LINMAZ2725 Stochastic Optimal Control and Reinforcement Learning
Part 111

Course 3: Actor-Critic Methods

Guillaume Berger

November 25, 2024

Reference: [1], Chapter 10.

Any questions or feedback are welcome.



Stochastic Optimal Control
and Reinforcement Learning

Part lll: Stochastic Systems

Guillaume Berger



Table of content

* Stochastic systems and stochastic control (1 course)

* Learning techniques for stochastic control (1-2 courses)
* Variance reduction techniques
* Actor-critic methods

* Online learning techniques for stochastic control (1-2 courses)



Problem setting and reminders

Consider a given (randomized) policy ¢ (u|x)

Let @ be the steady-state distribution of the closed-loop system
Let Q(x,u) be its Q-function and h(x) its value function

Cost can be total, discounted or average cost

Objective: approximate Q or similar quantities
Assume: Q9 (x,u) = 0Ty (x, u) (linear template)
For theoretical analysis: assume X and U finite



Advantage function

Advantage function: V(x,u) = Q(x,u) — h(x)

Motivation: h = arg m1n E [{Q(CD(TL)) g(x(n))} ]

Hence, L,-norm of V iIs smaller than Q
But optimal policy of V and Q are the same!

Note that IEw[V(CID(n)) | X(n)] =0



The idea is that if we “offset” Q(x,u) with a function g(z), then this does not change the associated optimal
policy, i.e.,
arg min Q(z,u) = arg min{Q(z,u) — g(x)}.
ueU ueU
We choose the offset g(x) that minimizes the L2-norm of Q(x, u)—g(x), which is a sensible idea since having quantities
with a smaller magnitude (norm) involved in the recursive algorithm will generally induce a smaller variance of the
algorithm. The optimal g(z) is given by h(z) £, d(ulz).



Advantage TD(A)-learning

D()\) algorithm (on-policy for advantage)
For initialization wq .y € R™, the sequence of estimates are defined recursively:
Wnt1 = Wp + CTn—i—lCnD-n—l
Dpy1 = (—H®(®(n)) + cn + yHO(B(n +1)))
W=wn

Cort = MG+ 2B +1),  HE®(n)) = w73 (D(n))

where P(r) = Z Wz, u)b(u | z) and (x,u) = (x, u) —Y(x).

u

Same as TD(A)-learning but with a special basis!

(9.68)



Motivation of advantage TD(A)-learning

Remember )\ =1: #* solves
f* = arg min ||H0 — (»)”go = Z (HO(.I'. u) — Q(x, (I))Q(D(.I'. )
7]

zeX, uel

New result: the projection of V on {QTlp + «lep} is equal to the
projection of Q on {67}

Hence, H?" is the projection of V on {HTlp + €T1/J}



Proof of the result. Let Q be the projection of @ on {0—'—1; : 0 € R4}, We show that V — Q is orthogonal to ¢ and
1. This will imply that @ is the projection of V' on {07 + §Ty :0,¢ € RY}. We show the orthogonality only for v
since the proof for ¢ is easier. For that, observe that
E= (V- Q| =E= [@-h- Q)@ +v)]

= E= [(@ - Q9] +E= [Qu] — Ex [Qv] - Ex [n] - Ex [hy]

the first term is zero by definition of Q,

the third and fourth terms are both zero because E5 [&(@(n)) ‘ X(n)] =0

the second is equal to E, [hy] since Ex [Q(®(n)) | X (n)] = k(X (n))

— E., [] — Ea [] =00

This concludes the proof. O



Advantage TD(A)-learning as a LS system

LSTD(1) for advantage with weighting (on-policy)

With weighting function w: X — (0, c0), initialization (p € R™, Yo € R™*™ and time horizon N,

Wy = i;rl J_‘f%r (1016‘1)
1 N L
with Sy = — (Zg +3 wad L_J,{n]) (10.16h)
B n=1
1
“"-“"';% - N Z Cnln (10.16¢)
T on=1

~— s~

Cn = YCn—-1 + u'n_ﬁn;, , wp =w(X(n)), Py, =P (P(n)), 1<n<N (10.16d)



Regeneration

Let 2* = (z*,u") € X x U denote any state with positive steady-state probability: @(z*) > 0.

@A,(e):E[T'Z_lM@(A-))|<I><o ]+ E[rm Yo ke @( 4 7)) | 9(0) = 2]
k=0 k=0

Te—1
Result: Q. (z) = E[Z ~VRE(®(k)) | D(0) = ] + Q. (="E[y™ | ®(0) = -]
k=0 \, J
\\ ~ J '
/ tends to constantwheny — 1

focus on this to reduce variance!



Focusing on the first term (orange) is another way of removing an offset without impacting the associated optimal
policy because the second term (blue) is assumed to be constant (independent of z).

When v = 1, regeneration is also crucial to have boundedness of the eligibility vectors ¢, in the TD(1)-learning
algorithm, as we will see next.
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Regeneration for average cost

Te—1
Define Hs(z) = E[Z HD(k)) | D(0) = }

k=0

Goal: approximate H; with HY

Motivations:
* Average cost is important for stochastic systems!

e Other costs like mean discounted cost can be formulated as
average cost



The average cost can be used as a metric to compare policies between them because it is a scalar. By contrast,
the discounted cost h-(x) cannot be used as a metric because it is a function. Alternatively, one can use the “mean
discounted cost”: given a probability distribution p on X, define the metric (1, hy) £ 3"y pu(x)hy ().

The mean discounted cost of a given system can be formulated as the average cost of another system constructed
from the original one; see [1, § 10.4.1] for such a construction.
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Regenerative TD(A)-learning for average cost
Let z* = (z°,u’) € X x U : @(2°) > 0.

Regenerative TD(\) algorithm for average cost (on-policy)

For initialization #g.(p € Rd, the sequence of estimates are defined recursively:
H-n+l = 9?1 + (Z'l:n—i—lﬁ:n.D-n—l-l
Dost = (—HO(®(n)) + &y + L{B(n + 1) # =} HO (B(n + 1)))‘

| | — f=0n (10.28)
(el = AL{P(n+1) #£ 27}, + V(n41)

el = Thn + en/(n+ 1), in = c(®(n)) — 1y, n=>0



Analysis of regenerative TD(A)-learning

This is a linear SA algorithm
fln+1 = (n ['—‘:'(n) r 3 ]]-{(I)(” E N 1) # :.}("(n-'r—l)]T
[)n+l = —(n [('n = ’/n]

The associated ODE is thus linear, with vector field

f—(ﬂ) = AV =f b. A= EG)[AH] g D= _ECO[CnF((I)(”))]

Theorem 10.14. (Ls Optimality of TD(1) for average cost)  Consider the algorithm (10.28)
with linear function approzimation H? = 0T1). Assume that ® is uni-chain and that @(z*) > 0.
Then, in the special case \ =1,

(i) A=—-R(0)
(i) Any solution to 0 = f(0*) = Ex[(nDns1] solves the minimum norm problem:

f* € argmin |[H? — H3||% = argminEq [(H6(<I>(n)) - H3(<I>(n)))2] (10.29)
0 0



See [1, Theorem 10.14]. Reminder: R(0) £ E [/(®(n))y(®(n)) "] is positive definite (under mild assumption of
linear independence of ¢) so that A is Hurwitz.
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Regenerative relative TD(A)-learning

Regenerative relative TD(\) algorithm for average cost (on-policy)

For initialization ., ¢y € R?, the sequence of estimates are defined recursively:
Hn—i—l = O, + (-'l'-n—]_(:-npn—l—l

Dpt1 = (—Hg(q)(n)) — HS(M.HIH} + Cn + Hﬂ(ﬁ’(” + 1)))‘

Cn+l = /\ﬂ-{(b(” + 1) # -:.}‘:n + "-".‘{n—l—l)

. (10.32)

Variance expected to be reduced compared to non-relative version
ODE approximation f(8) = A6 + b can be shown to be invertible if § is small enough

Conditions to ensure that A is Hurwitz not available; hence, better to use LSTD(A)



See [1, Theorem 10.15] and the discussion below it.
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Actors and critics

Parametrized (randomized) policy: @¢(ulx) <

Denote col: Zd) u (,u)

— Z d) w| x)Py(x.a").
(I

Actor

/ Critic

= average cost



Gradient and score function

Score function:  A%(z.u) = Vg lﬂg[ﬁﬁg(u | )]

Note that Vgco(a Zcb w | 2)A” (x,u)e(x, u)
VoPy(x.x' Zcb w | YA (x,u) Py (2, 2")

A (2") = Vg log(Ty(z. 2")). 22 eZ

r.o eX. 0eR?



Gradient of critic and sensitivity theorem

Denote Qg (x, 1) = Q-function of system controlled with ¢

ltholdsthat  VI(0) = Ea, [A"(2(K))Qa(D(F))] (i‘ﬁ;‘iil‘li?

Proof: use Poisson equation Ty = Qg — ¢ +T'(0).



Proof. Expand the Poisson equation:
D To(z,2)Qe(2) = Qa(2) — c(2) +T(0).
z'eXxU

Take gradient on both sides:
Z VoTo(z,2")Qo(2") + To(2,2)VeQoy(2") = VQo(2) + VI'(0)
2/eXxU

or

> Tl ) Qo) + T ) VoQol) = aQu(a) + VT ()
2'€XxU ’

Use the score function:

> Ty(z,2)A(2)Qo(2) + Ty (2, 2')VeQo(2') = VeQo(2) + VaI'(0)

z'eXxU

Take the expectation with respect to wy on both sides:

S @(2) > To(z, 2 )A(Z)Qe(2) + Tu(2,2)VeQo(2') = Y @ (2)VeQo(2) + VeI'(0)

zeXxU z'eXxU zeXxU

Use that Y-, o,y @ (2)To(z,2") = @ (¥):

Z @’ (2)A°(2)Qo(2") + @ (2')VoQu(2) = Z @’ (2)VeQo(2) + Vol'(0)

z'eXxU z€XxU

Change 2’ into z:

Z @ (2)A?(2)Qo(2) = VoT'(0).

zeXxU

This concludes the proof.
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Actor-critic method (ideal case)
Stochastic gradient method:

a1 = O — r'tﬂ,_fﬁr(u) . ﬁr(u) & APn (®(n))Qe, (®(1))

Challenges:

* (Qp is not known

* Variance can be large
... addressed next



Actor-critic method

ldea: Hy =~ Qg where HP =wTyy, wecR?, §cR

Actor-Critic Algorithm

For initialization 8y € R% and wy . (p € R?,

Ontt = On — oms1Vi(n) . Vi(n) = A% (B(n)) Hy (B(n)) (10.44a)
S(n+1)~Ty (z,-), withz=®(n) (10.44b)
-~ | - (48] )
Dypt1 = {—Hg’(®(n)) + ¢, + 1{@(n+ 1) # 2"}HP (®(n + 1)) } o0—o,, Regenerative TD(A)
ntl = T in n Dﬂ__x_ /
Wnt1 = O+ Prt1GnEntt > (10.44c)

(o1 = AL{®(n + 1) # 2"} + o, (P(n + 1))

Hn+1 = Tln T .“::g';l—i-l(ﬂ::n . Cn = (?(@(-H)) —In J




Analysis of actor-critic method

. . . (3
Proposition 10.17. Suppose that A = 1 and the step-size sequences satisfy lim — = oo
n—oo (v,
Assume the following consistency condition holds:
for each 0 € R™ there is a wy € RY satisfying H;U;’ = Qy. (10.45)
. o 100 A4 ‘ d ¢ T
Then, the ODE approrimation of (10.44) is gradient descent 30 = —VTI(9). O

Consistency assumption (10.45) can be restrictive; remedy on next slide



See [1, Proposition 10.17].
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Relaxing the consistency assumption

Assume: Compatible Features Property (CFP)

/\,? e H’ for each 6 € R and1<i<d
(can always be done by design of 7—[9)
Proposition 10.18. let ) € arg min{||H — Qf}”?’ﬂg : H € HY}

Then, ~
V() = Eay [A"(2(K))Qo(2(K))] = Eay [A"(2(K))Q(D(K))]



Proof. Since Q is the projection of Qg on H?, Q — Qg is orthogonal to any function H € H?, i.e.,
By [(Q— Qu)H| =0,

By the CFP A? € HY, concluding the proof.
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Relaxing the consistency assumption

(continued)

Proposition 10.19. Suppose that the assumptions of Prop. 10.17 hold, but with (10.45) replaced
with the compatible features assumption (10.47).
Then, the ODE approzimation of (10.44) is unchanged: %ﬂ = —VTI(d). 0

Hence, same conclusion but with realistic assumption (CFP)



See [1, Proposition 10.19].
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Variance reduction through advantage

Result:  For any function g: X = R, 0= E[¢g(X(E))A?(®(k))]
Hence, we can subtract G,,(X(n)) from Hg;"(d)(n)) without impact
Forinstance, use V,*(z.u) = Hy (x,u) — Hy (x) = W g (x, u)

This gives: fni1 =0, — anpiVr(n). Vi (n) = A% (D(n))V,o (B(n))



The idea is the same as for the TD(\)-learning algorithm applied to the advantage function: offset the Q-function
Qo(z,u) by some function gg(z) because this will not change the value of Es, [A?(®(n))Qq(®(n))] but is expected
to reduce the variance of the approximated gradient.

Proof of the result. Observe that

Ewy [9(X(n)A°(®(n)] = mo(x)g(x) Y ¢ (ul)A’ (2, ).

zeX uelU

It holds that 5 5 5
> (ula)A (@) =D Ved (ula) = Vo > ¢ (ulz) = Vo(1) =0,

ueU ueU ueU

concluding the proof. O
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Variance reduction through advantage

(continued)

Using the advantage instead of the Q-function is expected to induce
a smaller variance of the method

Even better: if computable, use

AHG (x) = EAY(®(n))HL (®(n)) | F : X(n) = «]

The latter has smaller asymptotic variance than A% (®(n))V"m (®(n))

Tl



Caveats: variance of actor-critic methods

The theoretical results were obtained forA =1

However, despite the proposed remedies, the variance of the actor-
critic method can remain large forA =1

In practice, sometimes better to use A < 1 to tame the variance

Especially for continuous systems, A = 1 may be unapplicable



Remember that
Go=> MN1$ N D(n—i) #2° p p(B(n— k).
k=0 0<i<k

If z* has a small steady-state probability (e.g., for continuous systems, this probability is zero in general), and A = 1,
then (, can grow unbounded as n — oo. This will induce large variance in the method. Hence, even though the
theoretical results (in terms of quality of the approximation of the limit point) were mostly obtained for A = 1, in
practice, it may be better to use A < 1 to have a smaller variance.
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Next course

* Online learning techniques for stochastic control
* Bandit problem
* Regret minimization
* Exploration vs. exploitation trade-off
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