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Stochastic system

Andreï Markov
1856-1922



Transition kernel



Invariant measure



An equilibrium measure may not always exist. Example: the system

s0 s1

p = 1

p = 1

has no invariant measure.

Definition 1. A stationary measure for the kernel P is a measure π satisfying
∫
P (x, S)π(dx) = π(S).

An invariant measure is stationary, but the converse is not always true. Example: the system above has stationary
measure π(s0) = π(s1) =

1
2 but no invariant measure.

A stationary measure may not always exist. Example: the random walk (aka. Brownian motion) has no stationary
measure.

A stationary measure, if it exists, may not be unique. Example: the system

s0 s1

p = 1 p = 1

admits any probability distribution on X = {s0, s1} as stationary measure.
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Finite systems

0,6 0,4
0,7 0,3
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A
E



Conditional expectation

Bernard O. Koopman
1900-1981



Example 1: Linear model



Example 1: Linear model
(continued)



Example 2: Queue





Finite systems: spectrum and ergodicity

Oskar Perron
1880-1975

Georg F. Frobenius
1849-1917



Point (ii) says that a finite stochastic system always admits a stationary measure π.

Proof of (ii). This can be obtained, e.g., by Brouwer fixed-point theorem since P⊤∆ ⊆ ∆, where ∆ = {π ∈ Rm : π ≥
0, 1⊤π = 1} is the set of probability distributions on X. Indeed, if π ∈ ∆, then P⊤π ≥ 0 and 1⊤P⊤π = 1⊤π = 1, so
that P⊤π ∈ ∆.
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Finite systems: spectrum and ergodicity
(continued)



Finite systems: spectrum and ergodicity





Example: Ergodic Markov chain

𝜋 =
63

99
,
36

99

A E

0,6 0,4
0,7 0,3

A E
A
E



Poisson equation Siméon Denis Poisson
1781-1840



Poisson equation: properties of solutions

If 𝜋 is an invariant measure, then 𝜂 = 𝜋 𝑐 ≝ ∫ 𝑐 𝑥 𝜋 𝑑𝑥



A solution to Poisson equation may not always exist. Example: the system

s0 s1

p = 1
c = 0

p = 1
c = 1

admits no solution to Poisson equation.
If a solution exists and the system admits an invariant measure (or more generally a stationary measure) π, then

η =
∫
c(x)π(dx). Indeed,∫

c(x) + Ph(x) π(dx) =

∫
h(x) + η π(dx) =⇒

∫
c(x) π(dx) =

∫
η π(dx) = η.

If the sum in (6.24) converges, then it is a solution to Poisson equation. However, it may not always converge.
Example: for the system

s0 s1

p = 1
c = 1

p = 1
c = 0 ,

it does not converge.
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Poisson equation: finite systems



Proof of (i). Let P̃ = P − 1⊤π, where π is the invariant measure of P . It holds that P̃ k c̃ = (P k − 1⊤π)c̃ and P k c̃.
Since the eigenvalues of P̃ lie in the interior of the unit disk (show this), the sum converges.

Proof of (ii). Let P̃ = P − sν⊤. First, we show that the eigenvalues of P̃ lie in the interior of the unit disk. Let ρ be
the spectral radius of P̃ . Since, P̃ ≥ 0, ρ is an eigenvalue and there is a nonnegative associated eigenvector v. Hence,
Pv − sν⊤v = ρv. This implies that π⊤Pv − (π⊤s)(ν⊤v) = ρπ⊤v. Hence, −(π⊤s)(ν⊤v) = (ρ− 1)π⊤v. Assume that
ρ ≥ 1. This implies that ν⊤v = 0, since π⊤s > 0 by assumption on s. It follows that Gv = Pv = ρv. Hence, ρ is
an eigenvalue of P . Hence, ρ = 1 and v is an eigenvector of P with eigenvalue 1. This implies that v is a positive
multiple of 1. This is a contradiction with ν⊤v = 0. Hence, ρ < 1.

The above shows that the sum of P̃ k converges to [I − P̃ ]−1. Finally, we show that h = Gs,ν c̃ provides a solution

to Poisson equation. Indeed, it holds that [I − P̃ ]h = h− Ph+ sν⊤h = c− η1. Hence, by left-multiplying by π⊤ on
both sides, we get (π⊤s)(ν⊤h) = 0. This implies ν⊤h = 0, so that h− Ph = c− η1, concluding the proof.

Remark 1. The proof of (ii) only uses the existence of a unique stationary measure, not the existence of an invariant
measure.
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Lyapunov functions



Average cost



Proof. Note that c ≤ V − PV + η̄1. Hence, for all k ≥ 0, P k ≤ P kV − P k+1V + η̄1. Summing for k = 0, . . . , n− 1,
we get that

∑n−1
k=0 P

kc ≤ V −PnV +nη̄1 ≤ V +nη̄1, where we used that PnV ≥ 0 to obtain the last inequality.
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Discounted cost



Proof is similar.
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Example: Linear system



Stochastic control systems



Policy and closed-loop system



Optimal total cost

Note 1:

Note 2: For stochastic systems, in many cases the optimal total cost is not finite



The intuitive idea of admissible input is that it depends only on the current and past states of the system.
A more formal definition of admissible input is that U must be adapted to the filtration (Fk)

∞
k=0, where Fk =

σ(N(1), . . . , N(k)) is the σ-algebra generated by the noise process N up to time k. A stochastic process U is adapted
to a filtration (Fk)

∞
k=0 if for all k ≥ 0, U(k) is measurable with respect to Fk.
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Bellman equation for the optimal total cost

Richard E. Bellman
1920-1984



If the optimal total cost h⋆ is finite for every x, then it satisfies the Bellman equation.
In many cases, our approach to stochastic optimal control is to solve (approximately) the Bellman equation (or

similar) and hope that it provides the optimal cost and policy. This raises the question of whether any solution to
the Bellman equation provides the optimal cost. The answer in general is no (even for finite systems). Example:
consider the system

s0

s2

s1

u = 1
c = 10

u = 2
c = 0

u ∈ {1, 2}
c = 0

u ∈ {1, 2}
c = 0

h = 10

h = 0

h = 20

.

We observe that h satisfies the Bellman equation but ϕh is not optimal.
A sufficient condition for a solution h of the Bellman equation to provide an optimal policy is that X and U are

finite, c is nonnegative and vanishes only at x = xe.

Proof.

E

[
n−1∑
k=0

c(X(k), U(k))

]
≥ h(X(0))− E[h(X(n))].

When the optimal total cost is finite, the assumptions on c imply that P[X(n) = xe] → 1 as n → ∞. Hence, it holds
that E [

∑∞
k=0 c(X(k), U(k))] ≥ h(X(0))− h(xe). The inequality is an equality when U(k) = ϕ(X(k)) where

ϕ(x) ∈ argmin
u∈U

{c(x, u) + Puh(x)} ,

concluding the proof.

In practice, we will ignore these issues and assume that the (approximate) solutions to Bellman equation provide
near-optimal policies.
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Optimal total discounted cost



If the optimal discounted cost h⋆ is finite for every x, then it satisfies the Bellman equation.
The converse is not always true: a solution to Bellman equation may not always provide an optimal policy for

the discounted cost. Example: consider the system

s0 s1 s2 s3 s4 · · ·
u = 2
c = 0

u ∈ {1, 2}
c = 0

u ∈ {1, 2}
c = 0

u ∈ {1, 2}
c = 0

u = 1
c = 1

h = 2 h = 10 h = 20 h = 40 h = 80

with γ = 1
2 . We observe that h satisfies the Bellman equation but ϕh is not optimal.

A sufficient condition for a solution h of the Bellman equation to provide an optimal policy is that h is bounded
from below and above.

Proof.

E

[
n−1∑
k=0

γkc(X(k), U(k))

]
≥ h(X(0))− γnE[h(X(n))].

Hence, E
[∑∞

k=0 γ
kc(X(k), U(k))

]
≥ h(X(0)). The inequality is an equality when U(k) = ϕ(X(k)) where

ϕ(x) ∈ argmin
u∈U

{c(x, u) + γPuh(x)} ,

concluding the proof.

In practice, we will ignore these issues and assume that the (approximate) solutions to Bellman equation provide
near-optimal policies.
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Optimal average cost



The optimal average cost, even if finite, can depend on x. In this case, no solution to the ACOE can be obtained.
Even if η⋆(x) is independent of x, it is not clear how to build from it a solution to the ACOE.

What can we say about the converse: does any solution (h, η) to the ACOE provide an optimal policy for the
average cost? The answer in general is no. Example: consider the system

s0 s2s1 s3 s4 s5 · · ·

u = 1
c = 1

u = 2
c = 2

u = 2
c = 1

u ∈ {1, 2}
c = 0

u ∈ {1, 2}
c = 0

u ∈ {1, 2}
c = 0

u = 1
c = 1

h = 0h = 0 h = 1 h = 2 h = 3 h = 4

.

We observe that (h, η), with h given above and η = 1, satisfies the ACOE but ϕh is not optimal.
A sufficient condition for a solution (h, η) of the ACOE to provide an optimal policy is that h is bounded from

below and above.

Proof.

1

n
E

[
n−1∑
k=0

c(X(k), U(k))

]
≥ 1

n
h(X(0))− 1

n
E[h(X(n))] + η.

Hence, lim supn→∞
1
nE

[∑n−1
k=0 c(X(k), U(k))

]
≥ η. The inequality is an equality when U(k) = ϕ(X(k)) where

ϕ(x) ∈ argmin
u∈U

{c(x, u) + Puh(x)} ,

concluding the proof.

In practice, we will ignore these issues and assume that the (approximate) solutions to the ACOE provide near-
optimal policies.
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Value iteration



VIA may not always converge (even if a solution to the ACOE exists). Example: for the system

s0 s1

c = 1

c = 0

with V0(s0) = V0(s1) = 0, it does not converge.
A sufficient condition for the VIA to converge to a solution of the ACOE is the following: (i) X and U are finite,

(ii) the ACOE has a solution (h⋆, η⋆), (iii) there is a unique policy ϕ⋆ corresponding to (h⋆, η⋆), (iv) P ≜ Pϕ⋆ admits
an invariant measure π, and (v) there is ϵ > 0 and T ≥ 0 such that for all trajectory (X,U) of the system, all x ∈ X
and all k ≥ T , P[X(k) = x] ≥ ϵ.

Proof. Let n ≥ 0 (which will be assumed very large) and let (X⋆, U⋆) be as in (B.12) for this n. The assumptions
(iii) and (v) imply that there is K ≥ 0 (independent of n, X⋆ and U⋆) such that U⋆(k) ̸= ϕ⋆(X⋆(k)) for at most K
values of k in {0, . . . , n− 1}. Let 1 ≤ k1 ≤ k2 ≤ n. Assume that U⋆(k) = ϕ⋆(X⋆(k)) for all k1 ≤ k ≤ k2 − 1. Then,

Vn−k1
(X⋆(k1)) = E

[
k2−1∑
k=k1

c(X⋆(k), U⋆(k)) + Vn−k2
(X⋆(k2))

∣∣∣∣∣X⋆(k1)

]
= E [h⋆(X⋆(k1)) + (k2 − k1)η

⋆ − h⋆(X⋆(k2)) + Vn−k2
(X⋆(k2)) |X⋆(k1)]

= h⋆(X⋆(k1)) + (k2 − k1)η
⋆ − (P k2−k1h⋆)(X⋆(k1)) + (P k2−k1Vn−k2

)(X⋆(k1))

= h⋆(X⋆(k1)) + (k2 − k1)η
⋆ − π(h⋆) + π(Vn−k2) +O((n− k2)ρ

k2−k1),

where ρ ∈ [0, 1) is the spectral radius of P − 1⊤π. Assume that k2 − k1 is large enough so that

|Vn−k1
(X⋆(k1))− {h⋆(X⋆(k1)) + (k2 − k1)η

⋆ − π(h⋆) + π(Vn−k2
)}| ≪ 1.

Since U⋆(k1 − 1) minimizes

c(X⋆(k1 − 1), U⋆(k1 − 1)) + E [Vn−k1(X
⋆(k1)) |X⋆(k1 − 1), U⋆(k1 − 1)] ,

this implies by assumption (iii) that U⋆(k1 − 1) = ϕ⋆(X⋆(k1 − 1)). Hence, the above all together implies that there
is m ≥ 0 (independent of n, X⋆ and U⋆) such that for all 0 ≤ k ≤ n−m, U⋆(k) = ϕ⋆(X⋆(k)). It follows that

Vn(x) = h⋆(x) + (n−m)η⋆ − π(h⋆) + π(Vm) +O(mρn−m).

Hence, Vn(x)− Vn(x
•) = h⋆(x)− h⋆(x•) +O(mρn−m). This concludes the proof.
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Policy improvement

PIA is Newton-Raphson applied to the convex piecewise linear 
operator 𝑇 ∶ ℎ, 𝜂 ↦ 𝑇(ℎ, 𝜂) defined by

𝑇 ℎ, 𝜂 𝑥 =  ℎ 𝑥 + 𝜂 − min
𝑢

 {𝑐 𝑥, 𝑢 + 𝑃𝑢ℎ 𝑥 }

Under mild assumptions, PIA converges in a finite number of 
steps



PIA may not always converge (even if a solution to the ACOE exists). Example: Consider the system

s0s1 s2

u = 1
c = 10

u = 2
c = 100

u = 2
c = 10

u = 2
c = 100

u ∈ {1, 2}
c = 0

u = 1
c = 10

u = 1
c = 10

.

We start with ϕ(s0) = ϕ(s1) = ϕ(s2) = 1. A valid h is given by h(s0) = 20, h(s1) = 20 and h(s2) = 0, with η = 10.
Hence, a new policy is ϕ(s0) = 2, ϕ(s1) = ϕ(s2) = 1. A valid h is given by h(s0) = 20, h(s1) = 0 and h(s2) = 20,
with η = 10. Hence, a new policy is ϕ(s0) = ϕ(s1) = ϕ(s2) = 1, and we have looped back. However, the best average
cost is η⋆ = 0 with associated policy, e.g., ϕ(s0) = ϕ(s1) = ϕ(s2) = 2.

A sufficient condition for the PIA to converge toward an optimal policy in finite time is that X and U are finite
and for every policy, the closed-loop system admits a stationary measure with full support.

Proof.
cn+1 + Pn+1hn ≤ cn + Pnhn = ηn1+ hn,

where the inequality comes from the definition of ϕn+1 and the equality comes from the definition of hn. Left-
multiplying both sides by π⊤

n+1 gives

π⊤
n+1cn+1 + π⊤

n+1Pn+1hn ≤ ηnπ
⊤
n+11+ π⊤

n+1hn =⇒ ηn+1 + π⊤
n+1hn ≤ ηn + πn+1n

⊤hn =⇒ ηn+1 ≤ ηn.

Hence, ηn decreases with n and strictly decreases if ϕn is not optimal for hn (we used the full support assumption
here). Since there is a finite number of different policies, there is n ≥ 0 such that ϕn is optimal for hn.
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ACOE Linear Programming

If (ℎ∗, 𝜂∗) solves the ACOE, then ℎ, 𝑧 = ℎ∗, 𝑧∗ is an optimal solution of (B.23)

𝜛(𝑥, 𝑢) in (B.22) is interpreted as the invariant probability of being in state 𝑥 and 
taking input 𝑢 for an optimal closed-loop system



Proof. It is clear that (h, z) = (h⋆, η⋆) is a feasible solution of (B.23). Let (h, z) be a feasible solution of (B.23).
Then, z + h ≤ minu∈U c+ Puh. It follows that

1

n
E

[
n−1∑
k=0

c(X(k), U(k))

]
≥ z +

1

n
h(X(0)) +

1

n
E[h(X(n))],

This implies that z ≤ η⋆. Hence, (h, z) = (h⋆, η⋆) is optimal.
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Fluid model approximation



Fluid model and optimality



Fluid model and optimality
(continued)



Example: Fluid model of linear system 

• Linear System: 𝑋 𝑘 + 1 = 𝐴𝑋 𝑘 + 𝐵𝑈 𝑘 + 𝐷𝑁 𝑘

• Fluid Model: 𝑥 𝑘 + 1 = 𝐴𝑥 𝑘 + 𝐵𝑢 𝑘

• Quadratic Cost: 𝑐 𝑥, 𝑢 = 𝑥, 𝑢 ⊤𝑄[𝑥, 𝑢]

• Optimal Cost of Fluid Model (LQR): 𝐽∗ 𝑥 = 𝑥⊤𝑃𝑥

• Discrepancy: ഥ 𝜂 𝑥, 𝑢 ≝ 𝐸 𝐽∗ 𝐴𝑥 + 𝐵𝑢 + 𝐷𝑁 − 𝐽∗ 𝐴𝑥 + 𝐵𝑢

• Observe: ഥ 𝜂 𝑥, 𝑢 ≝ 𝐽∗ 𝐴𝑥 + 𝐵𝑢 + 𝐸[𝑁⊤𝑃𝑁] − 𝐽∗ 𝐴𝑥 + 𝐵𝑢

• Hence: 𝐽∗ 𝑥 + 𝐸 𝑁⊤𝑃𝑁 = min
𝑢

{𝑐 𝑥, 𝑢 + 𝑃𝑢𝐽∗(𝑥)}

• The LQR policy gives the optimal average cost: 𝜂∗ = 𝐸 𝑁⊤𝑃𝑁



Parameterized systems



Score function



Sensitivity theorem



Proof.
hθ + ηθ1 = cθ + Pθhθ.

Hence,
∇θhθ +∇θηθ = ∇θcθ +∇θ[Pθhθ].

It holds that

∇θ{Pθhθ}(x) = ∇θ

{ ∑
x′∈X

Pθ(x, x
′)hθ(x

′)

}
=

∑
x′∈X

[∇θPθ(x, x
′)hθ(x

′) + Pθ(x, x
′)∇θhθ(x

′)]

=
∑
x′∈X

[Pθ(x, x
′)Sθ(x, x

′)hθ(x
′) + Pθ(x, x

′)∇θhθ(x
′)].

Hence,

∇θηθ = lim
k→∞

E [−∇θhθ(x(k)) +∇θcθ(x(k)) + Sθ(x(k), x(k + 1))hθ(x(k)) +∇θhθ(x(k + 1))]

= lim
k→∞

E [∇θcθ(X(k)) + Sθ(X(k), X(k + 1))hθ(X(k))] .
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Next course

• Learning techniques for stochastic control
• Temporal difference: 

• Main challenge: estimate (9.1) from data consistently
• Variance reduction
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