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Stochastic system

A Markov chain is a stochastic process that evolves according

X(k+1)=F(X(k), Nk +1)) (6.3)

where IV is i.i.d., and the initial condition X (0) is specified (if it is random, then it is assumed
independent of the “disturbance” V).

Andreil Markov
1856-1922




Transition kernel

The distribution of X (k) for £ > 0 is defined by the initial distribution (the distribution of

the potentially random X (0)), and the
probabilities,

P(z,S)=P{X(k+1) € S| X(k) =z},

transition kernel.

This defines the one-step transition

reX, ScX (6.4)

P(z,S) = P{X(1) € S| X(0) = z} = P{F(z, N(1)) € S}

For j > 1, the j-step transition probability from z to S is denoted

Pi(z,5) = P{X(k+j) € S| X (k) = z} 5:5)



Invariant measure

In the majority of cases, we no longer think about equilibria ¢ € X when studying Markov
chains. We seek instead an|equilibrium measure|m (more commonly called an|invariant measure)
satisfying the ergodic theorem:

lim P*(z,S)=mn(9), foranyx € X and S C X (6.6)

k—oc




An equilibrium measure may not always exist. Example: the system

p=1
p=1

has no invariant measure.
Definition 1. A stationary measure for the kernel P is a measure 7 satisfying [ P(z,S) w(dz) = 7(S5).

An invariant measure is stationary, but the converse is not always true. Example: the system above has stationary
measure 7(sg) = 7(s1) = 3 but no invariant measure.

A stationary measure may not always exist. Example: the random walk (aka. Brownian motion) has no stationary
measure.

A stationary measure, if it exists, may not be unique. Example: the system

admits any probability distribution on X = {sg, s1} as stationary measure.

p=1



Finite systems

If X is finite, of size m, then P is interpreted as an m x m matrix. In this case P(xg,x1) is the
probability of moving from x to 1 in one time-step. The conditional expectation is expressed as
a sun,

E[(X(k+1) | X(k)=2]= Y  P(x,a1)h(z1)
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Conditional expectation

Conditional expectations appear so frequently that we require shorthand notation: For a func-
tion h: X — R and integers r. k > 0,

EL[h(X (k)] =
P¥h () <

En(X(r+k))| X(r)
En(X(r+k))| X(r)

x| (6.9a)
x], r e X (6.9b)

f

1]

In the special case k = 1 we write Ph rather than Plh.
In (6.9b) we view P* as a mapping from functions to functions.

Bernard O. Koopman
1900-1981




Example 1: Linear model

Example 6.2.1. The Linear State Space Model

Suppose X = {X(k)} is a stochastic process for which there is an n X n matrix F' and an i.i.d.
sequence IN taking values in R"™ such that

X(k+1)=FX(k)+N(k+1). k>0

where X (0) € R" is independent of V.



Example 1: Linear model

(continued)

Suppose that the eigenvalues of F' lie in the open unit disk in C, and that N is i.i.d., with
Gaussian marginal N(0,XnN).

(i) The steady-state covariance Yx__ has rank n, where

oo

Sx. = lim Ty, =Y (FF)TENF*

J k=0

(ii) The density py. exists for k > n, and converges as k — oo: for any x,y,

1 . .
].i.ﬂl PLLT, Y ) = Pe l{’[ — ox (_L;’ITZ_FL 3 )
k%-:;c:j ( ] ) ! ( ) \/(er)?‘det(EXlx) p 2+ Xoo l




Example 2: Queue

The transition function for the M/M/1 queue is defined as

PIX(E+1)=y

ify=a+1
X(k)=2)=Pay) =4 "Y=rTE (6.14)
poify=(r—1)L,

where a denotes the arrival rate to the queue, p is the service rate, and these parameters are
normalized so that a + pu = 1.

12 16 1w 10% 8 12 16 kw103



The parameter p LN /1t is known as the load for the queue. If p < 1 then the arrival rate
is strictly less than the service rate. In this case the process is ergodic: there is a pmf 7t on the
non-negative integers such that for any initial queue length X (0) = z, and any integer m > 0,

len;ﬂ P{X (k) =m} = nt(m)

The invariant pmf is geometric with parameter p, so that m(m) = (1 — p)p™.



Finite systems: spectrum and ergodicity

(i) Ay = 1 is an eigenvalue.

define v1 € R? to be the vector whose entries are all equal to one.

ZP’ y)t ZP’ y) Oskar Perron
1880-1975

That is, Pv! = vl

(ii) there is a left eigenvector 7t with eigenvalue A; = 1 that has non-negative entries.
This is normalized so that ) m(x) = 1. The eigenvector property is

Zn (z,y)

The pmf 7t is called invariant. Georg F. Frobenius
1849-1917




Point (ii) says that a finite stochastic system always admits a stationary measure 7.

Proof of (ii). This can be obtained, e.g., by Brouwer fixed-point theorem since PTA C A, where A = {7 € R™ : 7 >
0,1'7= 1} is the set of probability distributions on X. Indeed, if 7 € A, then PT7 > 0 and 1"PTr=1Tn=1,s0
that PT7 € A. O

16



Finite systems: spectrum and ergodicity

(continued)

(iii) Every eigenvalue must satisfy [A| < 1 (that is, A lies in the closed unit disk in the complex
plane). To see this, consider iterating the equation Pv = Av to obtain

P'v =AN"v, n>1
Remember that the left hand side is a conditional expectation. so that

Elv(X(n))

X(0) =x] =ANv(x)

The left hand side of this equation is bounded in n, which means that |A| <1 as claimed. 0O



Finite systems: spectrum and ergodicity

The Markov chain is called ergodic if for each =,y € X,

lim P{X(n) =y | X(0) =2} = lim P"(z,y) = n(y) (6.16)

n—0o0 n—00

Theorem 6.2. (Spectral conditions for ergodicity) Suppose that Ay = 1 is the only eigen-

value satisfying |A\| = 1, and this eigenvalue is not repeated. Then the chain is ergodic, and the
convergence rate in (6.16) is geometric:

B o (max |P"(z, ) — n(y)|) =log(p) < 0 (6.18)

n—oo TN T,y

where p = max{|Ax| : k > 2}.



Proof. The first step is to consider a modified matrix P defined by

Py

P(z,y) = P(z,y) — n(y) r,y € X. (6.19)
This can be expressed P=P-1® 7t, where 1 = v! is a column vector of ones, 7t is the invariant

pmf, and *®” is an outer product. It can be shown by induction that

—~

PP=P" _l1lan (6.20)

That is, for each =, y, _
P"(z,y) = P"(z,y) — n(y)

~

‘With a bit more effort it can be shown that A(P) = {0,Az,...,Am}. That is, all of the eigenvalues
of P coincide with those of P, except the first eigenvalue which is moved to the origin. A bit of
linear algebra completes the proof of (6.18). O



Example: Ergodic Markov chain

0,4
0,3

P=[0.60.4; 0.7 0.3]
2x2 Matrix{Floaté4}:
e
e

.6 0.4
.7 9.3
for i = 1:5
display(P"i)
end
2x2 Matrix{Floaté4}:
8.6 ©.4
8.7 6.3
2x2 Matrix{Floaté4}:
8.64 ©.36
8.63 ©6.37
2x2 Matrix{Floaté4}:
©.636 ©.364
8.637 0©.363
2x2 Matrix{Floaté4}:
©.6364 ©.3636
©.6363 ©.3637
2x2 Matrix{Floaté4}:
©.63636 0©.36364
9.63637 6.36363
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Poisson equation 17811840

Siméon Denis Poisson

c+Ph=h+n (6.23) |

It is known as|Poisson’s equation.

The function ¢ is known as the forcing function, 7 is a constant,

and the solution A is called the relative value function.

The abstract notation in equations (6.23,6.24) is based on (6.9b). For a finite state space model,

Poisson’s equation becomes

c(z) + Z P(z,2)h(z") = h(z) + 1, r € X (6.25)



Poisson equation: properties of solutions

c+Ph=h+n (6.23)

If T is an invariant measure, thenn = (c) ¥ [ c(x)m(dx)

In many cases we obtain a solution by iteration or inversion:

o0

h=3 P (6.24)

with é(z) = e(x) — n (one rationale for the name relative value function). The solution to (6.23) is
not unique: if A is a solution, then we obtain a new solution by adding a constant.



A solution to Poisson equation may not always exist. Example: the system

p=1 p=1
c=0 c=1

admits no solution to Poisson equation.

If a solution exists and the system admits an invariant measure (or more generally a stationary measure) 7, then
n = [c(z)n(dz). Indeed,

/c(x) + Ph(x) n(dx) = /h(x) +nw(dz) = /c(ac) m(dz) = /77 w(dz) = n.

If the sum in (6.24) converges, then it is a solution to Poisson equation. However, it may not always converge.
Example: for the system

p=1
c=1
p=1
c=0

it does not converge.
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Poisson equation: finite systems

Theorem 6.3. (Spectral conditions for Poisson’s equation) Suppose X is finite, and the
assumptions of Thm. 6.2 are satisfied. Then the following hold:

(i) The function hy =3 3=, P*é is a solution to (6.23) (recall (6.24))
(ii) Let s: X = R, be a function satisfying m(s) > 0, and v a pmf satisfying

Pz, ') = s(x)v(z). r,z' € X

also expressed P > s @ v. Then, a solution to Poisson’s equation is given by

hy =G.vé,  where Giy=) (P—s@v)"=[I—-(P-s®v)]"

n=>0



Proof of (i). Let P =P - 1" 7, where 7 is the invariant measure of P. It holds that P¥¢ = (P* — 1" x)é and P*é.
Since the eigenvalues of P lie in the interior of the unit disk (show this), the sum converges. O

Proof of (ii). Let P =P —svT. First, we show that the eigenvalues of P lie in the interior of the unit disk. Let p be
the spectral radius of P. Since, P > 0, p is an eigenvalue and there is a nonnegative associated eigenvector v. Hence,
Pv — svTv = pv. This implies that 7" Pv — (7" s)(vTv) = pr "v. Hence, —(r"s)(v"v) = (p — 1)m "v. Assume that
p > 1. This implies that v v = 0, since 7"s > 0 by assumption on s. It follows that Gv = Pv = pv. Hence, p is
an eigenvalue of P. Hence, p = 1 and v is an eigenvector of P with eigenvalue 1. This implies that v is a positive
multiple of 1. This is a contradiction with v"v = 0. Hence, p < 1.

The above shows that the sum of P* converges to [I — P]_l. Finally, we show that h = G ,,¢ provides a solution
to Poisson equation. Indeed, it holds that [I — P]h =h— Ph+sv'h=c—nl. Hence, by left-multiplying by = on
both sides, we get (7 "s)(v"h) = 0. This implies v"h = 0, so that h — Ph = ¢ — 11, concluding the proof. O

Remark 1. The proof of (ii) only uses the existence of a unique stationary measure, not the existence of an invariant
measure.
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Lyapunov functions

Poisson’s inequality for the Markovian model is the following extension of (2.31): for a function
V:X—=R., afunction ¢: X = R., and a constant 77 < oo,

EV(X(k+1)) | X(k)=2] <V(z)—c(z)+T7, reX.
In the more compact operator-theoretic notation this becomes

PV <V —ctT (6.27)

As in the deterministic case, the function ¢ is usually interpreted as a cost function on the state
space. It is frequently assumed that e(x) is large for “large” = (recall the definition of coercive
from Section 2.4.3). In this case, the Poisson inequality implies that V' (X (k)) decreases on average
whenever X (k) is large.



Average cost

Let n(z) denote the average cost,

n—1
n(z) = lim sup % Z E[e(X (k) | X(0) = z]

Using the operator-theoretic notation (6.9b) gives

n—1

n(z) = limsup 1 Z Pke(x).

. n
n—00 E—0)

Proposition 6.4. Suppose that (6.27) holds with V' > 0 everywhere. Then, the following transient
bound holds for each n > 1, and each x € X:

1= 1
— k < 77 _ o~
- ;}P clr) <m+ nV(l)

Consequently, the average-cost admits the bound n(z) < 7.



Proof. Note that ¢ <V — PV + 1. Hence, for all k > 0, P* < P*V — P**1V 4 1. Summing for k =0,...,n — 1,
we get that Zz;é Pkec <V — P"V 4+nil <V +nijl, where we used that PV > 0 to obtain the last inequality. [
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Discounted cost

given a discount parameter v € (0, 1), the discounted cost from initial condition z is defined as

hy(x) = Z i‘TE k)| X(0)=z]. (6.31)
k=0

Once again this has the operator-theoretic form,

h, = Zq—kpkc. (6.32)

k=0

and from this we obtain a dynamic programming equation:

hy =c+~Ph,. (6.33)

Proposition 6.5. If (6.27) holds with V' > 0 everywhere, then hy(z) < V(z) +7(1 — )~ for
each x, and v € (0,1).



Proof is similar.
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Example: Linear system

Example: The scalar linear state space model Consider the scalar model,

X(k+1)=aX(k)+N(k+1), k>0, (6.28)

where N i.i.d., with zero mean and finite second moment 0% (not necessarily Gaussian). The cost
function is the quadratic c(x) = érg

Let V(z) = ;,ﬁ:t: with & > 0. We then have,

PV (a

E[V(X (k+1) | X(k) = 2]
%hE[(arM( )?] (6.29)
=Vi(z)+ h(a — 1) + = na‘?\

Provided |a| < 1, we can set k = (1 —a?) !
equation with forcing function e,

in the definition of V' to obtain a solution to Poisson’s

PV (z) =V(z) —c(z) +7, with 7= 31— a?)"1o% (6.30)

[



Stochastic control systems

A Markov Decision Processes (MDP)

X(k+1)=FX(k),U(k),N(k+1))
where N is an i.i.d. sequence. The controlled transition matrix has the explicit form

Py(z,2") = P{F(z,u,N(1)) = 2}, wel, z,2" e X

The pair (X (k),U(k)) is a sufficient statistic in the following sense:

P{X(k+1)=2a"|X(0),..., X(E),U(0),..., Uk): X (k) =2, U(k)=u} = Py(x,2')



Policy and closed-loop system

For any policy &: X — U, if U(k) = (X (k)) for each k, then the controlled process X is a Markov
chain with transition matrix denoted P¢,:

Py (x, 7)) = P,(x, ;1?’)’ x,x’ e X (7.3)

u=¢(x)



Optimal total cost

The definition of the total cost value function is

o0

h*(x) = min > " Eale(®r)] (B.1)
k=0

where &, = (X}, Uy ), the minimum is over all admissible policies, and the subscript indicates that
Xo==z.

Note 1: We say that an input sequence U is admissible if it is a causal function of the joint process:

Uk) = dp(X(0),..., X)), k>0 (7.10)

Note 2: For stochastic systems, in many cases the optimal total cost is not finite



The intuitive idea of admissible input is that it depends only on the current and past states of the system.

A more formal definition of admissible input is that U must be adapted to the filtration (Fy)32,, where Fj, =
o(N(1),...,N(k)) is the o-algebra generated by the noise process N up to time k. A stochastic process U is adapted
to a filtration (Fy)32,, if for all k > 0, U(k) is measurable with respect to Fy.
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Bellman equation for the optimal total cost

When finite, this value function solves the Bellman equation

h*(.r)—mln{ (z,u) +ZP (x, 2" )h* (2 } reX

This is expressed in the equivalent sample path form:

h*(Xk) = c(Pr) + E[A* (Xk+1) | Fi) when U = ¢*(Xg)

¢*(a )Enomln{ (x,u) +ZP (z, 2" )h*( } reX

Richard E. Bellman
1920-1984



If the optimal total cost h* is finite for every x, then it satisfies the Bellman equation.

In many cases, our approach to stochastic optimal control is to solve (approximately) the Bellman equation (or
similar) and hope that it provides the optimal cost and policy. This raises the question of whether any solution to
the Bellman equation provides the optimal cost. The answer in general is no (even for finite systems). Example:
consider the system

u=1

h=0
c=10 @3“6{1’2}
c=0

h =20

1,2
RO SR
c=0

We observe that h satisfies the Bellman equation but ¢" is not optimal.
A sufficient condition for a solution h of the Bellman equation to provide an optimal policy is that X and U are
finite, ¢ is nonnegative and vanishes only at x = z..

Proof.

E [i (X (k), U(k)) | = h(X(0)) — E[A(X (n))].

k=0

When the optimal total cost is finite, the assumptions on ¢ imply that P[X(n) = z.] — 1 as n — oco. Hence, it holds
that E [ po, c(X (k), U(k))] > h(X(0)) — h(z.). The inequality is an equality when U(k) = ¢(X (k)) where

o(x) € argendin {c(z,u) + Pyh(x)},

concluding the proof. O

In practice, we will ignore these issues and assume that the (approximate) solutions to Bellman equation provide
near-optimal policies.
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Optimal total discounted cost

Discounted Cost Value Function. For a discount factor v € [0, 1),
OO
h*(x) = minz '“,-’kE;r[C[(Pk)] (B.2)

U
k=0

When finite, this value function solves the Bellman equation

hW(x) = min{c(l‘. u) + v Z P, (z, .1?’)11*(1")} , reX

T

This is expressed in the equivalent sample path form:

h*(Xr) = c(Pr) + ~ E[R*(Xgq1) | Fi] when U = ¢*(X1)

¢*(z) € arg 111'111{0(.1’.. u) + -~ Z Pu_(l‘.;r")h*(.r’)} . o reX

u



If the optimal discounted cost A* is finite for every x, then it satisfies the Bellman equation.
The converse is not always true: a solution to Bellman equation may not always provide an optimal policy for
the discounted cost. Example: consider the system

h =10 h =80

=1 W@W@ﬁ.

=0 c=0

with v = % We observe that h satisfies the Bellman equation but ¢” is not optimal.
A sufficient condition for a solution h of the Bellman equation to provide an optimal policy is that A is bounded
from below and above.

Proof.
> h(X(0)) — y"E[h(X (n))].

Hence, E [3°77 7" e(X (k),U(k))] > h(X(0)). The inequality is an equality when U(k) = ¢(X (k)) where

o(x) € argeHJin {c(z,u) + yP,h(z)},

concluding the proof. O

In practice, we will ignore these issues and assume that the (approximate) solutions to Bellman equation provide
near-optimal policies.
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Optimal average cost

Average Cost Optimal Control. Denote for any input sequence,

1 n—1
nu(zx) = hmsup Z Ex[c(Py)] (B.3)

The minimum over all admissible inputs is denoted n*(x).

Consider the average cost optimality equation (ACOE):

muin{c(;r. u) + P,h* (2)} = h*(z) + (B.6)

The function A* is known as the relative value function, and the minimizer is a stationary policy
that achieves the optimal average cost:

$*(z) = argmin{c(z, u) + Pyh* ()}



The optimal average cost, even if finite, can depend on z. In this case, no solution to the ACOE can be obtained.
Even if n*(z) is independent of z, it is not clear how to build from it a solution to the ACOE.

What can we say about the converse: does any solution (h,7n) to the ACOE provide an optimal policy for the
average cost? The answer in general is no. Example: consider the system

u=2
h—o °=2 o0 h=1 h=2 h=3 h=4
u=1
=01 ) -
u=2 u e {1,2} u e {1,2} u e {1,2}
u=1 c=1 c=0 c=0 c=0
c=1

We observe that (h,n), with h given above and n = 1, satisfies the ACOE but ¢" is not optimal.
A sufficient condition for a solution (h,n) of the ACOE to provide an optimal policy is that h is bounded from
below and above.

Proof.

> Lh(X(0)) ~ (X ()] + 7.

3=

Hence, limsup,,_,,, ~E [ZZ;S (X (k), U(k))] > 7. The inequality is an equality when U(k) = ¢(X (k)) where

o(z) € argerﬂin {c(z,u) + P,h(x)},

concluding the proof. O

In practice, we will ignore these issues and assume that the (approximate) solutions to the ACOE provide near-
optimal policies.
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Value iteration

Value Iteration Algorithm (VIA)

Initialized with a function Vy: X — R. Then, for each n > 0,
Varile)= miu{('(I. u) + P,V, (.1‘)} (B.10)
u
A policy at stage n is defined as the minimizer:

dn(z) = argmin{c(z,u) + P,V; (2)}

Proposition B.1. At stage n, we have a sequence of policies (bo, ..., dn_1). The function V,
can be exrpressed as
n—1
Vo(z) = minEg [ e(Xp, Ur) + Vo(Xy)] (B.11)
k=0
where the minimum is over all admissible inputs. There is a minimizer that is Markov, but not
necessarily stationary:

Up =¢ni(X3)., 0<k<n—1 (B.12)

under mild assumptions [45]: lim [V, (z) — Vi, (z*)] = h*(x)
n—00



VIA may not always converge (even if a solution to the ACOE exists). Example: for the system

c=1
c=0

with Vo(so) = Vo(s1) = 0, it does not converge.

A sufficient condition for the VIA to converge to a solution of the ACOE is the following: (i) X and U are finite,
(ii) the ACOE has a solution (h*,7*), (iii) there is a unique policy ¢* corresponding to (h*,n*), (iv) P £ P, admits
an invariant measure 7, and (v) there is € > 0 and T > 0 such that for all trajectory (X, U) of the system, all z € X
and all k > T, P[X(k) =2x] > e.

Proof. Let n > 0 (which will be assumed very large) and let (X™*,U*) be as in (B.12) for this n. The assumptions
(iii) and (v) imply that there is K > 0 (independent of n, X* and U*) such that U*(k) # ¢*(X*(k)) for at most K
values of k in {0,...,n —1}. Let 1 < ky < ko < n. Assume that U*(k) = ¢*(X*(k)) for all k; <k < kg — 1. Then,

ko—1

Vi (X5 (k1)) = E | Y e(X* (), U (K)) + Vaioo (X (R2)) | X*(kl)]

k=k1
= E[P"(X" (k1)) + (k2 — ka)n™ — (X7 (k2)) + Vi, (X7 (B2)) | X (K1)
= D (X* (k1)) + (k2 — k)" = (PR 7R (X (k1)) + (P75 Vi, ) (X (k1)
= D(X* (k1)) + (k2 = k)" = @(h*) + 7 (Vaory) + O((n = k2)p™ "),

where p € [0, 1) is the spectral radius of P — 1" 7. Assume that ko — kq is large enough so that
Vo (X7 (k1)) — {R* (X (k1)) + (k2 = k)n™ = m(B") + 7(Vioiy )} < 1.
Since U* (k1 — 1) minimizes
(X" (k1 — 1), U (k1 — 1)) + E [Vi—ky (X* (k1)) | X* (k1 — 1), U (k1 — 1)],

this implies by assumption (iii) that U*(k; — 1) = ¢*(X™* (k1 — 1)). Hence, the above all together implies that there
is m > 0 (independent of n, X* and U*) such that for all 0 < k <n —m, U*(k) = ¢*(X*(k)). It follows that

Va(z) = " (z) + (n —m)n" — 7 (h*) + 7(Vin) + O(mp" ™).
)+

Hence, V,(z) — V,,(2*) = h*(z) — h*(2®*) + O(mp™~ ™). This concludes the proof. O
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Policy improvement

Policy Improvement Algorithm (PIA)
Given an initial policy dg, a sequence (¢, hy,) is constructed as follows: At stage n, given dy,,

(1) Solve Poisson’s equation
Pohyp = hy — e + TIn

where e () = c(x, byp(x)) for each x, 7, is the steady-state cost using the policy &y, and P,
is the transition matrix obtained when the chain is controlled using ¢,,.

(ii) Construct a new policy:

bni1(x) € arg 111111{0.(;1‘. u) + P.u_h.n(;r.)} \ reX (B.14)

PIA is Newton-Raphson applied to the convex piecewise linear A
operator T : (h,n) ~ T(h,n) defined by

T(h,n)(x) = h(x) +n— muin {c(x,u) + B,h(x)}
h

¥

Under mild assumptions, PIA converges in a finite number of _,/,.-"‘hn_,_] hy,
steps



PIA may not always converge (even if a solution to the ACOE exists). Example: Consider the system

c=10 c=10

u=1 u=1
C_]-OC@\/JC_]'O

u=2 u € {1,2} u=2
¢ =100 c=0 c=100

We start with ¢(so) = ¢(s1) = ¢(s2) = 1. A valid h is given by h(so) = 20, h(s1) = 20 and h(sz) = 0, with n = 10.
Hence, a new policy is ¢(sg) = 2, ¢(s1) = ¢(s2) = 1. A valid h is given by h(sg) = 20, h(s1) = 0 and h(sz2) = 20,
with n = 10. Hence, a new policy is ¢(sg) = ¢(s1) = ¢(s2) = 1, and we have looped back. However, the best average
cost is n* = 0 with associated policy, e.g., ¢(sg) = ¢(s1) = @(s2) = 2.

A sufficient condition for the PIA to converge toward an optimal policy in finite time is that X and U are finite
and for every policy, the closed-loop system admits a stationary measure with full support.

Proof.
Cn+1 + PnJrlhn S Cn + Pnhn - nnl + hnu

where the inequality comes from the definition of ¢,41 and the equality comes from the definition of h,,. Left-
multiplying both sides by | gives

T T T T T T
Tp+1Cn+1 + 7Tn+1Pn+1hn < 77n7Tn+11 + 7Tn+1hn - M+l + 7Tn+1hn < Np + Tpyin ho, - Mn+1 < Mp.

Hence, 1, decreases with n and strictly decreases if ¢,, is not optimal for h,, (we used the full support assumption
here). Since there is a finite number of different policies, there is n > 0 such that ¢,, is optimal for h,,. O
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ACOE Linear Programming

ACOE Linear Program

1" = min Z O(x,u)e(x,u) (B.22a)
s.t. Z @(z,u)Py(x,2') = Z @2 u), 2 eX (B.22b)
> @(zu)=1, >0 (B.22¢)

The dual of (B.22) can be reduced to a version of the ACOE:

max =z

st. clx)—z+ Z Py(z,y)h(y) — h(x) > 0. reX, ueU. (B.23)
yEX

If (h*,n™) solves the ACOE, then (h,z) = (h*,z") is an optimal solution of (B.23)

w(x,u) in (B.22) is interpreted as the invariant probability of being in state x and
taking input u for an optimal closed-loop system



Proof. 1t is clear that (h,z) = (h*,n*) is a feasible solution of (B.23). Let (h,z) be a feasible solution of (B.23).
Then, z + h < ming ey ¢ + Pyh. It follows that

1

E [i (X (k) UKR))| 2 =+ (X)) + ER(X ()],

k=0

This implies that z < n*. Hence, (h,z) = (h*,n*) is optimal. O
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Fluid model approximation

A Markov Decision Processes (MDP)

X(k+1)=F(X(k),Uk),N(k+1)) (7.1)

consider the averaged dynamics associated with (7.1):

Flz,u) EE[F(z,u,N(k+1))]., zeX, ueU(x) (7.16)
which is independent of k since N is i.i.d. The associated fluid model is the deterministic state
space model

z(k+1) =F(z(k), uk)) (7.17)



Fluid model and optimality

consider the total cost value function J* associated with the (deterministic) fluid model (7.

This satisfies the DP equation

J*(z) = 111“111{(.'(.1'. u) + J*(F(x,u))}

Denote 7j(x,u) = PyJ (x) — J(F(x,u))

the DP equation (7.22) for the fluid model implies a DP equation for the MDP model:

J*(z) = min{c(x,u) — f(xz,u) + P,J* ()}, reX (7.
LY |

=1

o



Fluid model and optimality

(continued)

the DP equation (7.22) for the fluid model implies a DP equation for the MDP model:

J*(x) = min{e(x, u) — gz, u) + Py J* (x)}, reX

7 is small in the span seminorm:

— def ; _
H'I)Hsp = liinimax ?](;1" 'u_) — Q|
e T,u

Letting 0° denote the minimizer and ¢/ (z, u) = ¢(z, u) — [7(x,u) — 0°], (7.25) becomes
o° + JM(x) = lllill{CJ(;I’. u) + P,J* ()}
” v

Hence .J* solves the ACOE with this cost function, and average cost o°.

X



Example: Fluid model of linear system

 Linear System: X(k +1) = AX(k) + BU(k) + DN (k)

* Fluid Model: x(k + 1) = Ax(k) + Bu(k)

e Quadratic Cost: c(x,u) = [x,u] " Q[x, u]

 Optimal Cost of Fluid Model (LQR): J*(x) = x " Px

* Discrepancy: /(x,u) & E[J*(Ax + Bu+ DN)] — J*(Ax + Bu)
 Observe: 7j(x,u) & J*(Ax + Bu) + E[NTPN] — J*(Ax + Bu)
* Hence: J*(x) + E[NTPN] = ml}n{c(x, u) + B,J*(x)}

* The LQR policy gives the optimal average cost: n* = E[N " PN]



Parameterized systems

we are presented with a parameterized family {Pp, 79, co,m9 : 0 € R‘I}. subject to the following
assumptions:

Assumptions for a Markov famaly. There is a common state space X, and for each 6:
A 71y is invariant for Py
A cg: X— R, and 1y = mp(cp)

A There is a solution hg to Poisson’s equation:

cg + Pyphg = hg + 19 (6.50)

A The average cost 19 and other functions of # are continuously differentiable in 6.

The control objective is to minimize the loss function T'(#) = ng over all # € R?

eradient descent: %Bt = —VI'(d)



Score function

define the score function : S9(z,2") = Vglog(Py(x.2")), r, 7 € X

Lemma 6.7. For a finite state space Markov chain, and any function g: X — R,

Vi {Z Py(x, ;1’.")5}(;1"')} = Z Py(x,2") S8 (z, 2" g (")



Sensitivity theorem

Theorem 6.8. (Sensitivity Theorem) Suppose that the assumptions of this section hold, and
in addition X is finite, cg(x) is continuously differentiable in 6 for each x, and the score function
is continuous at each value of 0 for which Py(x,2") > 0. Then,

V() = Ex, [Vaco(X (k) + SO (X (k), X (k + 1)hg(X (k +1))] (6.52)

where the expectation is in steady-state.

The stochastic approximation theory invites the stochastic gradient descent (SGD) algorithm
Ons1 = On — (‘n~+-1v.r(” 1)
Vr(n +1) = [Vyep (X (1)) + (X (n), X (n + 1))he(X (n + 1))]

where {ay,} is a step-size sequence

oo,



Proof.

Hence,

It holds that

Hence,

ho +m91 = co + Pyhg.

Vohg + Vong = Vgco + Vo[Pohg).

Vo{Pohg}(x) = Vg { Z Pg(:l?,l‘/)hg(xl)}

z'eX
= Z [V@Pg(l‘, x')hg(x/) + Pg(.r, x/)Vth(xl)]
z'eX
= Z [Py(x,2")Sp(z, 2"V ho(z") + Po(z,2")Vohg(x)].
z'eX

Vong = klir& E [—Vghg(x(k)) + VgCQ(x(k)) + Sg(x(k)7 :E(/C + 1))h9(x(k)) + Vghg(x(k + 1))]
= lim E [Voco(X (k) + So(X (k), X (k +1))he(X (k))].
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Next course

* Learning techniques for stochastic control
 Temporal difference:

* Main challenge: estimate (9.1) from data consistently
* Variance reduction
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