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Exploitation and exploration




Exploitation and exploration

A Game Playing
Exploitation: Play the move you believe is best
Ezxploration: Play an experimental move

A Restaurant Selection
Ezxploitation: Go to your favorite restaurant
Ezxploration: Try a new restaurant

A Oil Drilling
Ezxploitation: Drill at the best known location
Ezxploration: Drill at a new location

A Online Banner Advertisements
Ezxploitation: Show the most successful advertisement
Ezxploration: Show a different advertisement




Multi-armed bandit

K slot machinesindexed by k € {1, ..., K}
At each stept = 1, you choose one slot machine: u; € {1, ..., K}

You receive areward X; ~ D,
where Dy, is the reward distribution of the k" machine

Example:

D, is the uniform distribution in [0,1]

* D, is the exponential distribution p(x) = e ™*{x > 0}
Which slot machine should you choose?



Regret in multi-armed bandit

Optimal expected gain: expected gain by playing always the
machine with the highest expected reward (u™)

Regret: difference between your gain and the optimal expected gain
t
R(p) ZXS _ty
s=1

Goal: Minimizing the growth of the expected regret

Example: E[R(t)] < C;\/t + C, (sublinear growth)




Estimator of expected reward

Foreachk € {1,..,K}andt > 1, let
T, (t) € {se|l,t]:u, =k}
(times at which you chose machine k) and N, (t) = |T; (t)]

Define the following estimate of u; (the mean of D;,):

1
i (6) > X
Nie(£) SETR (L)

(sample average of reward of machine k)



Greedy algorithm

Algorithm: at each step t = 1, choose k for which [, (t) is largest

Example:

* Att = 1:chooseu =1.YougetX; =0,6
* Att = 2: chooseu = 2. Youget X, = 0,3
Now, ji;(2) = 0,6 and i,(2) = 0,3

Hence, att = 3, you willchooseu =1



Greedy algorithm and exploration

The greedy algorithm prevents exploration:

“If we were unlucky in our first reward of machine k we will not
choose it again”

Two (partial) remedies:
* Baseline
* e-greedy algorithm



Baseline adds optimism

Optimism: “I believe that all choices are good, so that | need
“many” observations of a low reward to conclude that a given

choice is bad”

In practice: change the definition of ji; (t) by

1
i, (t) & N (b + z Xs)

SET (1)

where b is the baseline




Limitations of baseline greedy algorithm

Choosing the baseline requires assumptions (prior knowledge)

Does not guarantee that the expected reward has sublinear growth



e-greedy algorithm

Algorithm: ateach stept = 1,
* with probability 1 — €, make the greedy choice;
* with probability €, choose a machine uniformly at random.




Limitations of e-greedy algorithm

Impossible to achieve sublinear growth of the expected regret
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Upper Confidence Bound (UCB) algorithm

Algorithm:

Deterministic policy: UCBl.
Initialization: Play each machine once.
Loop:

. . 2lnn .
— Play machine j that maximizes z; + . where z; 1s the

J
average reward obtained from machine j, n; is the number of

times machine 7 has been played so far, and n is the overall
number of plays done so far.




Reference: [1]. Notice the slightly different notation (although explained in the algorithm).
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Analysis of UCB algorithm

Theorem 1. Forall K > 1, if policy UCBI is run on K machines having arbitrary reward
distributions Py, ..., Pg with support in [0, 1], then its expected regret after any number
n of plays is at most

Inn 72 K
s X (R 5) (2

. def
where L1, ..., g are the expected values of Py, ..., Pk and A; = p* —



See [1, Theorem 1] for a proof.
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Analysis of UCB algorithm

(continued)

Hence, UCB achieves logarithmic growth!

It can be shown that this is the best achievable growth

Lai and Robbins also proved that this regret is the best possible.

Namely, for any allocation strategy and for any suboptimal machine ;.
IE[T;(n)]=(Inn)/D(pj|lp*) asymptotically, provided that the reward distributions satisfy
some mild assumptions.




See [1, Section 7.8.3] for a discussion.
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Illustration of UCB algorithm
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Gradient bandit algorithms

Preference for each machine: 6, € R

exp Oy

Gibbs or Boltzmann policy: p® (k) =

Goal: Find 8 that maximizes the expected reward of p®

K
ORI M
k=1

using gradient ascent



Gradient of expected reward

Result 1:

K
Vol(0) = ) pp® )V log (p° ()

k=1

Result 2:

a%{)log (p"’(k)) = p? (k) ({vf’ =k} - Pe({)))



A stochastic gradient ascent algorithm

Algorithm: given an initial 8° € RX, ateach stept > 0,
e sample

t
upeq ~p? () and Xpq ~D

Ut+1’
e define

O = Ok + app1 X4 ({k = Upyq} — Pet(k)) vk

_ — 1
Improvement: use X;,; — X; instead of X;,; where X; &< ?ZgleS
(baseline) to reduce variance



The improvement part is reminiscent of the use of the advantage function to reduce the variance for the actor—critic
method. It follows from the observation that

Mx

VoIl'(6 pi — v)p’ (k)Velog(p (k))

~
Il
-

for any v that is independent of k.
Proof. Observe that

K K
> (k) Vg log(p Zvep =Vy Y p’(k) = V(1) =0,
k=1 k=1

concluding the proof. O
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Illustration of gradient bandit algorithm
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We see that in this experiment, the “improvement” leads to a better regret (“with baseline”) compared to the
“unimproved” algorithm (“without baseline”).
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Beyond the bandit setting

Main theme: model of the system is unknown (uncertain system)

(Example: in bandit problem, the distributions D, are unknown)

We can rely only on data to learn the optimal controller

Most of the techniques seen so far in the course are data-based (e.g.,
LSTD, TD(A)-learning, Q(A)-learning, actor-critic methods, etc.)

Hence, they can be applied for the optimal control of uncertain systems



Beyond the bandit setting

(continued)

The novelty brought by bandit problems is the notion of regret: the
cost of learning is not the number of samples or the computational
power, it is the suboptimal reward that we get

Unfortunately, regret bounds for the aforementioned techniques are
mostly elusive



Adaptive LQR control

We consider the setting of controlling an uncertain linear system
xt_|_1 — Axt + But + Wt

where w; is noise, and A and B are unknown

We consider a quadratic cost whose associated regret is
T-1
R(T) = 2 x! Qx; + uRu, — TJ*
t=0
where J* is the optimal average quadratic cost (Q and R are known)



Adaptive LQR control

(continued)

Model-based methods are expected to perform better for adaptive LQR
because we have the prior knowledge that the system is linear so that we
can learn the matrices A and B from previous data

We discuss two such methods:

* Robust adaptive LQR

* Certainty Equivalence LQR

and their associated regret bounds



Model-based methods

input u;

)

System

—

Find control input
based on model
and current state

model M,

(Update estimation

)
)

P
<«

L

of system model

state x;



Robust adaptive LQR

(" Identify A and B from data )
in the least-square sense

T—1
(A,B) € arg min 5 Z |zes1 — Az — Bug||3,

Algorithm 1 Robust Adaptive LQR (Informal) B2 =

1:

P W

el =A

Input: initial stabilizing controller K", failure probability & € (0, 1]. base epoch k and define € the error Y,
length C'p, base exploration variance 'y,
for i =0,1.2,. (Iu

Set T; + Cp2', o2 i c,T'?

Collect data {z}, u L}t i, « evolve system for T; stps with w = K'x+n,,

with n; 4 j"'a-*‘d.r""u (0, & ,i,]. zfnu }

(4 B“ €; ) + solve OLS problem using collected data and estimate uncer-
tainty €;

controller for all systems that
are at distance € from (4, B)

mg{ﬁw{_ RobustLQR(A;, Bi, €;) ‘ \[ Find the best worst-case




Analysis of robust adaptive LQR

Theorem V.10 (Informal ):

With the system driven by Algorithm 1. we have with
]Jl‘ﬂhilbiliht}’ at leaatﬁl — o that thew estimates zitltimelT satisty
max(||A — Al|2,||B — Bl[s) < O((n, +n,)27T73), and

that the regret (41) satisfies R(T) < O((ng + ny)T?/3).

sublinear regret 0(T?/3)



Reference: [2, Section V.B].
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Certainty Equivalence LQR

CE

Algorithm 1 Rebwst Adaptive LQR (Informal)

1:

el

S

Input: initial stabilizing controller K, failure probability § € (0, 1], base epoch

length C', base exploration variance C,,

fori=0,1,2,... do
Set T; +— Cp2%, o} ;
Collect data {.ri u;}:;ﬂ +— evolve system for T3 stps with u = '1r’v~1'i:13-|-fn,!-~
. Lid , - :

“'.I’thj]'-z'_tﬁ ~ N0, Jﬁ.-i I-uu )

(A;.B;,e;) + solve OLS problem using collected data and estimate uncer-

tainty €; P Center solution
K" + et LOQR(A;, B;, e
end for (notrobust one)

— C”T._h‘-g- 1/2




Analysis of Certainty Equivalence LQR

Theorem V.10 (Informal ): cE

With the system driven by Algorithm Y, we have with
probability at least 1 — ¢ that the estimates atltime T satisty
max(|A — Allo. | B — Blly) < O((ny +n,)3T-5)"  and
that the regret (41) satisfies B(T) < O((ny + ny )T%73)!?

sublinear regret 0(T/2)



Reference: [2, Section V.C].
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Comparison of robust vs CE LQR
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Discussion of model-based adaptive LQR

Regret grows slowerly with Certainty Equivalence LQR than with
robust LQR: O(Tl/z) Vs O(TZ/B)

However, Certainty Equivalence LQR requires a good initial
approximation of the model (e small), whereas for robust LQR the
initial uncertainty on the model can be larger



Partially observable stochastic systems

Often called POMDP (Partially Observable MDP)

Example: controlling a rover on Mars, but you get only noisy partial
measurements of the position:

Y, = g(Xpn, W)

p =209

where W is i.i.d. noise

=01




General POMDP model

State (X) and output (Y) dynamics:

JY‘H-—F]_ =Ff (:_A'rn- Un, A'T‘n.—klv)
Yos1 = 9(Xpgp1, Whaa) . n >0,

where (N, W) is 1.1.d., and mutually independent

Admissible inputs:
Up = dn(Yo.. ... Yy)

(input depends only on current and past observations)




Belief state

Key (amazing) result: The only information you need to do optimal
control of POMDP is the belief state b,,(:) ateach stepn > 0

Belief state: for each » € X,
bp(z) =P{X, =2 | Vn}.

in which YV, = o(Yy : k < n).

(probability of being in state x given current and past observations)



Dynamics of belief state

Result: The dynamics of the belief state is that of a fully observed
deterministic Markov process with inputs U and Y: formally,

there is a mapping M: S x Y x U — & such that for each n > 0,

l’.?‘n._|_1 = M (bn ; Tt:rl—i—l : [*'rn }

Consequence: probability of observing
| , y' if state is x’
for any function F': § xY — R, /
E[F (bni1.Yne1) |‘yn‘: b, = b. ZZ b(x)Py(x, 2 )q(y | 2 YF(M(b,y',u). 1)

not used! (Markov)



See [3, Proposition C.1].

47



Belief state is the only needed information

Foreachn = 0, let

o def mUin IE[Z,‘gnc(X(n), U(n)) | yn]

(optimal future total cost given current and past observations)

Key (amazing) result rephrased: there is a functionV,, : § - R
Indexed by n such that

Vi = Vn(by)
where b,, is the belief state at stepn



See [3, Proposition C.2].
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Belief state is the only needed information

(continued)

Consequence of key result: e.g., to find the value function for the
optimal finite-horizon cost, you just need to solve:

n(b) —111111{0(: u)—I—ZZb Py(x, 2 )q(y' | 2"V, _ (_,-'MU;_H!_”))}_

y' zx

where C(b.u) Zh (2, u)



Conclusion of POMDP

Optimal control of POMDPs can thus be solved exactly as MDPs by
working with the belief state

Caveat: the belief state is defined on a continuous state space even
if the state space of the POMDP is finite.

This is a major challenge to address, and requires techniques for
continuous MDP seen for instance in this course

If the state space of the POMPD is a vector space of finite
dimension, then the belief state lives in a vector space of infinite
dimension, except in some special cases (like LGQ)



LQG and the separation principle

For LQG, the belief state is fully described by its mean and

covariance matrix. Hence, it lives in a space of dimension ~n?

Furthermore, we can show that the optimal total cost satisfies
Vn* — Vn(bn) — ’Vn(fn)
where £, & [ xb, (x) dx is the mean of the belief state

This is called the separation principle and justifies the LQG
controller where only the estimated state X,, (obtained using
Kalman filter) is used




The proof is based on the fact that &,; is a linear function of Z,,, Y,,+1 and U,,, and b, (z) is symmetric around
#p, i€, by (Zn +a) = b, (&, — a). Based on this, we can show that V,(b,) £ &, P,,,, where P, is the value function
of the associated (deterministic) LQR problem, solves the dynamic programming equation two slides earlier. Details
are omitted.
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