LINMA2725 Stochastic Optimal Control and Reinforcement Learning Part III

Course 2: Temporal Difference Techniques

Guillaume Berger

November 18, 2024

Reference: [1], Chapter 9.

Any questions or feedback are welcome.

Stochastic Optimal Control and Reinforcement Learning

Part III: Stochastic Systems

Guillaume Berger

Table of content

- Stochastic systems and stochastic control (1 course)
- Learning techniques for stochastic control (1-2 courses)
 - TD(λ)-learning: definition and analysis
 - Q-learning: definition and analysis
 - Next course: actor-critic methods
- Online learning techniques for stochastic control (1-2 courses)

Value and Q-functions approximation

Linear template:

 $h^{\theta}(x) = \theta^{\top} \psi(x)$ where $\psi(x) = \left(\psi_1(x), \dots, \psi_d(x)\right)$ and $\theta \in \mathbb{R}^d$

Goal: find θ^* such that $h^{\theta^*} \approx h$

Similarly for the Q-function with $Q^{\theta}(x, u) = \theta^{\top} \psi(x, u)$

Temporal difference and Bellman error

In this course, we focus on the discounted cost, with $\gamma \in [0,1)$

Bellman error: $B_{n+1}^{\theta}(X) \stackrel{\text{def}}{=} -h^{\theta}(X(n)) + c(X(n)) + \gamma \mathbb{E}[h^{\theta}(X(n+1)) | X(n)]$

Temporal difference:

 $D_{n+1}^{\theta}(X) \stackrel{\text{\tiny def}}{=} -h^{\theta}(X(n)) + c(X(n)) + \gamma h^{\theta}(X(n+1))$

Note: $B_n^{\theta}(X) = \mathbb{E}\left[D_{n+1}^{\theta}(X) \mid X(n)\right]$

Metrics for value function approximation

Mean-square Bellman error:

$$\min_{\theta} \mathbb{E}_{\pi} \left[\left(B_{n+1}^{\theta}(X) \right)^2 \right]$$

where the expectation is for a process X in steady state

Zero projected Bellman error (aka. Galerkin relaxation): $\mathbb{E}_{\pi} \left[D_{n+1}^{\theta}(X) \cdot \zeta_{i}(n) \right] = 0 \quad \forall i$

where each ζ_i is a process in steady state

Boris G. Galerkin (1871–1945) The " π " in the subscript of the expectation "E" means that the processes are in steady state. For these processes, the definitions become independent of n. The subscript " π " will often be omitted in the notation in the following of this course.

Metrics for value function approximation

(continued)

Distance with true value function: $\min_{\theta} \|h^{\theta} - h\|_{\pi}$ where *h* is the true value function and $\|f\|_{\pi}^{2} = \mathbb{E}_{\pi} \left[f(X(n))^{2}\right]$

Mean-square Bellman error

Gradient descent:
$$\theta_{n+1} = \theta_n + \alpha_{n+1} \left(-\frac{1}{2} \nabla_{\theta} \mathbb{E} \left[\left(B^{\theta_n}(X) \right)^2 \right] \right)$$

Lemma 9.5.	The following holds for each $\theta \in \mathbb{R}^d$:	
	$-\frac{1}{2}\nabla_{\theta}E_{\pi}[\{\mathcal{B}^{\theta}(X)\}^{2}] = E_{\pi}[\mathcal{D}_{n+1}^{\theta}\zeta_{n}^{\theta}]$	
where	$\zeta_n^{\theta} = \nabla_{\theta} E[h^{\theta}(X(n)) - \gamma h^{\theta}(X(n+1)) \mid \mathcal{F}_n]$	(9.30)

Stochastic gradient descent:

$$\theta_{n+1} = \theta_n + \alpha_{n+1} [\mathcal{D}_{n+1}^{\theta} \zeta_n^{\theta}] \Big|_{\theta = \theta_n}$$

Conditional expectation

How to estimate

$$\zeta_n^{\theta} = \nabla_{\theta} \mathsf{E}[h^{\theta}(X(n)) - \gamma h^{\theta}(X(n+1)) \mid \mathcal{F}_n]$$

If X is finite: take
$$P(x'|x) \approx \frac{|\{k \le n | X(k+1) = x', X(k) = x\}|}{|\{k \le n | X(k) = x\}|}$$

If *X* is infinite, the denominator is zero a.s.

By definition: $\mathbb{E}[Z \mid Y] \stackrel{\text{\tiny def}}{=} \arg\min_{Z'=g(Y)} \mathbb{E}[|Z'-Z|^2]$

Conditional expectation

(continued)

Approximated conditional expectation: $\widehat{\mathbb{E}}_{\widehat{\psi}}\left[E_{n+1}^{\theta}(X) \mid X(n)\right] = \min_{E' = \widehat{\theta}^{\mathsf{T}}\widehat{\psi}(X(n))} \mathbb{E}\left[\left|E' - E_{n+1}^{\theta}(X)\right|^{2}\right]$

It holds that $\hat{\theta}^* = A^{-1}b$ where $A = \mathbb{E}\left[\hat{\psi}(X(n))\hat{\psi}(X(n))^{\mathsf{T}}\right] \quad \text{and} \quad b = \mathbb{E}\left[\hat{\psi}(X(n))E_{n+1}^{\theta}(X)\right]$

Conditional expectation

(continued)

A and b can be approximated by

$$A \approx \hat{A}_{k} \stackrel{\text{def}}{=} \frac{1}{n} \sum_{k=0}^{n-1} \hat{\psi}(X(k)) \hat{\psi}(X(k))^{\mathsf{T}}$$
$$b \approx \hat{b}_{k} \stackrel{\text{def}}{=} \frac{1}{n} \sum_{k=0}^{n-1} \hat{\psi}(X(k)) E_{k+1}^{\theta}(X)$$

Mean-square temporal difference

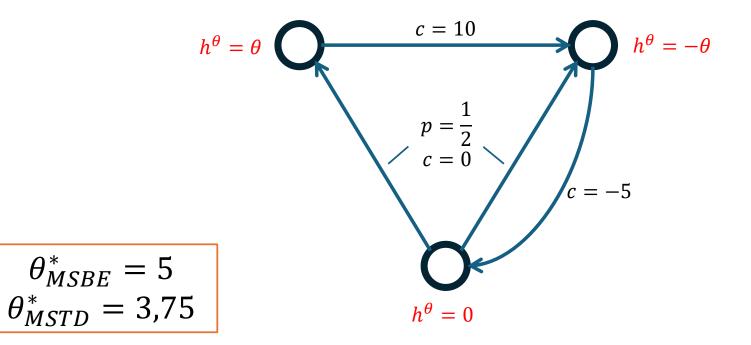
Gradient descent:
$$\theta_{n+1} = \theta_n + \alpha_{n+1} \left(-\frac{1}{2} \nabla_{\theta} \mathbb{E} \left[\left(D^{\theta_n}(X) \right)^2 \right] \right)$$

Stochastic gradient descent:

$$\theta_{n+1} = \theta_n + \alpha_{n+1} \mathcal{D}_{n+1} \zeta_{n+1}$$
(9.32)
with $\mathcal{D}_{n+1} \stackrel{\text{def}}{=} \mathcal{D}_{n+1}^{\theta_n}$, and
 $\zeta_{n+1} = -\nabla \mathcal{D}_{n+1}^{\theta} \Big|_{\theta = \theta_n} = \nabla_{\theta} [h^{\theta}(X(n)) - \gamma h^{\theta}(X(n+1))] \Big|_{\theta = \theta_n}$

Easier to implement, but the MSTD is not always a good metric

Example: MSBE vs MSTD



In the above example, θ^*_{MSBE} is optimal since the associated Bellman error is zero. By contrast, θ^*_{MSTD} is not optimal. The reason in this case is that it is biased toward minimizing θ^2 , arising from minimizing the temporal difference associated to the edges going from the lower node.

$TD(\lambda)$ -learning

$\mathrm{TD}(\lambda)$ algorithm

For initialization $\theta_0, \zeta_0 \in \mathbb{R}^d$, the sequence of estimates are defined recursively:

$$\theta_{n+1} = \theta_n + \alpha_{n+1}\zeta_n \mathcal{D}_{n+1}$$

$$\mathcal{D}_{n+1} = \left(-h^{\theta}(X(n)) + c(X(n)) + \gamma h^{\theta}(X(n+1))\right)\Big|_{\theta=\theta_n}$$

$$\zeta_{n+1} = \lambda \gamma \zeta_n + \psi(X(n+1)).$$
(9.37)

Eligibility vectors:

$$\zeta_n = \sum_{i=0}^{\infty} (\lambda \gamma)^i \psi(X(n-i))$$

Approximation error of TD(λ)-learning

If convergence, then $0 = \mathsf{E}[\{-h^{\theta^*}(X(k)) + c(X(k)) + \gamma h^{\theta^*}(X(k+1))\}\zeta_k(i)], 1 \le i \le d.$

Interpretations for two cases:

If
$$\lambda = 0$$
, then $\widehat{\mathbb{E}}_{\psi} \left[D_{n+1}^{\theta^*}(X) \mid X(n) \right] = 0$

If
$$\lambda = 1$$
, then $\theta^* = \arg \min_{\theta} \left\| h^{\theta} - h \right\|_{\pi}$

See [1, Theorem 9.7].

Convergence of TD(λ)-learning

TD(λ) is a linear recursion: $\theta_{n+1} = \theta_n + \alpha_{n+1} [A_{n+1}\theta_n - b_{n+1}]$ $A_{n+1} = \zeta_n [\gamma \psi(X(n+1)) - \psi(X(n))]^{\mathsf{T}}$ $b_{n+1} = -\zeta_n c(X(n))$

Under mild assumptions, $A \stackrel{\text{\tiny def}}{=} \mathbb{E}[A_n]$ is Hurwitz

This ensures convergence of the recursion to $\theta^* = A^{-1}b$ under adequate choice of step-sizes $\{\alpha_n\}$, where $b \stackrel{\text{def}}{=} \mathbb{E}[b_n]$

See [1, Theorem 9.8]. See [1, Theorem 8.10] for valid step-size choices.

Least-square $TD(\lambda)$ -learning

$\textbf{LSTD}(\lambda)$

With initialization $\theta_0, \zeta_0 \in \mathbb{R}^d$ and $\widehat{A}_0 \in \mathbb{R}^{d \times d}$:

$\theta_{n+1} = \theta_n - \alpha_{n+1} \widehat{A}_n^{-1} \zeta_n \mathcal{D}_{n+1}$	(9.42a)
$\mathcal{D}_{n+1} = c(X(n)) + \left[\gamma\psi(X(n+1)) - \psi(X(n))\right]^{T}\theta_n$	(9.42b)
$\zeta_{n+1} = \lambda \gamma \zeta_n + \psi(X(n+1)),$	(9.42c)
$\widehat{A}_{n+1} = \widehat{A}_n + \alpha_{n+1} [A_{n+1} - \widehat{A}_n]$	(9.42d)
$A_{n+1} = \zeta_n [\gamma \psi(X(n+1)) - \psi(X(n))]^{T}$	(9.42e)

It is a Stochastic Newton-Raphson method since \hat{A}_n approximates the Jacobian (A) of $A\theta - b$

Nonlinear parameterized TD(λ)-learning

Suppose $\{h^{\theta} : \theta \in \mathbb{R}^d\}$ are not linear functions of θ , but are differentiable. A generalization of the foregoing is based on the definition

$$\psi_i(x;\theta) = \frac{\partial}{\partial \theta_i} h^{\theta}(x)$$

The temporal difference and eligibility sequence are redefined as follows:

$$\mathcal{D}_{n+1} = c(X(n)) + \gamma h^{\theta_n}(X(n+1)) - h^{\theta_n}(X(n))$$
(9.43a)

$$\zeta_{n+1} = \lambda \gamma \zeta_n + \psi(X(n+1); \theta_n), \qquad n \ge 0.$$
(9.43b)

If the algorithm is convergent, then the limit θ^* is expected to solve

$$0 = \mathsf{E}[(c(X(n)) + \gamma h^{\theta_n}(X(n+1)) - h^{\theta_n}(X(n)))\zeta_{n+1}^{\theta^*}]$$
(9.44)

where $\zeta_{n+1}^{\theta^*} = \lambda \gamma \zeta_n^{\theta^*} + \psi(X(n+1); \theta^*), n \ge 0$, and the expectation in (9.44) is taken with respect to the joint stationary process (X, ζ^{θ^*}) . The fixed point equation (9.44) no longer has an interpretation as a Galerkin relaxation when the eligibility vector depends upon the parameter θ .

Return to the Q-function

Goal: evaluate the Q-function Q(x, u) of a given policy $\check{\phi}(u|x)$ "Data": stationary sequence $\Phi(k) = (X(k), U(k))$

On-policy: $\mathbb{P}[U(k) = u \mid X(k) = x] = \breve{\phi}(u|x)$ Off-policy: $\Phi(k)$ is not related to $\breve{\phi}(u|x)$

Bellman equation for the Q-function

▶ On-policy method: If U is chosen according to the policy $\check{\Phi}$ then

$$Q(\Phi(k)) = c(\Phi(k)) + \gamma \mathsf{E}[Q(\Phi(k+1)) \mid \mathcal{F}_k]$$
(9.49)

▶ Off-policy method: If U is any admissible input then the representation must be modified:

$$Q(\Phi(k)) = c(\Phi(k)) + \gamma \mathsf{E}[\underline{Q}(X(k+1)) \mid \mathcal{F}_k]$$
(9.50)

where $\underline{Q}(x) = \sum_{u} Q(x, u) \breve{\phi}(u|x)$

$TD(\lambda)$ -learning for the Q-function (on-policy)

 $TD(\lambda)$ algorithm (on-policy for Q)

For initialization $\theta_0, \zeta_0 \in \mathbb{R}^d$, the sequence of estimates are defined recursively:

$$\theta_{n+1} = \theta_n + \alpha_{n+1}\zeta_n \mathcal{D}_{n+1}$$

$$\mathcal{D}_{n+1} = \left(-H^{\theta}(\Phi(n)) + c_n + \gamma H^{\theta}(\Phi(n+1))\right)\Big|_{\theta=\theta_n}$$

$$\zeta_{n+1} = \lambda \gamma \zeta_n + \psi_{(n+1)}, \qquad \psi_{(n+1)} \stackrel{\text{def}}{=} \psi(\Phi(n+1)), \quad c_n \stackrel{\text{def}}{=} c(\Phi(n))$$
(9.51)

Analysis of TD(λ)-learning (on-policy)

Same results as for TD(λ)-learning for the value function h since $\Phi(k)$ is an autonomous process

Example: (i) $\lambda = 0$: In the notation of (9.19), $\widehat{\mathsf{E}}[\mathcal{D}_{n+1}^{\theta^*} \mid Y_n] = 0,$ with $Y_n = \psi(\Phi(n)) = \psi_{(n)}$ and $\mathcal{D}_{n+1}^{\theta^*} = -H^{\theta^*}(\Phi(n)) + c_n + \gamma H^{\theta^*}(\Phi(n+1)).$ (ii) $\lambda = 1$: θ^* solves $\theta^* = \operatorname*{arg\,min}_{\theta} \|H^{\theta} - Q\|_{\infty}^2 \stackrel{\text{def}}{=} \sum_{x \in \mathsf{X}, u \in \mathsf{U}} (H^{\theta}(x, u) - Q(x, u))^2 \varpi(x, u)$

Limitations of TD(λ)-learning (on-policy)

Requires a randomized policy to ensure that A is Hurwtiz and that $\|H^{\theta} - Q\|_{\varpi}$ is a good metric

Policies from Policy Improvement are not always randomized

Fix this with an " ϵ -perturbation" of the policy See also "Gibbs' policy" See $[1,\,\S~9.5.1]$ for the definition of "Gibbs' policies".

$TD(\lambda)$ -learning for the Q-function (off-policy)

 $TD(\lambda)$ algorithm (off-policy for Q)

For initialization $\theta_0, \zeta_0 \in \mathbb{R}^d$, the sequence of estimates are defined recursively:

$$\theta_{n+1} = \theta_n + \alpha_{n+1}\zeta_n \mathcal{D}_{n+1}$$

$$\mathcal{D}_{n+1} = \left(-H^{\theta}(\Phi(n)) + c_n + \gamma \underline{H}^{\theta}(X(n+1))\right)\Big|_{\theta=\theta_n}$$

$$\zeta_{n+1} = \lambda \gamma \zeta_n + \psi_{(n+1)}, \qquad \psi_{(n+1)} \stackrel{\text{def}}{=} \psi(\Phi(n+1)), \quad c_n \stackrel{\text{def}}{=} c(\Phi(n))$$
(9.53)

Analysis of TD(λ)-learning (off-policy)

The results that hold for the value function and the Q-function in the on-policy setting are no longer valid

The matrix *A* and vector *b* become

$$A = \mathsf{E}_{\pi} \big[\zeta_n \big(-\psi(\Phi(n)) + \gamma \underline{\psi}(X(n+1)) \big)^{\mathsf{T}} \big], \quad b = -\mathsf{E}_{\pi} \big[c_n \zeta_n \big], \quad and \quad \underline{\psi}(x) = \sum_u \psi(x, u) \check{\Phi}(u \mid x).$$

It is not trivial to show that A is invertible (under some assumptions) It is not guaranteed that A is Hurwitz See $\left[1,\, \text{Proposition 9.12}\right]$ and the discussion below it.

Q-learning

Goal: approximate the optimal Q-function $Q^*(x, u)$

Galerkin relaxation:

Given a parametrized family $\{H^{\theta} : \theta \in \mathbb{R}^d\}$, and a sequence of *d*-dimensional eligibility vectors $\{\zeta_n\}$, the goal is to find a solution θ^* to

$$0 = \overline{f}(\theta^*) = \mathsf{E}[\{-H^{\theta}(\Phi(n)) + c_n + \gamma \underline{H}^{\theta}(X(n+1))\}\zeta_n]\Big|_{\theta=\theta^*}$$
(9.71)

where $\underline{H}(x) = \min_{u} H(x, u)$

Q(0)-learning

$$\theta_{n+1} = \theta_n + \alpha_{n+1} \mathcal{D}_{n+1} \zeta_n$$

$$\mathcal{D}_{n+1} = -H^n(\Phi(n)) + c_n + \gamma \underline{H}^n(X(n+1))$$

$$\zeta_n = \nabla_\theta \{ H^\theta(\Phi(n)) \} \Big|_{\theta=\theta_n} = \psi_{(n)}$$
(9.75)

The recursion (9.75) for the Q-learning algorithm can be written in a form similar to the linear recursion (8.53b). On denoting $\underline{\psi}_{(n+1)} = \psi(X(n+1), \phi_n(X(n+1)))$, with ϕ_n any H^n -greedy policy,

$$\theta_{n+1} = \theta_n + \alpha_{n+1} \left[A_{n+1} \theta_n - b_{n+1} \right]$$
with $A_{n+1} = \psi_{(n)} \{ \gamma \underline{\psi}_{(n+1)} - \psi_{(n)} \}^\mathsf{T}$

$$b_{n+1} = -c_n \psi_{(n)}$$
(9.76)

This is not a linear SA algorithm since the policy ϕ_n depends upon θ_n .

Tabular Q(0)-learning

Proposition 9.15. The ODE approximation for the Q-learning algorithm (9.75) takes the form $\frac{d}{dt}\theta_t = \bar{f}^0(\theta_t)$, with vector field

$$\bar{f}_i^0(\theta) = \varpi(x^i, u^i) \left[-H^\theta(x^i, u^i) + c(x^i, u^i) + \sum_{x'} \gamma P_{u^i}(x^i, x') \underline{H}^\theta(x')\right]$$

For each i, the function \bar{f}_i^0 is concave and piecewise linear as a function of θ .

Tabular Q(0)-learning suffers from the "curse of condition number" when $\varpi(x^i, u^i)$ is small

In tabular Q-learning, the state–input space is finite, i.e., $\mathsf{X} \times \mathsf{U} = \{(x^i, u^i) : 1 \le i \le d\}$, and the template ψ is such that $\psi_i(x, u) = \mathbf{1}_{\{(x^i, u^i)\}}(x, u)$. Hence, $\mathsf{E}[\psi_i(\Phi)] = \varpi(x^i, u^i) \triangleq \mathsf{P}[\Phi(n) = (x^i, u^i)]$ (for any fixed n since we are in steady state).

Tabular Q(0)-learning

(continued)

One way to fix the curse of CN is to use a "gain matrix":

$$\theta_{n+1} = \theta_n + \frac{1}{n+1} G_n \mathcal{D}_{n+1} \zeta_n , \qquad G_n^{-1} = \frac{1}{n+1} \sum_{k=0}^n \zeta_k \zeta_k^{\mathsf{T}}$$
(9.80)

Hence,

Its ODE approximation has vector field with components

$$\bar{f}_i(\theta) = -H^{\theta}(x^i, u^i) + c(x^i, u^i) + \gamma \sum_{x'} P_{u^i}(x^i, x') \underline{H}^{\theta}(x')$$

$$(9.81)$$

We can easily see that the matrix G_n^{-1} is diagonal and satisfies $[G_n^{-1}]_{ii}$ equals the proportion of time the process Φ has been in state-input (x^i, u^i) over the interval $k = 0, \ldots, n$. From this observation, (9.81) follows.

Tabular Q(0)-learning

(continued)

Under some assumptions, the recursion (9.80) converges toward θ^*

Proposition 9.17. For Watkins' algorithm (9.80),

Stability: The function $V(\theta) = \|\tilde{\theta}\|_{\infty}$ is a Lyapunov function for the ODE with vector field (9.81):

$$\frac{d^{+}}{dt}V(\vartheta_{t}) \leq -(1-\gamma)V(\vartheta_{t})$$

Lemma 9.18. Suppose that the optimal policy ϕ^* is unique. Then the Jacobian $A = \partial \bar{f}(\theta^*)$, with \bar{f} given in (9.81), is given by $A = -I + \gamma T^*$ (9.83)

where T^* defines the transition matrix for Φ under the optimal policy:

$$T^{\star}(i,j) \stackrel{\text{\tiny def}}{=} P_{u^i}(x^i,x^j) \mathbbm{1}\{u^j = \varphi^{\star}(x^j)\}\,, \qquad 1 \leq i,j \leq d$$

Variance:

Proofs are given in [1].

Limitations of general Q(0)-learning

Outside of the tabular setting, very little is known about the convergence of Q(0)-learning

It is not even clear that $\overline{f}(\theta) = 0$ admits a solution!

One way to fix the existence of solution is GQ-learning (next)

GQ-learning

Goal: solve

$$\min_{\theta} \Gamma(\theta) = \min_{\theta} \frac{1}{2} \ \bar{f}(\theta)^{\mathsf{T}} M \bar{f}(\theta)$$

where $M^{-1} = \mathbb{E}[\psi_{(n)} \psi_{(n)}^{\mathsf{T}}]$

Gradient descent:
$$\theta_{n+1} = \theta_n + \alpha_{n+1} \left(-\nabla_{\theta} \bar{f}(\theta_n)^{\mathsf{T}} M \bar{f}(\theta_n) \right)$$

where $\nabla_{\theta} \bar{f}(\theta_n) = A(\theta_n) \stackrel{\text{def}}{=} \mathbb{E} \left[\psi_{(n)} \left(-\psi_{(n)} + \gamma \underline{\psi}_{(n+1)} \right)^{\mathsf{T}} \right]$

The expression for $\nabla_{\theta} \bar{f}(\theta_n)$ supposes ϕ_n (the greedy policy associated to θ_n) piecewise constant with respect to θ_n (which is satisfied for finite state–input systems). In fact, the analysis and motivation of GQ-learning is done here for finite state–input systems, but the same algorithm applies to infinite systems.

GQ-learning stochastic gradient descent

GQ-learning

For initialization θ_0 , $\omega_0 \in \mathbb{R}^d$,

$$\theta_{n+1} = \theta_n + \alpha_{n+1} \left\{ \mathcal{D}_{n+1} \psi_{(n)} - \gamma \boldsymbol{\omega}_{n+1}^\mathsf{T} \psi_{(n)} \underline{\psi}_{(n+1)} \right\}$$
(9.94a)

$$\omega_{n+1} = \omega_n + \beta_{n+1} \psi_{(n)} \{ \mathcal{D}_{n+1} - \psi_{(n)}^{\mathsf{T}} \omega_n \}$$
(9.94b)

where
$$\underline{\psi}_{(n+1)} = \psi(X(n+1), \phi_n(X(n+1)))$$

 $\mathcal{D}_{n+1} = -H^n(\Phi(n)) + c_n + \gamma \underline{H}^n(X(n+1))$

where the two step-size sequences satisfy (8.22).

GQ analysis The fast time scale recursion (9.94b) is designed so that $\omega_n \approx M\bar{f}(\theta_n)$ for large n. Theory for two time-scale SA provides an approximation of (9.94a):

$$\theta_{n+1} \approx \theta_n + \alpha_{n+1} \{ \mathcal{D}_{n+1} \zeta_n - \gamma \bar{f}(\theta_n)^{\mathsf{T}} M \zeta_n \underline{\psi}_{(n+1)} \}$$

The equation at the bottom implies that the associated ODE approximation has vector field

$$\bar{f}_{\mathrm{GQ}}(\theta) = \mathsf{E} \left[\mathcal{D}_{n+1}\zeta_n - \gamma \bar{f}(\theta)^\top M \zeta_n \underline{\psi}_{(n+1)} \right] = \bar{f}(\theta) - \gamma \mathsf{E} \left[\underline{\psi}_{(n+1)} \psi_{(n)}^\top \right] M \bar{f}(\theta) = \left\{ \mathsf{E} \left[\psi_{(n)} \psi_{(n)}^\top \right] - \gamma \mathsf{E} \left[\underline{\psi}_{(n+1)} \psi_{(n)}^\top \right] \right\} M \bar{f}(\theta) = -A(\theta)^\top M \bar{f}(\theta).$$

Hence, it is indeed a stochastic gradient descent.

Discussion of GQ-learning

Pros: works even if $\overline{f}(\theta) = 0$ has no solution

Cons: the condition number at θ^* can be high when $\gamma \approx 1$ In the tabular setting, it is expected to be $O((1 - \gamma)^{-2})$ By comparison, for tabular Q(0)-learning, it is $O((1 - \gamma)^{-1})$ See [1, Proposition 9.27].

Next course

- Actor-critic methods
 - Find the best policy (actor) with respect to some cost metric (critic)
 - Remove the bias inherent to Bellman error metrics

References

[1] Sean Meyn. Control systems and reinforcement learning. Cambridge University Press, 2022.