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Problem setting and reminders

Consider a given (randomized) policy ෰𝜙 𝑢 𝑥

Let 𝜛 be the steady-state distribution of the closed-loop system
Let 𝑄(𝑥, 𝑢) be its 𝑄-function and ℎ(𝑥) its value function
Cost can be total, discounted or average cost

Objective: approximate 𝑄 or similar quantities
Assume: 𝑄𝜃 𝑥, 𝑢 = 𝜃⊤𝜓 𝑥, 𝑢 (linear template)
For theoretical analysis: assume 𝑋 and 𝑈 finite



Advantage function

Advantage function: 𝑉 𝑥, 𝑢 = 𝑄 𝑥, 𝑢 − ℎ(𝑥)

Motivation: ℎ = arg min
𝑔:𝑋→ℝ

𝔼𝜛 𝑄 Φ 𝑛 − 𝑔 𝑋 𝑛
2

Hence, 𝐿2-norm of 𝑉 is smaller than 𝑄
But optimal policy of 𝑉 and 𝑄 are the same!

Note that 𝔼𝜛 𝑉 Φ 𝑛 𝑋 𝑛 = 0



The idea is that if we “offset” Q(x, u) with a function g(x), then this does not change the associated optimal
policy, i.e.,

argmin
u∈U

Q(x, u) = argmin
u∈U

{Q(x, u)− g(x)}.

We choose the offset g(x) that minimizes the L2-norm of Q(x, u)−g(x), which is a sensible idea since having quantities
with a smaller magnitude (norm) involved in the recursive algorithm will generally induce a smaller variance of the

algorithm. The optimal g(x) is given by h(x) ≜
∑

u∈U ϕ̆(u|x).
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Advantage TD(𝜆)-learning

where

Same as TD(𝜆)-learning but with a special basis!



Motivation of advantage TD(𝜆)-learning

Remember

New result: the projection of 𝑉 on 𝜃⊤𝜓 + 𝜉⊤𝜓 is equal to the 

projection of 𝑄 on 𝜃⊤ ෨𝜓

Hence, 𝐻𝜃∗ is the projection of 𝑉 on 𝜃⊤𝜓 + 𝜉⊤𝜓



Proof of the result. Let Q̂ be the projection of Q on {θ⊤ψ̃ : θ ∈ Rd}. We show that V − Q̂ is orthogonal to ψ and
ψ. This will imply that Q̂ is the projection of V on {θ⊤ψ + ξ⊤ψ : θ, ξ ∈ Rd}. We show the orthogonality only for ψ
since the proof for ψ is easier. For that, observe that

Eϖ

[
(V − Q̂)ψ

]
= Eϖ

[
(Q− h− Q̂)(ψ̃ + ψ)

]
= Eϖ

[
(Q− Q̂)ψ̃

]
+ Eϖ

[
Qψ

]
− Eϖ

[
Q̂ψ

]
− Eϖ

[
hψ̃

]
− Eϖ

[
hψ

]
the first term is zero by definition of Q̂,

the third and fourth terms are both zero because Eϖ

[
ψ̃(Φ(n))

∣∣∣X(n)
]
= 0

the second is equal to Eϖ

[
hψ

]
since Eϖ [Q(Φ(n)) |X(n)] = h(X(n))

= Eϖ

[
hψ

]
− Eϖ

[
hψ

]
= 0.

This concludes the proof.
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Advantage TD(𝜆)-learning as a LS system



Regeneration

𝜏∘ = min 𝑘 ≥ 1 Φ 𝑘 = 𝑧∘

tends to constant when 𝛾 → 1

Result:

focus on this to reduce variance!



Focusing on the first term (orange) is another way of removing an offset without impacting the associated optimal
policy because the second term (blue) is assumed to be constant (independent of z).

When γ = 1, regeneration is also crucial to have boundedness of the eligibility vectors ζn in the TD(1)-learning
algorithm, as we will see next.
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Regeneration for average cost

Define

Goal: approximate 𝐻3 with 𝐻𝜃

Motivations:
• Average cost is important for stochastic systems!
• Other costs like mean discounted cost can be formulated as 

average cost



The average cost can be used as a metric to compare policies between them because it is a scalar. By contrast,
the discounted cost hγ(x) cannot be used as a metric because it is a function. Alternatively, one can use the “mean

discounted cost”: given a probability distribution µ on X, define the metric ⟨µ, hγ⟩ ≜
∑

x∈X µ(x)hγ(x).
The mean discounted cost of a given system can be formulated as the average cost of another system constructed

from the original one; see [1, § 10.4.1] for such a construction.
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Regenerative TD(𝜆)-learning for average cost



Analysis of regenerative TD(𝜆)-learning



See [1, Theorem 10.14]. Reminder: R(0) ≜ Eϖ

[
ψ(Φ(n))ψ(Φ(n))⊤

]
is positive definite (under mild assumption of

linear independence of ψ) so that A is Hurwitz.

17



Regenerative relative TD(𝜆)-learning

Variance expected to be reduced compared to non-relative version

ODE approximation ҧ𝑓 𝜃 = 𝐴𝜃 + 𝑏 can be shown to be invertible if 𝛿 is small enough

Conditions to ensure that 𝐴 is Hurwitz not available; hence, better to use LSTD(𝜆)



See [1, Theorem 10.15] and the discussion below it.
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Actors and critics

Parametrized (randomized) policy:   ෰𝜙𝜃 𝑢 𝑥

Denote

= average cost

Actor

Critic



Gradient and score function

Score function:

Note that



Denote 𝑄𝜃 𝑥, 𝑢 = 𝑄-function of system controlled with ෰𝜙𝜃

It holds that

Proof: use Poisson equation

Gradient of critic and sensitivity theorem

(sensitivity 
theorem)



Proof. Expand the Poisson equation:∑
z′∈X×U

Tθ(z, z
′)Qθ(z

′) = Qθ(z)− c(z) + Γ(θ).

Take gradient on both sides:∑
z′∈X×U

∇θTθ(z, z
′)Qθ(z

′) + Tθ(z, z
′)∇θQθ(z

′) = ∇θQθ(z) +∇θΓ(θ)

or ∑
z′∈X×U

Tθ(z, z
′)
∇θTθ(z, z

′)

Tθ(z, z′)
Qθ(z

′) + Tθ(z, z
′)∇θQθ(z

′) = ∇θQθ(z) +∇θΓ(θ)

Use the score function: ∑
z′∈X×U

Tθ(z, z
′)Λθ(z′)Qθ(z

′) + Tθ(z, z
′)∇θQθ(z

′) = ∇θQθ(z) +∇θΓ(θ)

Take the expectation with respect to ϖθ on both sides:∑
z∈X×U

ϖθ(z)
∑

z′∈X×U

Tθ(z, z
′)Λθ(z′)Qθ(z

′) + Tθ(z, z
′)∇θQθ(z

′) =
∑

z∈X×U

ϖθ(z)∇θQθ(z) +∇θΓ(θ)

Use that
∑

z∈X×Uϖ
θ(z)Tθ(z, z

′) = ϖθ(z′):∑
z′∈X×U

ϖθ(z)Λθ(z′)Qθ(z
′) +ϖθ(z

′)∇θQθ(z
′) =

∑
z∈X×U

ϖθ(z)∇θQθ(z) +∇θΓ(θ)

Change z′ into z: ∑
z∈X×U

ϖθ(z)Λθ(z)Qθ(z) = ∇θΓ(θ).

This concludes the proof.
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Actor-critic method (ideal case)

Stochastic gradient method:

Challenges:
• 𝑄𝜃 is not known
• Variance can be large
… addressed next



Actor-critic method
Idea:   𝐻𝜃

𝜔 ≈ 𝑄𝜃 where

Regenerative TD(𝜆)



Analysis of actor-critic method

Consistency assumption (10.45) can be restrictive; remedy on next slide



See [1, Proposition 10.17].
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Relaxing the consistency assumption

Assume: Compatible Features Property (CFP)

(can always be done by design of ℋ𝜃)



Proof. Since Q̂ is the projection of Qθ on Hθ, Q̂−Qθ is orthogonal to any function H ∈ Hθ, i.e.,

Eϖθ

[
(Q̂−Qθ)H

]
= 0.

By the CFP Λθ
i ∈ Hθ, concluding the proof.
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Relaxing the consistency assumption

(continued)

Hence, same conclusion but with realistic assumption (CFP)



See [1, Proposition 10.19].
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Variance reduction through advantage

Result:

Hence, we can subtract 𝐺𝑛(𝑋 𝑛 ) from 𝐻𝜃𝑛
𝜔𝑛 Φ 𝑛 without impact

For instance, use

This gives:



The idea is the same as for the TD(λ)-learning algorithm applied to the advantage function: offset the Q-function
Qθ(x, u) by some function gθ(x) because this will not change the value of Eϖθ

[
Λθ(Φ(n))Qθ(Φ(n))

]
but is expected

to reduce the variance of the approximated gradient.

Proof of the result. Observe that

Eϖθ

[
g(X(n))Λθ(Φ(n))

]
=

∑
x∈X

πθ(x)g(x)
∑
u∈U

ϕ̆θ(u|x)Λθ(x, u).

It holds that ∑
u∈U

ϕ̆θ(u|x)Λθ(x, u) =
∑
u∈U

∇θϕ̆
θ(u|x) = ∇θ

∑
u∈U

ϕ̆θ(u|x) = ∇θ(1) = 0,

concluding the proof.
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Variance reduction through advantage

(continued)

Using the advantage instead of the 𝑄-function is expected to induce 
a smaller variance of the method

Even better: if computable, use

The latter has smaller asymptotic variance than 



Caveats: variance of actor-critic methods

The theoretical results were obtained for 𝜆 = 1

However, despite the proposed remedies, the variance of the actor-
critic method can remain large for 𝜆 = 1

In practice, sometimes better to use 𝜆 < 1 to tame the variance

Especially for continuous systems, 𝜆 = 1 may be unapplicable



Remember that

ζn =

n∑
k=0

λk1

 ∧
0≤i≤k

Φ(n− i) ̸= z•

ψ(Φ(n− k)).

If z• has a small steady-state probability (e.g., for continuous systems, this probability is zero in general), and λ = 1,
then ζn can grow unbounded as n → ∞. This will induce large variance in the method. Hence, even though the
theoretical results (in terms of quality of the approximation of the limit point) were mostly obtained for λ = 1, in
practice, it may be better to use λ < 1 to have a smaller variance.

36



Next course

• Online learning techniques for stochastic control
• Bandit problem
• Regret minimization
• Exploration vs. exploitation trade-off
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