
LINMA2725 Stochastic Optimal Control and Reinforcement Learning

Part III

Course 4: Online Learning Methods

Guillaume Berger

December 2, 2024

References: [1]; [2]; [3], Section 7.8 and Appendix C.

Any questions or feedback are welcome.

1

Stochastic Optimal Control
and Reinforcement Learning

Part III: Stochastic Systems

Guillaume Berger

Table of content

• Stochastic systems and stochastic control (1 course)

• Learning techniques for stochastic control (1-2 courses)

• Online learning techniques for stochastic control (1 courses)
• Bandit problem: introduction, techniques and analysis
• Model-based methods in adaptive control: overview
• Optimal control with partial information: belief state, separation principle

Exploitation and exploration

Exploitation and exploration

Multi-armed bandit

𝐾 slot machines indexed by 𝑘 ∈ 1, … , 𝐾

At each step 𝑡 ≥ 1, you choose one slot machine: 𝑢𝑡 ∈ 1, … , 𝐾

You receive a reward 𝑋𝑡 ∼ 𝐷𝑢𝑡

where 𝐷𝑘 is the reward distribution of the 𝑘th machine

Example:
• 𝐷1 is the uniform distribution in 0,1

• 𝐷2 is the exponential distribution 𝑝 𝑥 = 𝑒−𝑥 𝑥 ≥ 0

Which slot machine should you choose?

Regret in multi-armed bandit

Optimal expected gain: expected gain by playing always the
machine with the highest expected reward (𝜇∗)

Regret: difference between your gain and the optimal expected gain

𝑅 𝑡 ≝ ෍

𝑠=1

𝑡

𝑋𝑠 − 𝑡𝜇∗

Goal: Minimizing the growth of the expected regret

Example: 𝔼 𝑅 𝑡 ≤ 𝐶1 𝑡 + 𝐶2 (sublinear growth)

Estimator of expected reward

For each 𝑘 ∈ 1, … , 𝐾 and 𝑡 ≥ 1, let

𝑇𝑘 𝑡 ≝ 𝑠 ∈ 1, 𝑡 ∶ 𝑢𝑠 = 𝑘

(times at which you chose machine 𝑘) and 𝑁𝑘 𝑡 = 𝑇𝑘 𝑡

Define the following estimate of 𝜇𝑘 (the mean of 𝐷𝑘):

ҧ𝜇𝑘 𝑡 ≝
1

𝑁𝑘 𝑡
෍

𝑠∈𝑇𝑘 𝑡

𝑋𝑠

(sample average of reward of machine 𝑘)

Greedy algorithm

Algorithm: at each step 𝑡 ≥ 1, choose 𝑘 for which ҧ𝜇𝑘(𝑡) is largest

Example:
• At 𝑡 = 1: choose 𝑢 = 1. You get 𝑋1 = 0,6

• At 𝑡 = 2: choose 𝑢 = 2. You get 𝑋2 = 0,3

Now, ҧ𝜇1 2 = 0,6 and ҧ𝜇2 2 = 0,3

Hence, at 𝑡 = 3, you will choose 𝑢 = 1

Greedy algorithm and exploration

The greedy algorithm prevents exploration:
“If we were unlucky in our first reward of machine 𝑘 we will not

choose it again”

Two (partial) remedies:
• Baseline
• 𝜖-greedy algorithm

Baseline adds optimism

Optimism: “I believe that all choices are good, so that I need
“many” observations of a low reward to conclude that a given
choice is bad”

In practice: change the definition of ҧ𝜇𝑘(𝑡) by

ҧ𝜇𝑘 𝑡 ≝
1

𝑁𝑘 𝑡
𝑏 + ෍

𝑠∈𝑇𝑘 𝑡

𝑋𝑠

where 𝑏 is the baseline

Limitations of baseline greedy algorithm

Choosing the baseline requires assumptions (prior knowledge)

Does not guarantee that the expected reward has sublinear growth

𝜖-greedy algorithm

Algorithm: at each step 𝑡 ≥ 1,
• with probability 1 − 𝜖, make the greedy choice;
• with probability 𝜖, choose a machine uniformly at random.

Limitations of 𝜖-greedy algorithm

Impossible to achieve sublinear growth of the expected regret

Time for illustration

Time for illustration

Upper Confidence Bound (UCB) algorithm

Algorithm:

Reference: [1]. Notice the slightly different notation (although explained in the algorithm).

18

Analysis of UCB algorithm

See [1, Theorem 1] for a proof.

20

Analysis of UCB algorithm

(continued)

Hence, UCB achieves logarithmic growth!

It can be shown that this is the best achievable growth

See [1, Section 7.8.3] for a discussion.

22

Illustration of UCB algorithm

Gradient bandit algorithms

Preference for each machine: 𝜃𝑘 ∈ ℝ

Gibbs or Boltzmann policy: 𝑝𝜃 𝑘 =
exp 𝜃𝑘

σℓ=1
𝐾 exp 𝜃ℓ

Goal: Find 𝜃 that maximizes the expected reward of 𝑝𝜃

Γ 𝜃 ≝ ෍

𝑘=1

𝐾

𝑝𝜃 𝑘 𝜇𝑘

using gradient ascent

Gradient of expected reward

Result 1:

∇𝜃Γ 𝜃 = ෍

𝑘=1

𝐾

𝜇𝑘𝑝𝜃 𝑘 ∇𝜃 log 𝑝𝜃 𝑘

Result 2:
𝜕

𝜕𝜃ℓ
log 𝑝𝜃 𝑘 = 𝑝𝜃 𝑘 ℓ = 𝑘 − 𝑝𝜃 ℓ

A stochastic gradient ascent algorithm

Algorithm: given an initial 𝜃0 ∈ ℝ𝐾, at each step 𝑡 ≥ 0,
• sample

𝑢𝑡+1 ∼ 𝑝𝜃𝑡
⋅ and 𝑋𝑡+1 ∼ 𝐷𝑢𝑡+1

,

• define

𝜃𝑘
𝑡+1 = 𝜃𝑘

𝑡 + 𝛼𝑡+1𝑋𝑡+1 𝑘 = 𝑢𝑡+1 − 𝑝𝜃𝑡
𝑘 ∀ 𝑘

Improvement: use 𝑋𝑡+1 − ത𝑋𝑡 instead of 𝑋𝑡+1 where ത𝑋𝑡 ≝
1

𝑡
σ𝑠=1

𝑡 𝑋𝑠

(baseline) to reduce variance

The improvement part is reminiscent of the use of the advantage function to reduce the variance for the actor–critic
method. It follows from the observation that

∇θΓ(θ) =

K∑
k=1

(µk − ν)pθ(k)∇θ log(p
θ(k))

for any ν that is independent of k.

Proof. Observe that
K∑

k=1

pθ(k)∇θ log(p
θ(k)) =

K∑
k=1

∇θp
θ(k) = ∇θ

K∑
k=1

pθ(k) = ∇θ(1) = 0,

concluding the proof.

27

Illustration of gradient bandit algorithm

We see that in this experiment, the “improvement” leads to a better regret (“with baseline”) compared to the
“unimproved” algorithm (“without baseline”).

29

Beyond the bandit setting

Main theme: model of the system is unknown (uncertain system)
(Example: in bandit problem, the distributions 𝐷𝑘 are unknown)

We can rely only on data to learn the optimal controller

Most of the techniques seen so far in the course are data-based (e.g.,
LSTD, TD(𝜆)-learning, Q(𝜆)-learning, actor-critic methods, etc.)

Hence, they can be applied for the optimal control of uncertain systems

Beyond the bandit setting

(continued)

The novelty brought by bandit problems is the notion of regret: the
cost of learning is not the number of samples or the computational
power, it is the suboptimal reward that we get

Unfortunately, regret bounds for the aforementioned techniques are
mostly elusive

Adaptive LQR control

We consider the setting of controlling an uncertain linear system
𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑤𝑡

where 𝑤𝑡 is noise, and 𝐴 and 𝐵 are unknown

We consider a quadratic cost whose associated regret is

𝑅 𝑇 = ෍

𝑡=0

𝑇−1

𝑥𝑡
⊤𝑄𝑥𝑡 + 𝑢𝑡𝑅𝑢𝑡 − 𝑇𝐽⋆

where 𝐽⋆ is the optimal average quadratic cost (𝑄 and 𝑅 are known)

Adaptive LQR control

(continued)

Model-based methods are expected to perform better for adaptive LQR
because we have the prior knowledge that the system is linear so that we
can learn the matrices 𝐴 and 𝐵 from previous data

We discuss two such methods:
• Robust adaptive LQR
• Certainty Equivalence LQR
and their associated regret bounds

Model-based methods

System

Update estimation
of system model

state 𝑥𝑡

Find control input
based on model

and current state

input 𝑢𝑡

model ෡ℳ𝑡

Identify መ𝐴 and ෠𝐵 from data
in the least-square sense

and define 𝜖 the error

Robust adaptive LQR

Find the best worst-case
controller for all systems that
are at distance 𝜖 from መ𝐴, ෠𝐵

Analysis of robust adaptive LQR

sublinear regret 𝑂 𝑇 Τ2 3

Reference: [2, Section V.B].

37

Certainty Equivalence LQR

CE

1/2

Center solution
(not robust one)

Analysis of Certainty Equivalence LQR

sublinear regret 𝑂 𝑇 Τ1 2

1/2

1/2

CE

Reference: [2, Section V.C].

40

Comparison of robust vs CE LQR

= CE

Discussion of model-based adaptive LQR

Regret grows slowerly with Certainty Equivalence LQR than with
robust LQR: 𝑂 𝑇 Τ1 2 vs 𝑂 𝑇 Τ2 3

However, Certainty Equivalence LQR requires a good initial
approximation of the model (𝜖 small), whereas for robust LQR the
initial uncertainty on the model can be larger

Partially observable stochastic systems

Often called POMDP (Partially Observable MDP)

Example: controlling a rover on Mars, but you get only noisy partial
measurements of the position:

𝑌𝑛 = 𝑔 𝑋𝑛, 𝑊𝑛

where 𝑾 is i.i.d. noise
I am in a valley

I am on a hill

𝑝 = 0,9

𝑝 = 0,1

General POMDP model

State (𝑋) and output (𝑌) dynamics:

Admissible inputs:

(input depends only on current and past observations)

Belief state

Key (amazing) result: The only information you need to do optimal
control of POMDP is the belief state 𝑏𝑛 ⋅ at each step 𝑛 ≥ 0

Belief state:

(probability of being in state 𝑥 given current and past observations)

Dynamics of belief state

Result: The dynamics of the belief state is that of a fully observed
deterministic Markov process with inputs 𝑼 and 𝒀: formally,

Consequence: probability of observing
𝑦′ if state is 𝑥′

not used! (Markov)

See [3, Proposition C.1].

47

Belief state is the only needed information

For each 𝑛 ≥ 0, let

𝑉𝑛
⋆ ≝ min

𝑼
𝔼 σ𝑘=𝑛

∞ 𝑐 𝑋 𝑛 , 𝑈 𝑛 𝒴𝑛

(optimal future total cost given current and past observations)

Key (amazing) result rephrased: there is a function 𝒱𝑛 ∶ 𝒮 → ℝ
indexed by 𝑛 such that

𝑉𝑛
⋆ = 𝒱𝑛 𝑏𝑛

where 𝑏𝑛 is the belief state at step 𝑛

See [3, Proposition C.2].

49

Belief state is the only needed information

(continued)

Consequence of key result: e.g., to find the value function for the
optimal finite-horizon cost, you just need to solve:

where

Conclusion of POMDP

Optimal control of POMDPs can thus be solved exactly as MDPs by
working with the belief state

Caveat: the belief state is defined on a continuous state space even
if the state space of the POMDP is finite.
This is a major challenge to address, and requires techniques for
continuous MDP seen for instance in this course
If the state space of the POMPD is a vector space of finite
dimension, then the belief state lives in a vector space of infinite
dimension, except in some special cases (like LGQ)

LQG and the separation principle

For LQG, the belief state is fully described by its mean and
covariance matrix. Hence, it lives in a space of dimension ~𝑛2

Furthermore, we can show that the optimal total cost satisfies

𝑉𝑛
⋆ = 𝒱𝑛 𝑏𝑛 = 𝒱𝑛 ො𝑥𝑛

where ො𝑥𝑛 ≝ ∫ 𝑥𝑏𝑛 𝑥 d𝑥 is the mean of the belief state
This is called the separation principle and justifies the LQG
controller where only the estimated state ො𝑥𝑛 (obtained using
Kalman filter) is used

The proof is based on the fact that x̂n+1 is a linear function of x̂n, Yn+1 and Un, and bn(x) is symmetric around
x̂n, i.e., bn(x̂n + a) = bn(x̂n − a). Based on this, we can show that Vn(bn) ≜ x̂⊤

nPnx̂n, where Pn is the value function
of the associated (deterministic) LQR problem, solves the dynamic programming equation two slides earlier. Details
are omitted.

References

[1] Pete Auer, Nicoló Cesa-Bianchi, and Paul Fischer. “Finite-time analysis of the multiarmed bandit problem”. In:
Machine Learning 47 (2002), pp. 235–256.

[2] Nikolai Matni et al. “From self-tuning regulators to reinforcement learning and back again”. In: 2019 IEEE 58th
Conference on Decision and Control (CDC). IEEE. 2019, pp. 3724–3740.

[3] Sean Meyn. Control systems and reinforcement learning. Cambridge University Press, 2022.

53

