑥 ≥ 𝑏2,
𝑥 ∈ 𝐾,

(1)

with variable 𝑥 ∈ R𝑛 . The dual of (1) is the problem:

D : sup𝑦1,𝑦2
𝑏⊤
1
𝑦1 + 𝑏⊤2 𝑦2

s.t. 𝑐 −𝐴⊤
1
𝑦1 −𝐴⊤

2
𝑦2 ∈ 𝐾∗,

𝑦2 ≥ 0,

(2)

with variables 𝑦1 ∈ R𝑚1
and 𝑦2 ∈ R𝑚2

.

Proposition 2.1 (Weak duality). For any feasible solutions 𝑥 and (𝑦1, 𝑦2) of P and D respectively,
it holds that 𝑐⊤𝑥 ≥ 𝑏⊤

1
𝑦1 + 𝑏⊤2 𝑦2.

Proof. By definition of 𝐾∗
, it holds that 𝑐⊤𝑥 ≥ (𝑦⊤

1
𝐴1 +𝑦⊤2 𝐴2)𝑥 . Now, since 𝑦2 ≥ 0, it holds that

(𝑦⊤
1
𝐴1 + 𝑦⊤2 𝐴2)𝑥 ≥ 𝑏⊤

1
𝑦1 + 𝑏⊤2 𝑦2. □

Corollary 2.2. If P is unbounded, then D is infeasible. If D is unbounded, then P is infeasible.

Definition 2.3. P is said to be strictly feasible if there is 𝑥 ∈ R𝑛 such that 𝐴1𝑥 = 𝑏1, 𝐴2𝑥 ≥ 𝑏2 and
𝑥 ∈ int(𝐾).

Theorem 2.4 (Strong duality). Assume that P is strictly feasible and bounded. Then, D has an
optimal solution and inf P = maxD.

Proof. Consider the sets 𝐾1 = 𝐾 × R≥0 and 𝐾2 = {(𝑥, 𝑡) ∈ R𝑛 × R≥0 : 𝐴1𝑥 = 𝑡𝑏1, 𝐴2𝑥 ≥ 𝑡𝑏2}. It
holds that 𝐾1 and 𝐾2 are closed convex cones. Let 𝑝

∗ = inf P and define 𝑑 = [𝑐⊤,−𝑝∗]⊤. It holds that
for all (𝑥, 𝑡) ∈ 𝐾1 ∩𝐾2, 𝑑

⊤ [𝑥⊤, 𝑡]⊤ ≥ 0. Hence, 𝑑 ∈ (𝐾1 ∩𝐾2)∗. Moreover, since int(𝐾1) ∩𝐾2 ≠ ∅, it
holds (Propositions A.3 and A.5) that (𝐾1 ∩ 𝐾2)∗ = 𝐾∗

1
+ 𝐾∗

2
. It holds that 𝐾∗

1
= 𝐾∗ × R≥0 and

𝐾∗
2
= {[𝑦⊤

1
𝐴1,−𝑦⊤1 𝑏1]⊤ + [𝑦⊤

2
𝐴2,−𝑦⊤2 𝑏2]⊤ : 𝑦1 ∈ R𝑚1 , 𝑦2 ∈ (R≥0)𝑚2 }

(Corollary A.4). Hence, there is 𝑦1 ∈ R𝑚1
and 𝑦2 ∈ (R≥0)𝑚2

such that 𝑑 − [𝑦⊤
1
𝐴1,−𝑦⊤1 𝑏1]⊤ +

[𝑦⊤
2
𝐴2,−𝑦⊤2 𝑏2]⊤ ∈ 𝐾∗

1
. The latter is equivalent to 𝑐 − 𝐴⊤

1
𝑦1 − 𝐴⊤

2
𝑦2 ∈ 𝐾∗

and 𝑝∗ ≤ 𝑏⊤
1
𝑦1 + 𝑏⊤2 𝑦2,

concluding the proof. □
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Example 2.5 (P is strictly feasible and bounded, but has no optimal solution). Let P have variables
𝑥1, 𝑥2, 𝑥3 ∈ R, constraints 𝑥1𝑥2 ≥ 𝑥23 , 𝑥1 ≥ 0, 𝑥2 ≥ 0 and 𝑥3 = 1, and objective to minimize 𝑥1. Then

inf P = 0, but the infimum cannot be reached because for any point (𝑥1, 𝑥2, 𝑥3) with 𝑥1 = 0, it holds

that 𝑥1𝑥2 = 0 ≱ 1. The dual of P is the problem D with variable 𝑦 ∈ R, constraint 1 · 0 ≥ (−𝑦)2, and
objective to maximize 𝑦. We see that D has an optimal solution.

A SOME RESULTS FROM CONVEX ANALYSIS
Proposition A.1. For any 𝐶 ⊆ R𝑛 , 𝐶∗ is closed and convex.

Proof. Straightforward. □

Proposition A.2. Let 𝐾 ⊆ R𝑛 be a closed convex cone. It holds that (𝐾∗)∗ = 𝐾 .

Proof. It is clear that 𝐾 ⊆ (𝐾∗)∗. Now, we show by contradiction that (𝐾∗)∗ ⊆ 𝐾 . Therefore,

assume there is 𝑥 ′ ∈ (𝐾∗)∗ \ 𝐾 . Then, since 𝐾 is closed and convex, there is 𝑦′ ∈ R𝑛 such that

𝑦′⊤𝑥 ≥ 0 for all 𝑥 ∈ 𝐾 and 𝑦′⊤𝑥 ′ < 0. In other words, 𝑦′ ∈ 𝐾∗
and 𝑦′⊤𝑥 ′ < 0, a contradiction with

𝑥 ′ ∈ (𝐾∗)∗. □

Proposition A.3. Let 𝐾1, . . . , 𝐾𝑚 ⊆ R𝑛 be closed convex cones. Assume that 𝐾∗
1
+ . . . +𝐾∗

𝑚 is closed.
Then, (𝐾1 ∩ . . . ∩ 𝐾𝑚)∗ = 𝐾∗

1
+ . . . + 𝐾∗

𝑚 .

Proof. It is clear that 𝐾∗
1
+ . . . +𝐾∗

𝑚 ⊆ (𝐾1 ∩ . . . ∩𝐾𝑚)∗. Now, we show that (𝐾1 ∩ . . . ∩𝐾𝑚)∗ ⊆
𝐾∗
1
+ . . . + 𝐾∗

𝑚 . Therefore, we show that (𝐾∗
1
+ . . . + 𝐾∗

𝑚)∗ ⊆ 𝐾1 ∩ . . . ∩ 𝐾𝑚 , and we use the fact that

((𝐾∗
1
+ . . . + 𝐾∗

𝑚)∗)∗ = 𝐾∗
1
+ . . . + 𝐾∗

𝑚 (Proposition A.2) and that, for any 𝐴, 𝐵 ⊆ R𝑛 , 𝐴 ⊆ 𝐵 implies

𝐵∗ ⊆ 𝐴∗
. Let 𝑥 ∈ (𝐾∗

1
+ . . . + 𝐾∗

𝑚)∗. Fix 𝑖 ∈ {1, . . . ,𝑚}. It holds that for all 𝑦 ∈ 𝐾∗
𝑖 , 𝑦

⊤𝑥 ≥ 0; hence

𝑥 ∈ (𝐾∗
𝑖 )∗ = 𝐾𝑖 (Proposition A.2). Since 𝑖 was arbitrary, this concludes the proof. □

Corollary A.4. Let 𝐴 ∈ R𝑚×𝑛 and 𝐾 = {𝑥 ∈ R𝑛 : 𝐴𝑥 ≥ 0}. It holds that 𝐾∗ = {𝐴⊤𝑦 : 𝑦 ∈
(R≥0)𝑚}.

Proof. Follows from the fact 𝐾∗ = {𝐴⊤𝑦 : 𝑦 ∈ (R≥0)𝑚} is closed, as that the conic hull of a
finite set of vectors (proof omitted). □

Proposition A.5. Let 𝐾1 ⊆ R𝑛 and 𝐾2 ⊆ R𝑛 be closed convex cones. Assume that int(𝐾1) ∩𝐾2 ≠ ∅.
Then, 𝐾∗

1
+ 𝐾∗

2
is closed.

Proof. Let (𝑦1,𝑘 )𝑘∈N ⊆ 𝐾∗
1
and (𝑦2,𝑘 )𝑘∈N ⊆ 𝐾∗

2
, and let (𝑦𝑘 )𝑘∈N be defined by 𝑦𝑘 = 𝑦1,𝑘 + 𝑦2,𝑘 .

Assume that 𝑦𝑘 → 𝑦∗. We show that 𝑦∗ ∈ 𝐾∗
1
+ 𝐾∗

2
. For that, we show that (𝑦1,𝑘 )𝑘∈N is bounded.

Indeed, let 𝑥 ∈ int(𝐾1) ∩ 𝐾2. There is 𝐷 ∈ R such that for all 𝑘 ∈ N, 𝑦⊤
𝑘
𝑥 = 𝑦⊤

1,𝑘
𝑥 + 𝑦⊤

2,𝑘
𝑥 ≤ 𝐷 . Thus,

for all 𝑘 ∈ N, 𝑦⊤
𝑘,1
𝑥 ≤ 𝐷 . Since, for all 𝑦′ ∈ 𝐾∗

1
, with ∥𝑦′∥ = 1, 𝑦′⊤𝑥 > 0, it follows that (𝑦1,𝑘 )𝑘∈N

is bounded. Now, since (𝑦𝑘 )𝑘∈N and (𝑦1,𝑘 )𝑘∈N are bounded, (𝑦2,𝑘 )𝑘∈N is too. Thus, (𝑦1,𝑘 )𝑘∈N and

(𝑦2,𝑘 )𝑘∈N converge in 𝐾∗
1
and 𝐾∗

2
respectively. It follows that 𝑦∗ ∈ 𝐾∗

1
+ 𝐾∗

2
. □
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