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Value and Q-functions approximation

Linear template:
ℎ𝜃 𝑥 = 𝜃⊤𝜓 𝑥

where 𝜓(𝑥) = 𝜓1 𝑥 , … , 𝜓𝑑 𝑥 and 𝜃 ∈ ℝ𝑑

Goal: find 𝜃∗ such that ℎ𝜃∗
≈ ℎ

Similarly for the Q-function with 𝑄𝜃(𝑥, 𝑢) = 𝜃⊤𝜓 𝑥, 𝑢



Temporal difference and Bellman error

In this course, we focus on the discounted cost, with 𝛾 ∈ [0,1)

Bellman error:
𝐵𝑛+1

𝜃 𝑋 ≝ −ℎ𝜃 𝑋 𝑛 + 𝑐 𝑋 𝑛 + 𝛾𝔼 ℎ𝜃 𝑋 𝑛 + 1 𝑋 𝑛

Temporal difference:
𝐷𝑛+1

𝜃 𝑋 ≝ −ℎ𝜃 𝑋 𝑛 + 𝑐 𝑋 𝑛 + 𝛾ℎ𝜃 𝑋 𝑛 + 1

Note: 𝐵𝑛
𝜃 𝑋 = 𝔼 𝐷𝑛+1

𝜃 𝑋 𝑋 𝑛



Metrics for value function approximation

Mean-square Bellman error:

min
𝜃

𝔼𝜋 𝐵𝑛+1
𝜃 𝑋

2

where the expectation is for a process 𝑋 in steady state

Zero projected Bellman error (aka. Galerkin relaxation):
𝔼𝜋 𝐷𝑛+1

𝜃 𝑋 ⋅ 𝜁𝑖(𝑛) = 0 ∀𝑖

where each 𝜁𝑖 is a process in steady state

Boris G. Galerkin
(1871–1945)



The “π” in the subscript of the expectation “E” means that the processes are in steady state. For these processes,
the definitions become independent of n. The subscript “π” will often be omitted in the notation in the following of
this course.
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Metrics for value function approximation

(continued)

Distance with true value function:
min

𝜃
ℎ𝜃 − ℎ

𝜋

where ℎ is the true value function and 𝑓 𝜋
2 = 𝔼𝜋 𝑓 𝑋 𝑛

2



Mean-square Bellman error

Gradient descent: 𝜃𝑛+1 = 𝜃𝑛 + 𝛼𝑛+1 −
1

2
∇𝜃𝔼 𝐵𝜃𝑛 𝑋

2

Stochastic gradient descent: 



Conditional expectation

How to estimate                                                                        ?

If 𝑋 is finite: take 𝑃 𝑥′ 𝑥 ≈
𝑘≤𝑛∣𝑋 𝑘+1 =𝑥′,𝑋 𝑘 =𝑥

𝑘≤𝑛∣𝑋 𝑘 =𝑥

If 𝑋 is infinite, the denominator is zero a.s.

By definition: 𝔼 𝑍 𝑌 ≝ arg min
𝑍′=𝑔(𝑌)

𝔼 𝑍′ − 𝑍 2



Conditional expectation

(continued)

Approximated conditional expectation:
𝔼𝜓 𝐸𝑛+1

𝜃 𝑋 𝑋 𝑛 = min
𝐸′=𝜃⊤ 𝜓 𝑋 𝑛

𝔼 𝐸′ − 𝐸𝑛+1
𝜃 𝑋

2

It holds that መ𝜃∗ = 𝐴−1𝑏 where

𝐴 = 𝔼 𝜓 𝑋 𝑛 𝜓 𝑋 𝑛
⊤

      and      𝑏 = 𝔼 𝜓 𝑋 𝑛 𝐸𝑛+1
𝜃 (𝑋)



Conditional expectation

(continued)

𝐴 and 𝑏 can be approximated by

𝐴 ≈ መ𝐴𝑘 ≝
1

𝑛


𝑘=0

𝑛−1

𝜓 𝑋 𝑘 𝜓 𝑋 𝑘
⊤

𝑏 ≈ 𝑏𝑘 ≝
1

𝑛


𝑘=0

𝑛−1

𝜓 𝑋 𝑘 𝐸𝑘+1
𝜃 (𝑋)



Mean-square temporal difference

Gradient descent: 𝜃𝑛+1 = 𝜃𝑛 + 𝛼𝑛+1 −
1

2
∇𝜃𝔼 𝐷𝜃𝑛 𝑋

2

Stochastic gradient descent:

Easier to implement, but the MSTD is not always a good metric



Example: MSBE vs MSTD

𝑐 = −5

𝑐 = 10

𝑝 =
1

2

ℎ𝜃 = 0

ℎ𝜃 = 𝜃 ℎ𝜃 = −𝜃

𝑐 = 0

𝜃𝑀𝑆𝐵𝐸
∗ = 5

𝜃𝑀𝑆𝑇𝐷
∗ = 3,75



In the above example, θ∗MSBE is optimal since the associated Bellman error is zero. By contrast, θ∗MSTD is not
optimal. The reason in this case is that it is biased toward minimizing θ2, arising from minimizing the temporal
difference associated to the edges going from the lower node.
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TD(𝜆)-learning

Eligibility vectors:



Approximation error of TD(𝜆)-learning

If convergence, then 

Interpretations for two cases:

If 𝜆 = 0, then 𝔼𝜓 𝐷𝑛+1
𝜃∗

𝑋 𝑋 𝑛 = 0

If 𝜆 = 1, then 𝜃∗ = arg min
𝜃

ℎ𝜃 − ℎ
𝜋



See [1, Theorem 9.7].
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Convergence of TD(𝜆)-learning

TD(𝜆) is a linear recursion:

Under mild assumptions, 𝐴 ≝ 𝔼 𝐴𝑛 is Hurwitz

This ensures convergence of the recursion to 𝜃∗ = 𝐴−1𝑏 under 
adequate choice of step-sizes 𝛼𝑛 , where 𝑏 ≝ 𝔼 𝑏𝑛



See [1, Theorem 9.8]. See [1, Theorem 8.10] for valid step-size choices.
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Least-square TD(𝜆)-learning

It is a Stochastic Newton-Raphson method since መ𝐴𝑛 approximates 
the Jacobian (𝐴) of 𝐴𝜃 − 𝑏



Nonlinear parameterized TD(𝜆)-learning



Return to the Q-function

Goal: evaluate the Q-function 𝑄(𝑥, 𝑢) of a given policy 𝜙 𝑢 𝑥

“Data”: stationary sequence Φ 𝑘 = 𝑋 𝑘 , 𝑈 𝑘

On-policy: ℙ 𝑈 𝑘 = 𝑢 𝑋 𝑘 = 𝑥 = 𝜙 𝑢 𝑥

Off-policy: Φ 𝑘 is not related to 𝜙 𝑢 𝑥



Bellman equation for the Q-function

where 𝑄 𝑥 = σ𝑢 𝑄 𝑥, 𝑢 𝜙 𝑢 𝑥



TD(𝜆)-learning for the Q-function (on-policy)



Analysis of TD(𝜆)-learning (on-policy)

Same results as for TD(𝜆)-learning for the value function ℎ since 
Φ(𝑘) is an autonomous process

Example:



Limitations of TD(𝜆)-learning (on-policy)

Requires a randomized policy to ensure that 𝐴 is Hurwtiz and that 
𝐻𝜃 − 𝑄

𝜛
is a good metric

Policies from Policy Improvement are not always randomized

Fix this with an “𝜖-perturbation” of the policy
See also “Gibbs’ policy”



See [1, § 9.5.1] for the definition of “Gibbs’ policies”.
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TD(𝜆)-learning for the Q-function (off-policy)



The results that hold for the value function and the Q-function in the 
on-policy setting are no longer valid

The matrix 𝐴 and vector 𝑏 become

It is not trivial to show that 𝐴 is invertible (under some assumptions)
It is not guaranteed that 𝐴 is Hurwitz

Analysis of TD(𝜆)-learning (off-policy)



See [1, Proposition 9.12] and the discussion below it.
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Q-learning

Goal: approximate the optimal Q-function 𝑄⋆(𝑥, 𝑢)

Galerkin relaxation:

where 𝐻 𝑥 = min
𝑢

𝐻 𝑥, 𝑢



Q(0)-learning



Tabular Q(0)-learning

Tabular Q(0)-learning suffers from the “curse of condition number” 
when 𝜛 𝑥𝑖 , 𝑢𝑖 is small



In tabular Q-learning, the state–input space is finite, i.e., X × U = {(xi, ui) : 1 ≤ i ≤ d}, and the template ψ is
such that ψi(x, u) = 1{(xi,ui)}(x, u). Hence, E[ψi(Φ)] = ϖ(xi, ui) ≜ P[Φ(n) = (xi, ui)] (for any fixed n since we are
in steady state).
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Tabular Q(0)-learning

(continued)

One way to fix the curse of CN is to use a “gain matrix”:

Hence,



We can easily see that the matrix G−1
n is diagonal and satisfies [G−1

n ]ii equals the proportion of time the process
Φ has been in state-input (xi, ui) over the interval k = 0, . . . , n. From this observation, (9.81) follows.
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Tabular Q(0)-learning

(continued)

Under some assumptions, the recursion (9.80) converges toward 𝜃∗

Stability:

Variance:



Proofs are given in [1].
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Limitations of general Q(0)-learning

Outside of the tabular setting, very little is known about the 
convergence of Q(0)-learning

It is not even clear that ҧ𝑓 𝜃 = 0 admits a solution!

One way to fix the existence of solution is GQ-learning (next)



GQ-learning

Goal: solve

min
𝜃

Γ 𝜃 = min
𝜃

1

2
 ҧ𝑓 𝜃 ⊤𝑀 ҧ𝑓 𝜃

where 𝑀−1 = 𝔼 𝜓(𝑛)𝜓(𝑛)
⊤

Gradient descent: 𝜃𝑛+1 = 𝜃𝑛 + 𝛼𝑛+1 −∇𝜃
ҧ𝑓 𝜃𝑛

⊤𝑀 ҧ𝑓 𝜃𝑛

where ∇𝜃
ҧ𝑓 𝜃𝑛 = 𝐴 𝜃𝑛 ≝ 𝔼 𝜓(𝑛) −𝜓 𝑛 + 𝛾𝜓 𝑛+1

⊤



The expression for ∇θf̄(θn) supposes ϕn (the greedy policy associated to θn) piecewise constant with respect to
θn (which is satisfied for finite state–input systems). In fact, the analysis and motivation of GQ-learning is done here
for finite state–input systems, but the same algorithm applies to infinite systems.

42



GQ-learning stochastic gradient descent



The equation at the bottom implies that the associated ODE approximation has vector field

f̄GQ(θ) = E
[
Dn+1ζn − γf̄(θ)⊤Mζnψ(n+1)

]
= f̄(θ)− γE

[
ψ
(n+1)

ψ⊤
(n)

]
Mf̄(θ)

=
{
E
[
ψ(n)ψ

⊤
(n)

]
− γE

[
ψ
(n+1)

ψ⊤
(n)

]}
Mf̄(θ)

= −A(θ)⊤Mf̄(θ).

Hence, it is indeed a stochastic gradient descent.
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Discussion of GQ-learning

Pros: works even if ҧ𝑓 𝜃 = 0 has no solution

Cons: the condition number at 𝜃∗ can be high when 𝛾 ≈ 1

In the tabular setting, it is expected to be 𝑂 1 − 𝛾 −2

By comparison, for tabular Q(0)-learning, it is 𝑂 1 − 𝛾 −1



See [1, Proposition 9.27].
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Next course

• Actor-critic methods
• Find the best policy (actor) with respect to some cost metric (critic)
• Remove the bias inherent to Bellman error metrics
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