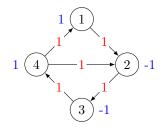
CSCI 5654, Spring 2023: Spot Exam 2

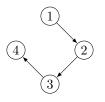
Date: We 5/3/2023

Question 1

Consider the following network:



wherein the numbers besides the nodes are supplies (negative values represent demands) and the numbers on the arcs are unit transportation costs. Consider the following spanning tree:

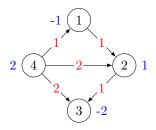


Are the primal and dual solutions associated to this tree:

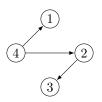
- Primal feasible? Yes No
- Dual feasible? Yes No
- Optimal? Yes No

Question 2

Consider the following network:



wherein the numbers besides the nodes are supplies (negative values represent demands) and the numbers on the arcs are unit transportation costs. Consider the following spanning tree:



Are the primal and dual solutions associated to this tree:

- Primal feasible? Yes No
- Dual feasible? Yes No
- Optimal? Yes No

Question 3

Consider the following optimization problem involving a disjunctive linear constraint:

$$\begin{array}{ll} \max & t \\ \text{s.t.} & -1 \le x \le 1, \\ & t < -2x \lor t < 3x, \end{array}$$

$$(1)$$

wherein $x, t \in \mathbb{R}$ are the variables. Fix $M \gg 1$ (e.g., M = 100). Which optimization program below is a *Mixed-Integer Linear Program* equivalent to (1)?

А	max s.t.	$t -1 \le x \le 1, t \le -2x + M,$	В	max s.t.	$ \begin{array}{l} t \\ -1 \leq x \leq 1, \\ t \leq zx, \end{array} $
С	max s.t.	$t \le 3x - M$ t $-1 \le x \le 1,$ $t \le -2x - Mz,$ $t \le 3x - M(1 - z),$ $z \in \{0, 1\}$	D	max s.t.	$z \in \{-2, 3\}$ t $-1 \le x \le 1,$ $t \le -2x + Mz,$ $t \le 3x + M(1 - z),$ $z \in \{0, 1\}$

Question 4

Consider the following nonlinear optimization problem:

$$\begin{array}{ll}
\min & t \\
\text{s.t.} & t \ge \sqrt{x_1^2 + 4x_2^2},
\end{array}$$
(2)

wherein $x_1, x_2, t \in \mathbb{R}$ are the variables. Which optimization program below is a *Linear & Second-Order Cone Program* equivalent to (2)?

 A
 min t min t

 s.t. $t^2 = x_1^2 + 4x_2^2$ B
 s.t. $(t, x_1) \in L_2^1$

 C
 min t D
 min t

 S.t. $(t, x_1, 4x_2) \in L_2^2$ D
 min t

(Let us remind that $L_2^n = \{(u_0, u_1, \dots, u_n) \in \mathbb{R}^{n+1} : u_0 \ge \sqrt{u_1^2 + \dots + u_n^2}\}$.)

Question 5

Given $c \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and a proper cone $K \subseteq \mathbb{R}^m$, consider the following conic program in standard form:

$$\begin{array}{ll} \min & c^\top x \\ \text{s.t.} & Ax \ge_K b \ . \end{array}$$
 (3)

(i) Give the definition of the dual cone of K.

 $K^* =$

(ii) Give the dual of (3).

(iii) Let P denote (3) and D denote its dual. Which of the following sentences are correct:

- If D is feasible, then P is feasible as well.
 If D is unbounded, then P is infeasible.
 True False
- If P is strictly feasible and has an optimal solution, then D is feasible. True False

Question 6

Consider the following Linear Program:

$$\begin{array}{ll} \max & x_2 \\ \text{s.t.} & x_1 + x_2 \leq 3 \\ & x_1 \geq 0, \end{array} \tag{4}$$

and the associated barrier problem:

$$\max_{x_2} x_2 + \mu [\log(3 - x_1 - x_2) + \log(x_1)]$$

s.t. $x_1 + x_2 < 3$
 $x_1 > 0.$ (5)

Which of the following sentences are correct:

• (5) has an optimal solution for all $\mu > 0$.

True False

• The first-order optimality conditions say that if x^* is an optimal solution of (5) with $\mu > 0$, then

$$\begin{cases} \frac{-\mu}{3-x_1^*-x_2^*} + \frac{\mu}{x_1^*} = 0, \\ 1 + \frac{-\mu}{3-x_1^*-x_2^*} = 0. \end{cases}$$

True False

(Note that the dual of (4) is given by
$$\begin{cases} \min & 3y_1 \\ \text{s.t.} & y_1 - y_2 = 0 \\ & y_1 = 1 \\ & y_1, y_2 \ge 0 \end{cases}$$
.)