LINMAZ2725 Stochastic Optimal Control and Reinforcement Learning
Part 111

Course 2: Temporal Difference Techniques
Guillaume Berger

November 18, 2024

Reference: [1], Chapter 9.

Any questions or feedback are welcome.

Stochastic Optimal Control
and Reinforcement Learning

Part lll: Stochastic Systems

Guillaume Berger

Table of content

* Stochastic systems and stochastic control (1 course)

* Learning techniques for stochastic control (1-2 courses)
* TD(A)-learning: definition and analysis
* Q-learning: definition and analysis
* Next course: actor-critic methods

* Online learning techniques for stochastic control (1-2 courses)

Value and Q-functions approximation

Linear template:
he (x) = 6Ty(x)
where Y(x) = (1 (%), ..., Pg(x)) and 6 € R?

Goal: find 8* such that h? =~ h

Similarly for the Q-function with Q% (x,u) = 6 Ty (x, u)

Temporal difference and Bellman error

In this course, we focus on the discounted cost, withy € [0,1)

Bellman error:
Bi.1(X) & —h%(X(n)) + c(X(n)) +yE[RO (X(n+ 1)) | X(n) |

Temporal difference:
DY . (X) & —pf (X(n)) + c(X(n)) + yh? (X(n + 1))

Note: BY (X) = E[DS, ,(X) | X(n) |

Metrics for value function approximation

Mean-square Bellman error:
2
mein Er [(Bg+1(x))]

where the expectation is for a process X in steady state

Zero projected Bellman error (aka. Galerkin relaxation):
Er[DS+1(X) - ()] =0 Vi
where each {; is a process in steady state

Boris G. Galerkin
(1871-1945)

The “m” in the subscript of the expectation “E” means that the processes are in steady state. For these processes,
the definitions become independent of n. The subscript “a” will often be omitted in the notation in the following of
this course.

Metrics for value function approximation

(continued)

Distance with true value function:
min||h9 — h
0

where h is the true value function and |

.

flI2 = B [F(x(0)°]

Mean-square Bellman error

2
Gradient descent: 0,1 = 0, + @41 (_‘VHIE [(Ben(x)) D

Lemma 9.5. The following holds for each § € R9:
_%VO [{b }] =Ex [Dn lcrz]

where

¢n = VE[R?(X (n)) — yR°(X (n+ 1)) | Fal (9.30)

Stochastic gradient descent:

Ont1=0n + ﬂ‘ra-l—l[Dg—l‘:E]'g:g”

Conditional expectation

How to estimate ¢ = V,ERY (X (n)) — v (X (n+1)) | F] ?

{k=nIX(k+1)=x",X(k)=x}|
[{ksn|X(k)=x}]

If X is finite: take P(x'|x) ~

If X is infinite, the denominator is zero a.s.

By definition: E[Z | Y | & argZ,mir(ly)IEHZ' — 7|?]
=g

Conditional expectation

(continued)

Approximated conditional expectation:

= T8 B _ 6 2
IEI/J[ETH'l(X) | X(n)] B ErzérTnli?X(n)) . “E En+1(X)|]

It holds that 8* = A~1b where
A=E[p(XM)P(XM)'| and b =E[P(X(n))EL,(X)]

Conditional expectation

(continued)

A and b can be approxmated by
-1
A def 1 71 T

A= A4, © - D(X(k))P(X (k)

k=0
n-—1

~ 1
b~ by %~) h(X())E{1(X)

M

k=0

Mean-square temporal difference

2
Gradientdescent: 0,,,1 = 0,, + a;;41 (_%VHIE [(Den(x)) D

Stochastic gradient descent:

Ons1 = On + ans1Dnp1Guat (933]

L def .
with Dpeq = D, and

(na1 = —VD? = Vy[h*(X (n)) — vR* (X (n+ 1))]|,_,.

+1 |x5r=.z;”

Easier to implement, but the MSTD is not always a good metric

Example: MSBE vs MSTD

Omspe = 5
Omstp = 3,75 h? =0

In the above example, 0y;qpp is optimal since the associated Bellman error is zero. By contrast, 03;grp is not
optimal. The reason in this case is that it is biased toward minimizing #?, arising from minimizing the temporal
difference associated to the edges going from the lower node.

15

TD(A)-learning

TD(A) algorithm

For initialization #p , (p € RY, the sequence of estimates are defined recursively:
On+1 = On + on1GnDnpa
Dps1 = (—h?(X(n)) + (X (n)) +vh° (X (n +1))) .

N

Cnt1 = AYCn + (X (n+ 1))

Eligibility vectors: ¢ =Y (M)%(X (n —)

i=0

Approximation error of TD(A)-learning

If convergence, then 0=E[{-2" (X(k)) +c(X(k)) + 7" (X (k+1))}G(i)], 1<i<d.

Interpretations for two cases:
fA=0,thenEy[DS, (X)) | X()] =0

IfA=1,then 8" = argmin||h9 — h||
[a T

See [1, Theorem 9.7].

18

Convergence of TD(A)-learning

TD(A) is a linear recursion: n1 =60y + ane [Ani10n — bnyi)

T

An—l — C‘i’? [A,r‘ﬁlf"[}{{'?'l + 1]‘} — LIIJ‘LF(H”
bpi1 = —(ne(X(n))

Under mild assumptions, A & E|[A,,] is Hurwitz

This ensures convergence of the recursion to 8* = A~1b under
adequate choice of step-sizes {«,,}, where b & E[b,,]

See [1, Theorem 9.8]. See [1, Theorem 8.10] for valid step-size choices.

20

Least-square TD(A)-learning

LSTD())

With initialization 6y, (o € R? and Ay € RIx4:

A—1p -
gn—H =0 — Qn-l—lfln Cn Dn.-l—l

(9.42a)
Dpy1 = (X (n)) + [y2(X(n+1)) — (X (n))] 0, (9.42b)
Cnt1 = A + Y(X (n + 1)), (9.42c)
.zfn.l_l - _’Zi.‘ﬂ + 0‘33.},.1 [.‘4n+1 - _in] (9.-1:2(1)
An—l—l = 'Cn [A.'l‘il‘(*X("'z + ”] - L’"’(‘X(‘H'J)]T (9420)

It is a Stochastic Newton-Raphson method since /Tn approximates
the Jacobian (A) of A6 — b

Nonlinear parameterized TD(A)-learning

Suppose {hﬁ 10 e I&‘.'j} are not linear functions of #, but are differentiable. A generalization of the
toregoing is based on the definition
. 17,
i(2:0) = —h%(z).
i(x;0) 90, ()
The temporal difference and eligibility sequence are redefined as follows:

Dpi1 = (X (n)) +vh" (X (n + 1)) — B (X (n)) (9.43a)

Cnt1 = AMG +U(X(n+1);60,), n=0. (9.43h)

If the algorithm is convergent, then the limit #* is expected to solve
- - 18 v . B ¢ v foay) 0 'y
0 = E[(c(X (n)) + A" (X (n + 1)) — k(X (n)))¢Z] (9.44)

where ¢7'; = M¢? + (X (n+1);0%), n > 0, and the expectation in (9.44) is taken with respect to
the joint stationary process (X, ¢ o). The fixed point equation (9.44) no longer has an interpretation
as a Galerkin relaxation when the eligibility vector depends upon the parameter 6.

Return to the Q-function

Goal: evaluate the Q-function Q(x, u) of a given policy ¢ (u|x)
“Data”: stationary sequence ®(k) = (X(k), U(k))

On-policy: P[U(k) = u | X(k) = x] = ¢(u|x)
Off-policy: @ (k) is not related to ¢ (u|x)

Bellman equation for the Q-function

» On-policy method: If U is chosen according to the policy ¢ then

Q(®(k)) = c(®(k)) + YE[Q(®(k + 1)) | Fi] (9.49)
» Off-policy method: If U is any admissible input then the representation must be modified:

Q(®(k)) = c(®(k)) + YE[Q(X(k + 1)) | Fi] (9.50)

where Q(x) = %, Q(x, W (ulx)

TD(A)-learning for the Q-function (on-policy)

TD(A) algorithm (on-policy for Q)

For initialization fy , (s € RY, the sequence of estimates are defined recursively:

1 = 0n + api Cn Dpsa

Dui1 = (—HY(®(n)) + co + yH (®(n + 1))) ‘H:E (9.51)

Cns1 = AyGn + ‘1.5"(1-‘1-!—1] 3 15’[:?'1+1] = ﬁr"{q){n + 1}] » Cn = E‘[‘I’I:H;I]I

Analysis of TD(A)-learning (on-policy)

Same results as for TD(A)-learning for the value function h since
® (k) is an autonomous process

Example: () A=0: In the notation of (9.19),

[n-l—l |}] 0,
with Yy, = ¥(®(n)) = ¢ (n) and Dn+l _H?" (®(n)) +cpn + A,-HH* (®(n+1)).

(ii) A=1: 8" solves

9* = argmin |H? — Q||2 = Z (H(z,u) — Q(z,u))*®@(z,u)
§
reX, usl

Limitations of TD(A)-learning (on-policy)

Requires a randomized policy to ensure that A is Hurwtiz and that
||H‘9 — Q||w Is a good metric

Policies from Policy Improvement are not always randomized

Fix this with an “e-perturbation” of the policy
See also “Gibbs’ policy”

See [1, § 9.5.1] for the definition of “Gibbs’ policies”.

28

TD(A)-learning for the Q-function (off-policy)

TD(M\) algorithm (off-policy for Q)
For initialization 6y, (p € Rd, the sequence of estimates are defined recursively:
Ons1 = On + ane1GnDny
Dns1 = (—H'(®(n) + e +7H’ (X (n +1))|

=0y,
def

Cn+1 = AYCn + Y(ny1) 5 Y(nt1) = V(@(n+1)), en=c(®(n))

Analysis of TD(1)-learning (off-policy)

The results that hold for the value function and the Q-function in the
on-policy setting are no longer valid

The matrix A and vector b become

A= En[ﬁn[—?ﬁ{tﬁ{?z}} + ’“L{X{n + l}})T] . b= —Eﬁ[cﬂqﬂ] . and L_{:t] = ZL"[J‘,. -u}ifﬁ(u | x).

i

It is not trivial to show that A is invertible (under some assumptions)
It is not guaranteed that A is Hurwitz

See [1, Proposition 9.12] and the discussion below it.

31

Q-learning
Goal: approximate the optimal Q-function Q™ (x, u)

Galerkin relaxation:

Given a parametrized family {H b.0 ¢ Rd} and a sequence of d-dimensional eligibility vectors {(,},
the goal 1s to find a solution #” to

0= f(ﬁ”") _ E[{—HH{(I:(-H}] + cn + ’I-'EHI:*XI:'” + 1))}l - (9.71)

where H(x) = min H (x, u)
u

Q(0)-learning

971+l =0 + Q’n+an+1Cn

Dn+l = _Hn((b(n)) +cCn + A."ﬁn(/\’(n‘ + 1)) (9

Cn = VO{H()((I)("))H():(;" = V(n)

~

(W |

The recursion (9.75) for the Q-learning algorithm can be written in a form similar to the linear
recursion (8.53b). On denoting E{nﬂ) =U(X(n+1),dn(X(n+1))), with b, any H"-greedy policy,
Ons1 = On + oni1[Anp10n — bpo]
with An+1 = ﬂ’[ﬂ){qﬁr(nﬂj N Tt-*'I"(?!'J}T (9.76)
bny1 = —cn(y)

This is not a linear SA algorithm since the policy ¢, depends upon 6,,.

Tabular Q(0)-learning

Proposition 9.15. The ODE approrimation for the ()-learning algorithm (9.75) takes the form
deﬂf = fD[H;], with vector field

P20) = @, u)[~H (o u') + e, u) + 3 AP (a,) H ()]

For each i, the function f,f} is concave and piecewise linear as a function of 6. O

Tabular Q(Q)—l.earning suffers from the “curse of condition number”
when w(xl, u‘) is small

In tabular Q-learning, the state—input space is finite, i.e., X x U = {(2%,u%) : 1 < i < d}, and the template 1 is
such that 9 (z,u) = L{(yi ui)y(z,u). Hence, E[th;(®)] = w(z!,u’) £ P[®(n) = (z¢,u’)] (for any fixed n since we are
in steady state).

35

Tabular Q(0)-learning

(continued)

One way to fix the curse of CN is to use a “gain matrix”:

1 f ~ 1 m .
9714_1 - Hn + mG‘ﬂ Dn+1§n " Gnl - T gc.kfbg (9801

Hence,

Its ODE approximation has vector field with components

fi(0) = —H(z' ') + e(a’, w') + 7Y Pu(a',2')H? (2') (9.81)

r

We can easily see that the matrix G, ! is diagonal and satisfies [G},1];; equals the proportion of time the process
® has been in state-input (2, u") over the interval k =0, ...,n. From this observation, (9.81) follows.

37

Tabular Q(0)-learning

(continued)

Under some assumptions, the recursion (9.80) converges toward 6°

Proposition 9.17. For Watkins’ algorithm (9.80),
Stablllty: The function V(f) = |t§| s 1§ a Lyapunov function for the ODE with vector field (9.81):

GV < —(1=7)V (D)

Lemma 9.18. Suppose that the optimal policy ¢* is unique. Then the Jacobian A = Of (67),
. with f given in (9.81), is given by
Variance: A= —I+~T* (9.83)

where T* defines the transition matriz for ® under the optimal policy:

T*(i,j) = Pu(a’,2?)1{u’ = ¢*(27)}, 1<ij<d

Proofs are given in [1].

39

Limitations of general Q(0)-learning

Outside of the tabular setting, very little is known about the
convergence of Q(0)-learning

It is not even clear that f(8) = 0 admits a solution!

One way to fix the existence of solution is GQ-learning (next)

GQ-learning

Goal: solve
1 _ _
min re) = min f(O) ' Mf(0)

where M~1 = [E[llJ(n)l/J(Tn)]

Gradientdescent: 6,1 = 0,, + @41 (—ng(Hn)TMf(Hn))

where Vo f(6,) = A(6,) & E lw(n) (—l/J(n) T V%(nm)T]

The expression for Vg f(6,) supposes ¢, (the greedy policy associated to 6,,) piecewise constant with respect to
6., (which is satisfied for finite state—input systems). In fact, the analysis and motivation of GQ-learning is done here
for finite state—input systems, but the same algorithm applies to infinite systems.

42

GQ-learning stochastic gradient descent

GQ-learning

For initialization fy, wgp € Rd,

9?1+L =0n + dnt1 {Dn+1tﬁi"(n] - ’}'W-L—Jlt.'i’{'njg{'n_;_u} (9'94‘1‘)
Wni1 = Wp + ,.'L3?z—l'ﬁlf’(rt) {D?E—Jl - 'l.ﬁ"zrn]wn} (9-94h)
where E['RH) =U(X(n+1),dp(X(n+1)))

Dpy1=—H"(®(n))+en +vH (X (n+1))

where the two step-size sequences satisty (8.22).

GQ analysis The fast time scale recursion (9.94b) is designed so that w, ~ Mf (6y) for large
n. Theory for two time-scale SA provides an approximation of (9.94a):

Oni1 ~ On + ang {Dn—lgn - 7"f(9n)Tﬂ'I‘gnE(ﬂ_l}}

The equation at the bottom implies that the associated ODE approximation has vector field
fGQ(a) =E {Dn-l-ICn - Vf(e)TMCH% n+l)}
(6) = 1E [41y 00 | M)

=f
{ [w(")w("} { (n+1) V(n) }}Mf()
—A(0)" Mf(0).

Hence, it is indeed a stochastic gradient descent.

44

Discussion of GQ-learning

Pros: works even if f(8) = 0 has no solution

Cons: the condition number at 8* can be highwheny = 1
In the tabular setting, it is expected to be 0((1 — y)‘z)
By comparison, for tabular Q(0)-learning, itis 0((1 —y)™?)

See [1, Proposition 9.27].

46

Next course

e Actor-critic methods
* Find the best policy (actor) with respect to some cost metric (critic)
e Remove the bias inherent to Bellman error metrics

References

[1] Sean Meyn. Control systems and reinforcement learning. Cambridge University Press, 2022.

48

