
Fast Matrix Multiplication

Dissertation presented by
Guillaume BERGER

for obtaining the Master’s degree in
Mathematical Engineering

Supervisors
Pierre-Antoine ABSIL, Lieven DE LATHAUWER

Readers
Laurent JACQUES, Marc VAN BAREL

Academic year 2016–2017

Fast Matrix Multiplication

Guillaume Berger

Dissertation committee:

Pierre-Antoine Absil (UCL, advisor)

Lieven De Lathauwer (KU Leuven, advisor)

Laurent Jacques (UCL, external member of jury)

Marc Van Barel (KU Leuven, advisor)

June 9, 2017

Acknowledgements

This thesis is the synthesis of six months of research under the supervision of Prof.
Pierre-Antoine Absil, Prof. Lieven De Lathauwer and Prof. Marc Van Barel. I would like to
sincerely thank them for their insightful comments, fruitful ideas and enthusiastic support
all along that period.

I am also grateful to Prof. Yurii Nesterov for his help concerning non-smooth opti-
mization methods.

5

6

Table of contents

1 Introduction and outline 9

2 State of the art 13

3 The problem of fast matrix multiplication 15
3.1 Basic definitions and notations . 15
3.2 Presentation of the problem . 17

3.2.1 Complexity of matrix multiplication 17
3.2.2 The matrix multiplication tensor . 18
3.2.3 Relation between rank and complexity 18

3.3 Sparse discrete decompositions . 21
3.3.1 Sparse solutions → stability + complexity 21
3.3.2 Discrete solutions → exactness + complexity 22

3.4 Invariant transformations . 22
3.4.1 Elementary transformations . 23
3.4.2 “Trace-like” transformations . 23

4 Computation of sparse discrete decompositions 26
4.1 A procedure to compute SD-sol’s . 26

4.1.1 A non-smooth optimization problem 27
4.1.2 Gradient method for composite functions 28
4.1.3 Practical use of the gradient method 33

4.2 Examples of computation of SD-sol’s . 34
4.2.1 Sparse discrete decompositions of small tensors 34
4.2.2 Sparse discrete decompositions of larger tensors 37
4.2.3 Comparison with two state-of-the-art methods 38

5 Discretizing decompositions through inv-transformations 39
5.1 Properties of discretizable decompositions 39

5.1.1 Motivation ← the two-steps approach 39
5.1.2 Characteristic polynomials of a F -PD 40

5.2 Distribution of discretizable decompositions 41
5.2.1 Statistics on the characteristic polynomials 42

7

5.2.2 Implementation → getting rid of T-perm 44
5.2.3 Case-by-case analysis and conclusions 45

6 Analysis of the inv-equivalence classes of decompositions 49
6.1 Computing the inv-transformations joining two F -PD’s 49

6.1.1 Preliminaries → the ⊕-rank of a matrix 49
6.1.2 Computation (part 1) → T-scale + T-trace 53
6.1.3 Computation (part 2) → getting rid of T-perm 58

6.2 Distribution of the ⊕-ranks and inv-equivalence classes 60
6.2.1 Distribution of the ⊕-rank of the factor matrices 60
6.2.2 Distribution of the inv-equivalence classes of F -PD’s 61

7 Conclusions 64

A Lipschitz-continuous gradient and quadratic upper bound 68

B Gradient of the F -terms polyadic decomposition error 70

C Tables and figures for the computation of SD-sol’s 71

D Description of the Tichavský et al.’s LM-method 81

E Overview of the Matlab codes attached to the report 83

8

Chapter 1

Introduction and outline

Because matrix multiplication is such a central operation in many numerical compu-
tations, it is worth investing work in making matrix multiplication algorithms efficient.
The “straightforward” way to multiply two (n, n) matrices costs O

(
n3) arithmetic oper-

ations {+,−,×,÷}. In particular, multiplying two (2, 2) matrices with the “straightfor-
ward” method requires 8 scalar multiplications. However, the arithmetic operations can
be grouped cleverly to reduce the work to 7 multiplications only (the number of required
multiplications decreases but we need more additions; nevertheless, as we will see later,
we do not have to worry about additions when we address the problem of asymptotic
complexity of matrix multiplication). Doing this recursively, we can reduce the cost for
the multiplication of two (n, n) matrices to O

(
n2.81) operations (in fact, the recursion is

precisely the reason why we want to reduce the number of multiplications and do not worry
about the number of additions). More substantial computational savings may be obtained
by starting from the reduction that can be achieved for the multiplication of (3, 3) or (4, 4)
matrices for instance. The reduction of the complexity may actually become so significant
that a new architecture for large matrix multiplication emerges. Essential is first that we
find inexpensive schemes for the multiplication of relatively small matrices.

The multiplication of (m, p) matrices by (p, n) matrices can be represented by a third-
order tensor. Finding inexpensive schemes for the multiplication of such matrices amounts
to finding decompositions of the associated tensor. The decomposition consists of a sum
of simpler tensors called “rank-1 tensors”. The minimal number of rank-1 terms neces-
sary to decompose a tensor is its rank. In the case of matrix multiplication, the rank of
the associated tensor is equal to the smallest number of active multiplications needed to
compute the matrix product (by “active multiplication”, we mean multiplication between
factors that “both depend on the entries of the matrices”; multiplications of those entries
with scalar coefficients are not considered as active multiplications). We will see that the
number of active multiplications will give us directly an upper bound for the asymptotic
complexity of matrix multiplication. In other words, determining the rank of the associ-
ated tensor allows us to find an exponent ω such that the asymptotic complexity for the
multiplication of (n, n) matrices is at most in O (nω) arithmetic operations.

Moreover, two decompositions of a given tensor might not have the same usefulness

9

even if they consist of the same number of rank-1 terms. For the problem of matrix
multiplication, decompositions with a lot of zero values and a small number of different
values in the rank-1 terms are more conclusive and practically useful. Such decompositions
are called “sparse” and “discrete” solutions. For instance, we may want that all the rank-1
term entries belong to {−1, 0,+1} with the “0” most represented. However, the classical
iterative processes for computing tensor decompositions do not lead in general to solutions
of this kind.

In this thesis, we present a new algorithm/procedure to compute sparse discrete de-
compositions. This involves successive “solve’s” of a non-smooth constrained optimization
problem. The idea is to induce the solution to be sparse using a regularization term in-
volving the L1-norm of the rank-1 terms and then recursively fix the most extremal values
in the rank-1 terms to integer values. With this algorithm, we easily computed sparse de-
compositions with rank-1 terms having their entries in {−1, 0,+1} for the multiplication
of matrices with sizes up to (3, 3).

We are also interested in the relations that exist between the different decompositions
of a given tensor. Let us start with a small example. Suppose we have decomposed a tensor
into the sum of rank-1 tensors. Then summing the rank-1 terms in a different order leaves
the result unchanged. Therefore, permutation of the terms is called an “invariant trans-
formation” of the decomposition and we say that the two decompositions are “equivalent
up to permutation of the terms”. For matrix multiplication tensors, more subtle invariant
transformations are possible. This raises questions like “is there a unique algorithm for
computing the product of (m, p) matrices by (p, n) matrices with F active multiplications
only?” and, otherwise, “given a matrix multiplication tensor, how many different decom-
positions with F terms exist such that two decompositions are not equivalent by invariant
transformations?”.

We present an algorithm to decide whether two decompositions are equivalent by in-
variant transformations and, if they are equivalent, compute the invariant transformations
that link them. The algorithm involves linear algebra and a novel strategy to get rid of the
permutation equivalence without trying every possible permutation of the rank-1 terms,
which would be prohibitive (for example, the decompositions we considered in this report
for the multiplication of (3, 3) matrices involve 23 rank-1 terms).

We are also interested in the “characteristic polynomials of the decompositions” (to
be defined later) of matrix multiplication tensors. The genesis of this work was to answer
the question “for a given matrix multiplication tensor, can we join any decomposition to
a discrete decomposition with invariant transformations?”. Indeed, such decompositions
(joinable to a discrete decomposition), which will be denoted as “discretizable” decompo-
sitions, would be interesting in what we call the “two-steps approach”, i.e. first compute
a decomposition of the matrix multiplication tensor and then transform it into a sparse
discrete decomposition with invariant transformations. In this thesis, we give a necessary
condition for a decomposition to be discretizable. This condition involves the “characteris-

10

3.1

3.2

3.3 3.4

4.1

4.2

6.1

6.2

5.1

5.2

Figure 1.1 – Dependencies between sections.

tic polynomials of the decomposition”. We will also see that, in practice, the “characteristic
polynomials of the decompositions” of matrix multiplication tensors are not so spread as
we might have expected.

The report is divided into seven chapters including this introduction and the final
conclusions. We start with Chapter 2 giving a small history of the work that has been
done in the field of matrix multiplication complexity and also present the main results
obtained in recent years. Chapter 3 introduces the problem of “fast matrix multiplication”
and matrix multiplication complexity. More precisely, in Sec. 3.1, we present the basic
concepts and notations that will be necessary to understand the report. In Sec. 3.2, we
provide a rigorous definition for the asymptotic complexity of matrix multiplication. We
also show precisely how the problem is related to the problem of determining the rank
of the associated tensor. In Sec. 3.3, we introduce the notion of sparse discrete solutions
and explain briefly why they are more useful in practice. Invariant transformations are
discussed in Sec. 3.4.

Chapter 4 deals with the computation of sparse discrete decompositions. In Sec. 4.1, we
present the algorithm we have implemented to compute them. Decompositions obtained
with the algorithm are presented in Sec. 4.2. Rather than simply presenting the results,
we explain in detail how the algorithm can be used to compute sparse discrete solutions
of matrix multiplication tensors up to the (3, 3) case.

The purpose of Chapter 5 is to give keys for answering the question “for a given

11

matrix multiplication tensor, can we join any decomposition to a discrete decomposition
with invariant transformations?”. Let us recall that a decomposition joinable to a discrete
decomposition is called “discretizable”. We explain, in Sec. 5.1, how we can characterize
discretizable decompositions. In Sec. 5.2, we analyze the distribution of discretizable de-
compositions for tensors up to the (3, 3) case: is every decomposition discretizable? If a
decomposition is “chosen randomly” (in a sense to be defined later), is there any chance
for it to be discretizable?

Finally, in Chapter 6, we are interested in the equivalence classes of decompositions
through invariant transformations. We present, in Sec. 6.1, an algorithm for deciding
whether two decompositions of a given matrix multiplication tensor are equivalent through
invariant transformations. We will use this algorithm in Sec 6.2 to analyze the distribution
of the equivalence classes among the different decompositions of a given matrix multipli-
cation tensor.

The different sections appearing in Chapter 3 to Chapter 6 are linked together in
multiple ways. To understand some section, it is sometimes necessary to have read before
the sections on which this section depends. Hence, to help the reader, we have represented
a schematic of the dependencies between those sections in Fig. 1.1.

We have implemented the algorithms presented in this report in Matlab. A zip file con-
taining the codes can be downloaded from https://drive.google.com/file/d/0B_BURx

d4zWUIZjN4U2ZmTVQ1TjQ/view?usp=sharing. In Appendix E, we also give an overview
of the different functions and scripts we have written.

12

https://drive.google.com/file/d/0B_BURxd4zWUIZjN4U2ZmTVQ1TjQ/view?usp=sharing
https://drive.google.com/file/d/0B_BURxd4zWUIZjN4U2ZmTVQ1TjQ/view?usp=sharing

Chapter 2

State of the art

Although the problem of matrix multiplication complexity is quite old, only partial
results are known so far. The work was initiated in 1969 when Strassen proposed [1] an
algorithm to compute the product of (2, 2) matrices with 7 active multiplications only.
Since then, the multiplication of (2, 2) matrices has been completely understood. The
rank of the associated tensor is 7 so that Strassen’s algorithm is optimal. It was proved by
de Groote [2] that Strassen’s algorithm is unique in the sense that every other algorithm
for the multiplication of (2, 2) matrices involving 7 active multiplications can be shown to
be equivalent to it through invariant transformations (c.f. Sec. 3.4).

For the (3, 3) case, an algorithm computing the product with 23 active multiplications
was proposed in 1976 by Laderman [3]. This means that the rank of the associated tensor is
at most 23. On the other hand, Bläser proved [4] in 2003 that the rank for the multiplication
of (3, 3) matrices should be at least 19. The gap 19–23 has not been reduced since then.
For multiplying two (4, 4) matrices, one can use Strassen’s algorithm twice, and therefore
the rank is at most 49. An algorithm involving 100 active multiplications was proposed in
1987 by Makarov [5] for the product of (5, 5) matrices. As far as we know, there is still no
proof whether those algorithms are optimal or not.

Recent developments in numerical multi-linear algebra open the door for further im-
provements. The emergence of numerical algorithms for the decomposition of tensors in-
duced a paradigm shift in the estimation of matrix multiplication complexity. Authors
like Smirnov [6] and Tichavský et al. [7] proposed innovative approaches to the numer-
ical computation of decompositions for matrix multiplication tensors. Nevertheless, the
problem of decomposing a given tensor in rank-1 terms remains difficult. In particular,
the numerous invariant transformations that can be applied on the rank-1 terms without
changing the result are responsible for the existence of a multitude of “flat regions” (when
we address the problem of rank determination as an optimization problem). Those will
have a negative impact on the global and local convergence of the iterative processes that
can be used for solving the problem.

The paper [8, p. 1388] of Ballard et al. gives a good overview of the practical algorithms
that are available in 2016 for the multiplication of matrices with sizes going from (2, 2)
by (2, 2) to sizes like (3, 6) by (6, 3). We give, in Table 2.1, the number of rank-1 terms

13

Multiplication

Number of multi-
plications with

“straightforward”
method

Number of
rank-1 terms

(1, 2) by (2, 1) 2 F = 2

(2, 1) by (1, 2) 4 F = 4

(2, 2) by (2, 2) 8 F = 7

(2, 3) by (3, 2) 12 F = 11

(3, 2) by (2, 3) 18 F = 15

(3, 3) by (3, 3) 27 F = 23

Table 2.1 – Main cases treated in this report.

involved in such algorithms for the different cases we will treat in this report (for example,
when we will want to apply our results and algorithms on practical cases). Note that
the two first cases are not coming from [8] but are straightforward since it amounts to
the multiplication of 2-elements column-vectors x and y, namely x>y (requires 2 active
multiplications) and x y> (requires 4 active multiplications). A proof that these two cases
cannot be computed with less active multiplications can be found in [9, p. 216].

14

Chapter 3

The problem of fast matrix multiplication

3.1 Basic definitions and notations

There are, in the literature, numerous equivalent definitions of tensors. We limit our-
selves to describe tensors as multi-way arrays. More formally, a tensor is an array with
indices (i1, . . . , iN). In particular, vectors are tensors with one index and matrices have
two indices. Tensors with three or more indices are called “higher-order” tensors. For the
purpose of this work, we restrict ourselves to real-valued tensors up to third order. In the
following, we refer to third-order tensors simply by calling them “tensors” contrasting with
“vectors” and “matrices”.

All along this report, we will use Matlab notation for the indexing of vectors, matrices
and tensors. For instance, if x is a vector, then x (i) denotes its i-th element. In the same
way, A (a :b , :) denotes the rows a to b of the matrix A while T (: , j, :) is the j-th “slice”
along the second mode of the tensor T. More precisely, T (: , j, :) is the matrix with row
index i and column index k and such that T (: , j, :) (i, k) := T (i, j, k). Further examples
of tensors and indexing and their graphical equivalent are represented below:

Vector Matrix Tensor

x (i)
A (: , j)

T (i, : , :)

i

j
k

.

The concept of rank of a tensor will be central in the analysis of the asymptotic
complexity of matrix multiplication. We define a rank-at-most-1 tensor to be a tensor that
can be expressed as T (i, j, k) = a (i) · b (j) · c (k) for some vectors a,b, c. Now let T be
any tensor, a F -terms polyadic decomposition of T is a decomposition of T as the sum of
F rank-at-most-1 tensors:

T (i, j, k) =
F∑
r=1

ar (i) · br (j) · cr (k) .

15

Graphically, this is often represented as follows:

T =
a1

b1 c1

+ · · · +
aF

bF cF
.

The rank of a non-zero tensor T is defined as the smallest F such that T admits a F -
terms polyadic decomposition. By convention, the rank of a zero tensor is zero. The rank
of a tensor is thus a generalization of the concept of rank for matrices. Let ar,br, cr
be the vectors involved in a F -terms polyadic decomposition of some tensor T. Define
the matrices A := [a1, . . . ,aF], B := [b1, . . . ,bF] and C := [c1, . . . , cF] and define the
“polyadic decomposition operator” J · , · , · K as follows:

JA,B,CK (i, j, k) :=
F∑
r=1

A (i, r) B (j, r) C (k, r) .

From the definition of A,B,C, it is clear that T = JA,B,CK. Reversely, if some matrices
A,B,C have F columns each and satisfy T = JA,B,CK, then we say that we have a F -
terms polyadic decomposition of T with factor matrices A,B,C. With abuse of notation,
we will often say more simply that “JA,B,CK is a F -PD of T”.

Let us remind the definition of two particular matrix products that will be useful in
the following. First the Kronecker product of two matrices A and B with sizes (I1, J1) and
(I2, J2) respectively is the (I1I2, J1J2) matrix defined by

A⊗B :=


A (1, 1) ·B A (1, 2) ·B · · · A (1, J1) ·B
A (2, 1) ·B A (2, 2) ·B · · · A (2, J1) ·B

...
...

A (I1, 1) ·B A (I1, 2) ·B · · · A (I1, J1) ·B


or equivalently

(A⊗B) ([i1 − 1] I2 + i2, [j1 − 1] J2 + j2) := A (i1, j1) ·B (i2, j2) .

Now suppose that A and B have F columns each. Let {a1, . . . ,aF } and {b1, . . . ,bF } be the
columns of A and B respectively. Then we define the Khatri-Rao product or column-wise
Kronecker product of A and B as follows:

A�B := [a1 ⊗ b1 , . . . , aF ⊗ bF] .

An equivalent definition of the Khatri-Rao product is

(A�B) ([i1 − 1] I2 + i2, r) := A (i1, r) ·B (i2, r) .

It is sometimes useful to “unfold” a tensor into a matrix. Let T be a tensor with
size (I, J,K). We explain how to build unfold[n] (T), the “unfolding of T along the n-th

16

mode”: first cycle-shift the modes of T so that n is the new first mode of T′. Then stack
the “slices” T′ (: , : , k′) side-by-side to build unfold[n] (T). Equivalently, we could have
given a definition based on the indices. For instance, for n = 2, we have

unfold [2] (T) (j, [i− 1]K + k) := T (i, j, k) .

Finally, when doing numerical computations, we will have to measure the accuracy of
some approximations. Sometimes, we also want to prevent some variables to grow too fast
or excessively. This leads us to define norms on vectors, matrices and tensors. Let T be
any array with indices (i1, . . . , iN) and let 0 < p <∞. We define the Lp-norm of T as

‖T ‖Lp :=

 ∑
i1,...,iN

|T (i1, . . . , iN) |p
1/p

.

We also define the L∞-norm of T to be

‖T ‖L∞ := max
i1,...,iN

|T (i1, . . . , iN) | .

3.2 Presentation of the problem

The section is divided into three subsections. First we give a formal definition for the
asymptotic complexity of matrix multiplication. Then we show how matrix multiplication
can be represented with a third-order tensor. Finally, we explain how the problem of matrix
multiplication asymptotic complexity is linked to the problem of determining the rank of
the associated tensor.

3.2.1 Complexity of matrix multiplication

In the following, we will use the symbol 〈m, p, n〉 for referring to the “multiplication of
a (m, p) matrix with a (p, n) matrix”. LetM(h) be the minimal number of scalar additions
and multiplications necessary to compute 〈h, h, h〉. An exact determination ofM(h) seems
to be outside the range of methods available at the present time (c.f. the first and second
paragraphs of Chapter 2). We limit ourselves to analyze the asymptotic growth of M(h)
as h tends to infinity. Therefore, we define the exponent of matrix multiplication as

ω := inf
{
τ ∈ R

∣∣∣ there exists a C ∈ R such that M(h) ≤ Chτ for all h ≥ 0
}
.

If we can determine the value of ω, then we would be able to say that “the complexity of
〈h, h, h〉 is in O (hω)”. From the “straightforward” or “naive” computation of 〈h, h, h〉, we
already know that M(h) ≤ h2 (2h− 1). On the other hand, the product

x1 0 · · · 0
x2 0 · · · 0
...

...
xh 0 · · · 0




y1 y2 · · · yh

0 0 · · · 0
...

...
0 0 · · · 0


requires h2 independent multiplications. Hence, we have a first estimate ω ∈ [2, 3].

17

3.2.2 The matrix multiplication tensor

Let W be some (m,n) matrix and observe that W is completely determined if we know
the value of trace (WZ) for every (n,m) matrix Z. Indeed the value of W (i, j) is directly
given by trace (WZij) where Zij is the matrix defined by Zij (k, `) = 1 if (k, `) = (j, i)
and Zij (k, `) = 0 otherwise. Now consider the bilinear map

Rm×p × Rp×n → Rm×n : (X,Y) 7→ XY .

From the observations above, this map is completely determined by the map

Rm×p × Rp×n × Rn×m : (X,Y,Z) 7→ trace (XYZ) .

This map is a trilinear map in the variables X,Y,Z and, from it, we will be able to define
the “structural tensor for 〈m, p, n〉”. This tensor is denoted Tmpn and is defined by

trace (XYZ) =
mp∑
i=1

pn∑
j=1

nm∑
k=1

Tmpn (i, j, k) · vec (X) (i) · vec (Y) (j) · vec (Z) (k) .

For example, the “structural tensor for 〈2, 2, 2〉” is given by

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1




T222 (: , : , 1) T222 (: , : , 2) T222 (: , : , 3) T222 (: , : , 4)

.

3.2.3 Relation between rank and complexity

We already mentioned that determining the rank of the associated “structural tensor”
can give us upper bounds for the asymptotic complexity of matrix multiplication. Let’s
see how the two concepts are related to each other. Let m, p, n be fixed positive inte-
gers and suppose we have a F -PD of Tmpn. From this F -PD, we can build an algorithm
for computing 〈m, p, n〉 with F active multiplications only. By “active multiplications”,
we mean multiplications between factors that “both depend on the entries of the matri-
ces”; multiplications of those entries with scalar coefficients are not considered as active
multiplications. For example, if X and Y are matrices, then an expression like

[α1X (1, 2) + α2X (2, 4)] · [β1Y (2, 1) + β2Y (3, 2)]

involves four multiplications of the entries of the matrices with scalar coefficients and,
since both expressions [α1X (1, 2) + α2X (2, 4)] and [β1Y (2, 1) + β2Y (3, 2)] “depend on
the entries of the matrices”, there is also one active multiplication. The reasons for this
distinction is that we will apply this algorithm recursively on matrices with size (mα, pα)

18

and (pα, nα). Doing this, we obtain an algorithm to compute 〈mα, pα, nα〉 and we can show
that this algorithm has a complexity in O (Fα). This leads us to the following theorem:

Theorem 3.1. Let m, p, n be positive integers and suppose we have
a F -PD of Tmpn, then we have an upper bound on the exponent ω
of matrix multiplication given by the inequality (mpn)ω/3 ≤ F .

For the interested reader, a proof of this theorem can be found in [10, p. 378]. Instead
of giving the complete proof, we prefer to give an example that will exhibit how to build an
algorithm for 〈m, p, n〉 starting from a F -PD of Tmpn and also how this algorithm can be
used to find the inequality (mpn)ω/3 ≤ F appearing in the theorem. Consider the 〈2, 2, 2〉
case and observe that the following matrices A,B,C provide a 7-PD of T222:

A> B> C>



+1 0 0 +1
+1 0 0 0

0 +1 0 −1
−1 0 +1 0

0 0 0 +1
+1 +1 0 0

0 0 +1 +1





+1 0 0 +1
0 0 +1 +1

+1 0 0 0
0 0 0 +1

+1 +1 0 0
−1 0 +1 0

0 +1 0 −1





+1 0 0 +1
0 +1 0 −1
0 0 +1 +1

+1 +1 0 0
−1 0 +1 0

0 0 0 +1
+1 0 0 0



. (3.1)

In general, if JA,B,CK is a F -PD of Tmpn, then, from the definition of the matrix multi-
plication tensor Tmpn and the definition of a F -PD, we have that

trace (XYZ) =
F∑
r=1

[
vec (X)>A (: , r)

]
·
[
vec (Y)>B (: , r)

]
·
[
vec (Z)>C (: , r)

]
. (3.2)

From the decomposition (3.1) and using the identity (3.2), we are able to build an algorithm
for the computation of 〈2, 2, 2〉 with 7 active multiplications. Let X and Y be two (2, 2)
matrices. The algorithm to compute their product Z := XY consists of first computing

19

the 7 following active products:

Product
[
vec (X)>A (: , r)

]
·
[
vec (Y)>B (: , r)

]
m1 [X (1, 1) + X (2, 2)] · [Y (1, 1) + Y (2, 2)]

m2 X (1, 1) · [Y (1, 2) + Y (2, 2)]

m3 [X (2, 1)−X (2, 2)] ·Y (1, 1)

m4 [X (1, 2)−X (1, 1)] ·Y (2, 2)

m5 X (2, 2) · [Y (1, 1) + Y (2, 1)]

m6 [X (1, 1) + X (2, 1)] · [Y (1, 2)−Y (1, 1)]

m7 [X (1, 2) + X (2, 2)] · [Y (2, 1)−Y (2, 2)]

(3.3)

and then assemble them as follows to obtain the elements of Z:

Entry Definition Value

Z (1, 1)
∑
r mr ·C (1, r) m1 +m4 −m5 +m7

Z (1, 2)
∑
r mr ·C (2, r) m2 +m4

Z (2, 1)
∑
r mr ·C (3, r) m3 +m5

Z (2, 2)
∑
r mr ·C (4, r) m1 −m2 +m3 +m5

. (3.4)

We now show how the algorithm can be used to get a better bound on the exponent of
matrix multiplication. The algorithm involves 7 active multiplications. Additions and sub-
tractions between the entries of X and Y and between the productsmr and multiplications
of the entries of X and Y and the products mr with scalar coefficients are called “basic op-
erations”. The algorithm above needs 18 of such “basic operations”. Now suppose that the
entries X (i, j) and Y (i, j) are matrices with size (2α, 2α) instead of just scalars. Hence,
we have a block decomposition of X and Y which are now

(
2α+1, 2α+1) matrices. The

computation of the product XY will now involve 7 active multiplications of the (2α, 2α)
matrices and 18 “basic operations” on (2α, 2α) matrices. Each of those “basic operations”
requires exactly 4α scalar additions/subtractions/multiplications. Now let M(2α) be the
number of scalar additions/subtractions/multiplications necessary to compute 〈2α, 2α, 2α〉
with the recursive algorithm. Then we have the recurrence

M
(
2α+1) = 7 ·M(2α) + 18 · 4α and M

(
20) = 1 .

The solution of the recurrence is given by

M(2α) = 7 · 7α − 6 · 4α .

20

Hence, computing 〈2α, 2α, 2α〉 requires at most O (7α) operations. Letting h := 2α, we have
that M(h) is asymptotically lower than Chlog2(7) for some C ∈ R and thus

ω ≤ log2 (7) < 2.807 .

This is the bound originally found [1] by Strassen. In 1990, Coppersmith and Winograd
proposed [11] the so-called “Coppersmith–Winograd algorithm” together with the upper
bound ω < 2.376. It is also important to point out that “this algorithm is unpractical due
to the astronomically large constant in the complexity estimate” [6].

3.3 Sparse discrete decompositions

In the case of matrix multiplication tensors, some F -PD’s are more interesting than
others. We are especially interested in sparse and discrete decompositions (also called
“sparse discrete solutions” and abbreviated as “SD-sol’s”). In this section, we define what
we mean by “sparse discrete solutions” and explain why they are more interesting for us.

3.3.1 Sparse solutions → stability + complexity

Let JA,B,CK be a F -PD of some matrix multiplication tensor Tmpn. We say that
JA,B,CK is a sparse decomposition or solution if A,B,C contain only but a few zero
elements. The decomposition (3.1) is an example of a sparse decomposition since each
matrix A,B,C contains 12 non-zero entries compared on a total number of 28 entries.

A first advantage of sparse solutions concerns the “computational cost” of the resulting
matrix multiplication algorithm. Indeed, consider, for instance, the computations (3.3) and
(3.4) involved in the algorithm for 〈2, 2, 2〉. It is clear that the computation of

vec (X)>A (: , r) and vec (Y)>B (: , r) (3.5)

involved in the active products

mr =
[
vec (X)>A (: , r)

]
·
[
vec (Y)>B (: , r)

]
,

and the computation of
F∑
r=1

mr ·C (k, r) (3.6)

will be faster if A (: , r), B (: , r) and C (k, :) contain mainly zero elements.
However, the rapidity of the algorithm is not the only motivation for minimizing the

number of operations we have to compute in (3.5) and (3.6). Indeed, computing (3.5) and
(3.6) with fewer additions will also improve the numerical stability of the algorithm. To
see this, note that all the computations are done in floating-point arithmetic with machine
precision eps and thus, when we evaluate an operation like a + b, the computed value,
denoted by float (a+ b), has the form

float (a+ b) = (a+ b) · (1 + θ) for some |θ| ≤ eps.

21

For summations with more than two terms, we have

float (a1 + . . .+ aN) = (a1 + . . .+ aN) · (1 + θ)N−1 for some |θ| ≤ eps

if the terms aµ are accumulated sequentially and

float (a1 + . . .+ aN) = (a1 + . . .+ aN) · (1 + θ)1+ceil[log2(N)] for some |θ| ≤ eps

if we use a sequential “divide-and-conquer” algorithm. In each case, the precision of the
computed result float (a1 + . . .+ aN) decreases when the numberN of terms to be summed
is large. Hence, it is preferable to have only a few non-zero elements to compute in (3.5)
and (3.6). For a detailed stability analysis of algorithms resulting from a F -PD JA,B,CK
of the associated tensor Tmpn, we refer the reader to [8].

3.3.2 Discrete solutions → exactness + complexity

Considering again the 7-PD (3.1) of T222, we observe that all the non-zero elements of
A,B,C are either −1 or +1. In general, we will try to find decompositions such that the
entries of A,B,C are rational numbers taking no more than five different values. For in-
stance, we will search for solutions with entries in {−1, 0,+1} or in {−1,−1/2, 0,+1/2,+1}
but other values are also possible. Such decompositions will be called discrete solutions.

There are two reasons we favor discrete solutions. The first one deals with the exact-
ness of the decomposition. If a F -PD JA,B,CK of Tmpn is computed with a numerical
algorithm, the decomposition will be precise up to machine precision:

Tmpn = JA,B,CK± θS where ‖S‖L2 = 1 and θ ∈ O (eps).

If we know that the entries of A,B,C might take at most five different rational values,
then we can easily recover them and obtain an exact decomposition of Tmpn.

The second reason is that rational values will lower the computational cost of the
resulting matrix multiplication algorithm. Indeed, when computing vec (X) (i)·A (i, r) and
vec (Y) (j) · B (j, r) in the vector inner products (3.5) and when computing mr ·C (k, r)
in (3.6), it is less expensive to make computations like ±1 · δ (does not cost anything) or
±1/2 · δ (consists of shifting one bit of a) instead of computing +0.845593745698 · δ or
−0.284574528463 · δ for example. It is important to point out that rational values might
only lower the cost of the “basic operations” and thus have an positive impact on the exact
cost M(h). However, this cannot reduce the asymptotic complexity O (hω).

3.4 Invariant transformations

We present the different transformations that can act on the factor matrices A,B,C
involved in the F -PD of a matrix multiplication tensor Tmpn. Invariant transformations
modify the factor matrices but leave the recomposition JA,B,CK unchanged. We distin-
guish two types of transformation: the elementary transformations which are also valid for
general tensors, and the “trace-like” transformations valid only if JA,B,CK is a F -PD of
a matrix multiplication tensor.

22

3.4.1 Elementary transformations

Let JA,B,CK be a F -PD of some tensor T and let {a1, . . . ,aF }, {b1, . . . ,bF } and
{c1, . . . , cF } be the columns of A, B and C respectively. Let σ be a permutation of
{1, . . . , F} and observe that the result is unchanged if we sum the rank-at-most-1 terms
in any order:

F∑
r=1

ar (i) · br (j) · cr (k) =
F∑
r=1

aσ(r) (i) · bσ(r) (j) · cσ(r) (k) .

Hence, we have a first class of elementary transformations:

permutation
of the columns

ar ← aσ(r)

br ← bσ(r)

cr ← cσ(r)

for all r ∈
{1, . . . , F}.

Now let {λ1, . . . , λF }, {µ1, . . . , µF } and {ν1, . . . , νF } be real numbers satisfying

λrµrνr = 1 for all r ∈ {1, . . . , F}.

Then it is clear that
F∑
r=1

ar (i) · br (j) · cr (k) =
F∑
r=1

[ar (i) · λr] · [br (j) · µr] · [cr (k) · νr]

so that we can define a second class of elementary transformations:

scaling and
counter-scaling
of the columns

ar ← ar · λr
br ← br · µr
cr ← cr · νr

for all r ∈
{1, . . . , F}.

3.4.2 “Trace-like” transformations

We define a class of invariant transformations specific for the F -PD’s of matrix mul-
tiplication tensors Tmpn. Like in the previous section, let JA,B,CK be a F -PD of Tmpn

and let {a1, . . . ,aF }, {b1, . . . ,bF } and {c1, . . . , cF } be the columns of A, B and C re-
spectively. First let us introduce the “reshape operator” which maps a IJ-elements vector
x to the (I, J) matrix defined as follows:

rshp [I,J] (x) (i, j) := x ([j − 1]I + i) .

We also introduce the map 〈 · , · 〉 : RI×J × RI×J → R defined by

〈U,V〉 := trace
(
U>V

)
=

I∑
i=1

J∑
j=1

U (i, j) V (i, j) . (3.7)

If X is a (I, J) matrix and y is a IJ-elements vector, then observe that

vec (X)> y =
〈
X, rshp [I,J] (y)

〉
.

23

Hence, from the identity (3.2), we have that

trace (XYZ) =
F∑
r=1

〈
X, rshp [m,p] (ar)

〉
·
〈
Y, rshp [p,n] (br)

〉
·
〈
Z, rshp [n,m] (cr)

〉
.

Now let P ∈ GL (m), Q ∈ GL (p) and R ∈ GL (n) (where “GL (h)” stands for the general
linear group of degree h, i.e. the set of invertible (h, h) matrices) and consider the identity

trace
([

P−1XQ
]
·
[
Q−1YR

]
·
[
R−1ZP

])
= trace (XYZ) .

This allows us to define a new class of invariant transformations:

Transformation of
reshaped columns
through P,Q,R

rshp [m,p] (ar) ← P−1 · rshp [m,p] (ar) ·Q
rshp [p,n] (br) ← Q−1 · rshp [p,n] (br) ·R
rshp [n,m] (cr) ← R−1 · rshp [n,m] (cr) ·P

for all r ∈
{1, . . . , F}.

Equivalently, this provides transformations of the columns of A,B,C:

Transformation
of columns

through P,Q,R

ar ←
(
Q> ⊗P−1

)
· ar

br ←
(
R> ⊗Q−1

)
· br

cr ←
(
P> ⊗R−1

)
· cr

for all r ∈
{1, . . . , F}.

In the following, transformations via permutation of the columns are abbreviated as “T-
perm”, scaling/counter-scaling is abbreviated as “T-scale” while transformations through
invertible matrices P,Q,R are denoted by “T-trace”. Let JA1,B1,C1K and JA2,B2,C2K
be two F -PD’s of a matrix multiplication tensor. Suppose there exists a transforma-
tion T-perm such that we can transform A1,B1,C1 into A2,B2,C2. Then we say that
JA1,B1,C1K and JA2,B2,C2K are “(T-perm)-equivalent”. Similarly, we can also have
“(T-scale+T-trace)-equivalent” or “(T-perm+T-scale+T-trace)-equivalent” F -Pd’s. For
simplicity, “(T-perm+T-scale+T-trace)-equivalence” will often be abbreviated as “inv-
equivalence”. Being inv-equivalent is a equivalence relation. If JA,B,CK is a F -PD of
some matrix multiplication tensor Tmpn, its inv-equivalence class is denoted

S (A,B,C) :=
{

A′,B′,C′
∣∣∣ qA′,B′,C′

y
is inv-equivalent to

q
A′,B′,C′

y}
.

The main questions we will address in the two penultimate chapters are summarized
in Table 3.1. As we will see in Sec. 5.2 and Sec. 6.1, one of the main challenges in the
implementation of algorithms for answering Question 1 and Question 2 will come from
the (T-perm)-equivalence. Indeed, for such transformations a naive algorithm (trying all
possible permutations) would be prohibitive in running time since the number of FLOP’s
would grow as O (F !). Hence, we will have to find tricks to reduce the cost of getting rid
of the (T-perm)-equivalence.

24

Question 1:

(Chapter 5)

Given a F -PD JA,B,CK of Tmpn, does a discrete
(T-scale+T-trace)-equivalent F -PD A∗,B∗,C∗ ex-
ist (transformations T-perm are not relevant here
since permutating the columns will not change the
discrete character of the decomposition)? If this is
the case, such a F -PD will be called a “discretiz-
able” decomposition.

Question 2:

(Chapter 6)

What is the distribution of the S (A,B,C)’s if the
F -PD’s are “chosen randomly” (in a sense that we
will defined later)? For example, is there a unique
equivalent class S (A,B,C)? If we “choose ran-
domly” two F -PD’s of the same tensor, is there a
non-zero probability for them to be inv-equivalent?

Table 3.1 – Questions related to invariant transformations.

Remark. At first sight, it might look like the transformations T-scale act as a particular
case of the transformations T-trace with

P :=
(
ν

λ

)1/3
Im , Q :=

(
λ

µ

)1/3
Ip , R :=

(
µ

ν

)1/3
In

for example. In fact, this is not the case since those P,Q,R will rescale all the columns
of A,B,C with the same coefficient λ, µ, ν (provided λµν = 1). Transformations T-scale
are more general since we admit different {λ1, . . . , λF }, {µ1, . . . , µF } and {ν1, . . . , νF }.

25

Chapter 4

Computation of sparse discrete decompositions

4.1 A procedure to compute SD-sol’s

We present a procedure for computing sparse discrete decompositions (if some exists)
of a given tensor. The procedure involves sequential “solve’s” of a non-smooth optimization
problem. The first subsection deals with this optimization problem and how we use it in
the procedure to find SD-sol’s. In the second subsection, we present a method for solving
problems belonging to a general sub-class (defined in the same subsection) of non-smooth
optimization problems. In the last subsection, we explain precisely how the method applies
to our specific optimization problem.

The procedure, as presented, is dedicated to compute only sparse decompositions with
factor matrices having their entries in the set {−1, 0,+1} (and not in {−2,−1, 0,+1,+2} or
{−1,−1/2, 0,+1/2,+1} for example while such decompositions might still be interesting,
as we pointed out in Sec. 3.3). The reason is that we constrain the entries of the factor
matrices between −1 and +1 (hence, it is impossible to get a “±2”) and we fix recursively
the values that are extremal (in absolute value), i.e. we fix the values close to ±1 (and
thus, it is difficult to converge to a “±1/2” in the factor matrices). Modifications of the
procedure to compute more general sparse discrete solutions are discussed briefly in the
remark at the end of Sec. 4.2.

26

4.1.1 A non-smooth optimization problem

We would like to solve the following optimization problem:

minimize

‖X− JA,B,CK‖2L2 + ρ {‖A‖L1 + ‖B‖L1 + ‖C‖L1}

subject to

A(i, r) ∈ [−1,+1] for all i, r
B(j, r) ∈ [−1,+1] for all j, r
C(k, r) ∈ [−1,+1] for all k, r

A(i, r) = air for all (i, r) ∈ I1

B(j, r) = bjr for all (j, r) ∈ I2

C(k, r) = ckr for all (k, r) ∈ I3

with variables

A ∈ RI×F , B ∈ RJ×F , C ∈ RK×F .

.

(#1)

(#2)

(4.1)

The objective function consists of two terms with distinct purposes:

‖X− JA,B,CK‖2L2 + ρ {‖A‖L1 + ‖B‖L1 + ‖C‖L1} .

With the first term, we hope to attract the solution to be a F -PD (or not far from being
a F -PD) of X. The second term is a “regularization term” and, with it, we hope that,
among all the solutions A,B,C that are close to be a F -PD of X, we will converge to
a sparse solution. Using a L1-regularization is a trick that is often used in statistics and
machine learning to induce sparsity in the solution. For more information about the L1-
regularization, we refer the reader to [12].

The method we use to solve problem (4.1) is described in the next subsection. It is a
variant of the gradient method for minimizing functions involving a non-smooth convex
term. The method is an iterative process and we need to provide an initial iterate/guess.
Note that, since the problem is not convex, we have no guarantees on the convergence to
a global minimum. Global and local convergence of the process will be discussed in the
next subsection as well.

Before describing the method we use to solve the problem, let us first present the
procedure for finding SD-sol’s. This involves successive “solve’s” of (4.1). More precisely,
the idea is the following: in Phase 1, we start from a random initial guess A0,B0,C0 and
use the iterative process to find a solution A1,B1,C1 to (4.1) with a low ρ. With this, we
hope to converge to an accurate F -PD of X, i.e. JA1,B1,C1K ≈ X.

In Phase 2, we increase the value of ρ and try to solve the problem starting from the
last solution A1,B1,C1 as first iterate for the iterative process. The objective is to obtain

27

a sparse solution A2,B2,C2 which is also not far from being a F -PD of X. The set of
constraints (#1) in problem (4.1) is there to help the first solution A1,B1,C1 to be not
completely degenerate so that it will be easier to compute a sparse solution A2,B2,C2,
starting from A1,B1,C1. The second set of constraints (#2) is not used during Phase 1
and Phase 2, i.e. I1, I2, I3 are empty sets.

Once we have a sparse approximate decomposition, we try to obtain a SD-sol from
it. This is where the second set of constraints (#2) is used. The computations of the
parameters involved in (#2), i.e. I1, I2, I3 and the corresponding air, bjr, ckr, are done
during Pre-phase 3. The procedure is the following: let Aα,Bα,Cα be a sparse approximate
decomposition, choose a parameter 0 < η < 1 and define the following sets of indices:

I+
1 :=

{
(i, r)

∣∣∣ Aα (i, r) ≥ +η
}

and I−1 :=
{

(i, r)
∣∣∣ Aα (i, r) ≤ −η

}
.

In words, the parameter η decides “above which threshold (in absolute value) the entries
of Aα must be considered to be −1 or +1”. For example, we may impose that all the
entries greater than +0.9 or lower than −0.9 are fixed to be +1 and −1 respectively. The
sets I+

1 , I
−
1 contain the indices of those entries and we also have to define air := +1 for all

(i, r) ∈ I+
1 and air := −1 for all (i, r) ∈ I−1 and finally I1 := I+

1 ∪ I
−
1 . The sets I+

2 , I
−
2 and

I+
3 , I

−
3 containing indices of Bα and Cα respectively and the constraint values bjr and ckr

are defined in the same way.
Those constraints are added to (4.1) and then, in Phase 3, we try to find a solution

Aα+1,Bα+1,Cα+1 starting from Aα,Bα,Cα as initial iterate for the iterative process.
Pre-phase 3 and Phase 3 are repeated several times until we converge to a SD-sol, if some
exists. A schematic of the procedure is represented in Fig. 4.1 and numerical examples will
be presented in Sec. 4.2.

4.1.2 Gradient method for composite functions

We introduce a general sub-class of non-smooth optimization problems and we present
a method for solving them. The method will not always converge to a global minimum
but the convergence to a stationary point is ensured. For this, we rely on [13]. We do not
bring anything new in this subsection but merely synthesize the results of [13] that are
relevant for our purpose, i.e. a gradient method to solve problem (4.1).

Let U be a finite-dimensional vector space over R with inner product (u, v) 7→ 〈u, v〉
and with u 7→ ‖u‖ for the associated norm. Suppose f (x) is a smooth function from U

to R and ψ (x) is a convex (possibly non-smooth) function from U to R. Finally, let Q be
a convex subset of U. We suppose that ψ (x) and Q are “simple” in a sense that will be
defined later. We consider the problem consisting of:

minimize φ (x) := f (x) + ψ (x) subject to x ∈ Q.

Let x̄ be a point of Q and choose a constant L > 0. Consider the following “first-order

28

small ρ
I1, I2, I3 = ∅

Phase 1

medium ρ

I1, I2, I3 = ∅

Phase 2

compute I+
1 , I

−
1 ,

I+
2 , I

−
2 and I+

3 , I
−
3

Pre-phase 3

medium ρ

fix entries with
indices in I+

1 , I
−
1 ,

I+
2 , I

−
2 and I+

3 , I
−
3

Phase 3

random
A0,B0,C0

A1,B1,C1

A2,B2,C2

Aα,Bα,Cα

Induce sparsity

Induce discrete entries

Figure 4.1 – Procedure to compute SD-sol’s by solving several times the
non-smooth optimization problem using recursively the last obtained
solution as initial iterate for the computation of the new solution.

29

Input: First iterate x0 ∈ Q, initial constant L0 > 0 and
“step-size stopping criterion” ε > 0.

[01] : Set k ← 0 ;

[02] : Set xk+1 ← TLk
(xk) ;

[03] : If φ (xk+1) > mLk
(xk+1 |xk) :

[04] : Set Lk ← 2Lk ;

[05] : Go to [02] ;

[06] : If ‖xk+1 − xk‖ ≤ ε :

[07] : Exit Function ;

[08] : Set Lk+1 ← Lk/2 ;

[09] : Set k ← k + 1 ;

[10] : Go to [02] ;

Output: Last iterate xk+1 ∈ U.

Algorithm 1 – Gradient method for composite functions.

approximation” of φ (x) around x̄:

mL (x | x̄) := f (x̄) + 〈∇f (x̄) , x− x̄〉+ L

2 ‖x− x̄‖
2 + ψ (x) .

Observe that x 7→ mL (x | x̄) is convex and has thus a unique minimizer:

TL (x̄) := arg min
{
x 7→ mL (x | x̄)

∣∣∣ x ∈ Q
}
.

The hypothesis that “ψ (x) and Q are simple” just means that TL (x̄) has to be easy to
compute. Without this assumption, the method would be less interesting since we would
have to solve a non-smooth optimization sub-problem at each iteration of the method.

The composite gradient method is described in Algorithm 1. The idea of the algorithm
is the following: starting from a point xk, we compute the minimizer TL (xk) of the first-
order approximation of φ (x) around xk. This approximation involves the parameter L.
If the exact value φ (TL (xk)) is larger than the approximation mL (TL (xk) |xk), then it
means that the parameter L is too small. Hence, we increase L and we compute TL (xk)
again with the new L. We do this recursively until the value of the approximation at
TL (xk) is larger than the exact value φ (TL (xk)). In this case, TL (xk) becomes the new
point xk+1 and we repeat the last steps, starting from a smaller L.

Now let us discuss the convergence of the composite gradient method. In the following,

30

we suppose that f (x) has Lipschitz-continuous gradient with parameter M :

‖∇f (x1)−∇f (x2)‖ ≤M ‖x1 − x2‖ for all x1, x2 ∈ Q. (4.2)

This implies the following inequality (in fact, the relation is stronger than a simple impli-
cation, we prove in Appendix A that the two statements are equivalent):

|f (x)− [f (x̄) + 〈∇f (x̄) , x− x̄〉]| ≤ M

2 ‖x− x̄‖
2 for all x, x̄ ∈ Q. (4.3)

We analyze the execution of Algorithm 1. Suppose the value of k is k∗ when the algorithm
stops. We wonder how many times we have computed steps [02] and [03]. From inequality
(4.3), we know that we will satisfy condition [03] only if Lk ≤M . Hence, when we start
executing step [08], we have Lk ≤ 2M and thus, after having executed step [08], we
must have Lk+1 ≤ M . Consider a fixed k ≥ 0 and let nk be the number of times we
execute step [02] for this k. Clearly nk ≥ 1 and after having executed step [08], we have
Lk+1 = 2nk−2Lk. This provides a bound on nk:

nk = 2 + log2

(
Lk+1
Lk

)
.

Summing over k ≥ 0, we obtain how many times we compute steps [02] and [03]:

Nk∗ :=
k∗∑
k=0

nk = 2 (k∗ + 1) + log2

(
Lk∗+1
L0

)
≤ 2 (k∗ + 1) + log2

(
M

L0

)
. (4.4)

Now, what can we say about the step-size ‖xk+1 − xk‖? To answer this question, we
will first have to analyze the decrease that is guaranteed on φ (xk)− φ (xk+1). Therefore,
let x̄ be fixed and define the convex function

m̂ (x | x̄) := f (x̄) + 〈∇f (x̄) , x− x̄〉+ ψ (x) = mL (x | x̄)− L

2 ‖x− x̄‖
2 .

Since x 7→ mL (x | x̄) = m̂ (x | x̄) + L
2 ‖x− x̄‖

2 is minimal at TL (x̄), the vector

hL (x̄) := −L · (TL (x̄)− x̄)

must be a sub-gradient of x 7→ m̂ (x | x̄) at TL (x̄). Hence, we have

m̂ (x̄ | x̄) ≥ m̂ (TL (x̄) | x̄) + 〈hL (x̄) , x̄− TL (x̄)〉 = m̂ (TL (x̄) | x̄) + L ‖TL (x̄)− x̄‖2 .

Finally, this gives

φ (x̄)−mL (TL (x̄) | x̄) = m̂ (x̄ | x̄)−mL (TL (x̄) | x̄) ≥ L

2 ‖TL (x̄)− x̄‖2 . (4.5)

Using the previous developments, we can prove the following theorem [13, Theorem 3]:

31

Theorem 4.1. Let φ (x) be bounded from below on Q by a
constant φ∗. Then, just before starting step [06], we have

min
0≤i≤k

Li
2 ‖xi+1 − xi‖2 ≤

φ (x0)− φ∗
k + 1 . (4.6)

Moreover, there exists a sub-gradient ξ (xk+1) of ψ (x) at xk+1

such that, for any u = λ · (y − xk+1) for some y ∈ Q and some
λ ≥ 0 and satisfying ‖u‖ = 1, we have

〈∇f (xk+1) + ξ (xk+1) , u〉 ≥ −3M ‖xk+1 − xk‖ . (4.7)

Proof. First let us prove the inequality (4.6). Therefore, observe that, just before we start
step [06], we have that φ (xk+1) ≤ mLk

(xk+1 |xk). Hence,

φ (xk)− φ (xk+1) ≥ φ (xk)−mL (xk+1 |xk) ≥
Lk
2 ‖xk+1 − xk‖2 .

where the last inequality comes from (4.5). If we sum over k ≥ 0, we find

φ (x0)− φ (xk+1) =
k∑
i=0

φ (xi)− φ (xi+1) ≥
k∑
i=0

Li
2 ‖xi+1 − xi‖2

and thus
φ (x0)− φ (x∗) ≥ (k + 1) · min

0≤i≤k

Li
2 ‖xi+1 − xi‖2 .

In order to prove (4.7), remember that hLk
(xk) is a sub-gradient of x 7→ m̂ (x |xk) at

xk+1 and thus ξ (xk+1) := hLk
(xk)−∇f (xk) is a sub-gradient of ψ (x) at xk+1:

〈∇f (xk+1) + ξ (xk+1) , u〉 = 〈∇f (xk+1)−∇f (xk) , u〉+ 〈hLk
(xk) , u〉 .

Using the definition of hLk
(xk) and the Lipschitz-continuity of the gradient, we get

〈∇f (xk+1) + ξ (xk+1) , u〉 ≥ −M ‖xk+1 − xk‖ − Lk ‖xk+1 − xk‖ .

We conclude with the fact that Lk is always smaller than 2M .

From the upper bounds (4.4) and (4.6), we conclude that Algorithm 1 will stop after
at most O

(
1/ε2

)
steps. Moreover, inequality (4.7) tells us that the “descent rate” at xk+1

is at most proportional to ‖xk+1 − xk‖. Hence, if we use a small ε, we know that the
output xk+1 will be an “almost stationary” point of φ (x). Nevertheless, since the problem
is non-convex, we have no guarantee that the stationary point is a global minimum. The
algorithm could converge to a local minimum as well. In theory, the method can also
converge to a saddle-point or a local maximum, for example if it starts from such a point.
However, since the method is a descent method, i.e. the value of φ (xk) decreases at every
step k, it is unlikely to be attracted to a saddle-point or a maximum. The convergence
of the composite gradient method applied to our non-smooth optimization problem (4.1)
will be illustrated in the next subsection.

32

4.1.3 Practical use of the gradient method

Let us come back to our initial problem (4.1). We show that the problem can be solved
using the composite gradient method. We also explain in detail how we compute ∇f (x)
and TL (x). Finally, we show that the theoretical predictions about the convergence and
the total number of times we compute steps [02] and [03] are supported in practice.

In the case of tensor decomposition, the vector space U consists of the space of triples
of matrices A ∈ RI×F , B ∈ RJ×F and C ∈ RK×F . The inner product is defined by

〈(A1,B1,C1) , (A2,B2,C2)〉 := trace
(
A>1 A2

)
+ trace

(
B>1 B2

)
+ trace

(
C>1 C2

)
.

The smooth part of the objective function is

f (A,B,C) := ‖X− JA,B,CK‖2L2

and the non-smooth convex part is

ψ (A,B,C) := ρ {‖A‖L1 + ‖B‖L1 + ‖C‖L1} .

The gradient of f (A,B,C) is given by (c.f. Appendix B for details)

∇A (f) = ∂f

∂A = 2
[
A (C�B)> − unfold [1] (X)

]
(C�B)

∇B (f) = ∂f

∂B = 2
[
B (A�C)> − unfold [2] (X)

]
(A�C)

∇C (f) = ∂f

∂C
= 2

[
C (B�A)> − unfold [3] (X)

]
(B�A)


.

Let us mention that a direct computation of the products

(C�B)> (C�B) , (A�C)> (A�C) , (B�A)> (B�A)

involves the multiplication of matrices with sizes at least (min [IJ, JK,KI] , F). Hence,
this would require at least O

(
min [IJ, JK,KI]F 2) operations (just to compute a (F, F)

matrix). In fact, those products are never computed directly: we use the property that

(E1 �E2)> (E1 �E2) =
(
E>1 E1

)
~
(
E>2 E2

)
where ~ stands for the Hadamard or element-wise product. This reduces the cost for those
multiplications to at most O

(
max [I, J,K]F 2) operations.

Finally, we check that f (A,B,C) is twice continuously differentiable and the ad-
missible domain is compact so that the Hessian is bounded and thus ∇f (A,B,C) is
Lipschitz-continuous.

Let L > 0 be fixed and suppose we have computed ∇A (f), ∇B (f) and ∇C (f): how
do we compute TL (A,B,C)? For simplicity, denote

(
A+,B+,C+) := TL (A,B,C). For-

tunately, the problem is separable, meaning that each entry of A+, B+ and C+ can be

33

computed separately using only the corresponding entry of ∇A (f), ∇B (f) and ∇C (f)
respectively. For example, we compute A+ as follows:

A+ (i, r) := arg min
{
a 7→ ∇A (f) (i, r) · a+ L

2 [a−A (i, r)]2 + ρ |a|
∣∣∣ a ∈ [−1,+1]

}
.

Hence, it boils down to minimizing a single-variable function consisting of a quadratic
function and an “absolute value function” defined on the interval [−1,+1]. Splitting into
the intervals [−1, 0] and [0,+1], we just have to compute the minima of two quadratic
functions, which is straightforward. The computation of B+ and C+ is identical.

Before we end this section, we would like to check whether the bounds (4.4) and
(4.6) are satisfied in practice when applied to our non-smooth optimization problem. For
this, let the parameters of (4.1) be defined as follows: X is the “structural tensor for
〈2, 2, 2〉” and we search the best “rank-at-most-6 approximation” of it, i.e. X = T222 and
F = 6. The “regularization factor” ρ is set to 10−3. For the constraints (#2), we use
empty sets for I1, I2, I3, i.e. no entries of the variables are completely fixed. We compute
20,000 iterations of the composite gradient method applied on (4.1) with those parameters.
Then we compute the “scaled step-size” Lk

2 ‖xk+1 − xk‖2 and we compare this with the
theoretical upper bound φ(x0)−φ∗

k+1 . Since the objective function of (4.1) is always non-
negative, we use φ∗ = 0. We also compute the average value of nk (the number of times we
compute steps [02] and [03] for a fixed k), i.e. we compute the value of Nk

k+1 . The results
are represented in Fig. 4.2. Note that both the x- and the left y-axis have logarithmic
scale. We observe that (4.4) and (4.6) are indeed verified in this example.

4.2 Examples of computation of SD-sol’s

We use the method described in the previous section to compute sparse discrete decom-
positions of several matrix multiplication tensors. We explain in detail how we compute
SD-sol’s for the 〈2, 2, 2〉, 〈2, 3, 2〉, 〈3, 2, 3〉 and 〈3, 3, 3〉 cases: which “regularization factor”
ρ, which “threshold” η and which “step-size stopping criterion” ε we use. We also inves-
tigate the influence of ρ on the sparsity of the resulting decomposition. For the sake of
readability, the figures and tables mentioned in this section are gathered in Appendix C,
at the end of the report. Finally, we briefly compare our results with the results presented
in two state-of-the-art papers, namely [6] (2013) and [7] (2017).

4.2.1 Sparse discrete decompositions of small tensors

First we start with the 〈2, 2, 2〉 case. It is known [9] that the rank of the associated
tensor is 7. Hence, we would like to find a 7-PD of T222. For this, we try to solve (4.1) with
X = T222 and F = 7. As initial guess, we use matrices A0,B0,C0 where the entries are
chosen randomly uniform between −1 and +1. Which values we use for the parameters ρ
and ε in Phase 1 and Phase 2 of the procedure are detailed in Fig. C.1. In this figure, you
also find the quality of the approximation JAκ,Bκ,CκK and the total number of “non-
very-small” values in Aκ,Bκ,Cκ (values smaller than 5 · 10−2 are considered as “very

34

100 101 102 103 104
10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

1

2

3

4

5

6

iteration k

L
k 2
‖x

k
+
1
−
x
k
‖2

an
d
φ
(x

0
)

k
+
1

N
k

k
+
1

Lk
2
‖xk+1 − xk‖2

φ (x0)

k + 1

Nk
k + 1

Figure 4.2 – Composite gradient method applied on problem (4.1) to
find a “rank-at-most-6 approximation” of T222. We verify that the the-
oretical decrease (4.6) of the “scaled step-size” is satisfied in practice.
The average number of times we compute steps [02] and [03] for a
fixed k tends to a value lower or equal to 2, as predicted by the theory.

35

small”) as a function of the iteration κ (in the previous section, we used “α” to index the
decompositions obtained at the end of each phase; the index “κ” is used for indexing the
successive iterates inside the composite gradient method). As we can observe in Fig. C.1,
at the end of Phase 2, the solution contains only 36 non-zero values, among a total of 84
(3× 4× 7) entries in A,B,C. It happens that, for small tensors like in the 〈2, 2, 2〉 case,
Phase 1 and Phase 2 are sufficient to compute a SD-sol; Phase 3 (used to induce discrete
values) is not needed in this case. The resulting SD-sol is available in Table C.1.

Remark. For tensors larger than T222, we introduce a Pre-phase 1 to enhance to global
convergence of the algorithm, i.e. increase our chances that the algorithm converges to
a F -PD (or not far from being a F -PD) of Tmpn starting from a random initial iterate.
This pre-phase is easy to explain: suppose that, in Phase 1, we want to solve (4.1) with
a certain value for ρ. Then, in Pre-phase 1, we try to solve the same problem (with the
same value of ρ) except that the constraints (#1) are replaced with relaxed constraints:

subject to

A(i, r) ∈ [lb, ub] for all i, r
B(j, r) ∈ [lb, ub] for all j, r
C(k, r) ∈ [lb, ub] for all k, r

.

(#1’)

For instance, we use lb = −10 and ub = +10 in Pre-phase 1 and, during Phase 1, we use
constraints (#1) which are clearly equivalent to (#1’) with lb = −1 and ub = +1. The
solution A1′ ,B1′ ,C1′ of Pre-phase 1 is then used as the first iterate for Phase 1. Note that
A1′ ,B1′ ,C1′ does not necessarily satisfies (#1). Hence, we use its projection on the set
described by (#1), i.e. the elements of A1′ ,B1′ ,C1′ larger than +1 or lower than −1 are
projected to +1 and −1 respectively.

Next, we look for a decomposition of T232 with 11 rank-at-most-1 terms. The procedure
is the same as in the case of 〈2, 2, 2〉 except that we use Pre-phase 1 introduced in the
remark just above. The details are available in Fig. C.2 and the obtained decomposition
is described in Table C.2. Like for the 〈2, 2, 2〉 case, it happens that Phase 1 and Phase 2
are sufficient to find a sparse discrete solution. The decomposition contains 48 non-zero
values, among a total of 176 (2× 6× 11 + 4× 11) entries in A,B,C.

Finally, let us also mention that we tested our method on tensors smaller than T222:
for example, we computed sparse discrete 2-PD’s for the 〈1, 2, 1〉 case and sparse discrete
4-PD’s for the 〈2, 1, 2〉 case. We noticed that for these small cases, Phase 2 was sufficient,
i.e. if we directly start Phase 2 with a random initial guess, then we converge to a SD-sol.
The figure available on the (second) front page illustrates the 〈2, 1, 2〉 case. More precisely,
it shows the matrices Aκ,Bκ,Cκ at four different moments of the composite gradient
method applied on (4.1) with X = T212, F = 4 and ρ = 10−2.

36

4.2.2 Sparse discrete decompositions of larger tensors

Now we consider more difficult cases like 〈3, 2, 3〉 and 〈3, 3, 3〉. Those cases are more
interesting since, this time, we need Phase 3 to obtain a discrete decomposition. First
we are interested in 〈3, 2, 3〉. The details of Phase 1 and Phase 2 are given in Fig. C.3.
As “threshold” η for Phase 3, we use the value of 0.8. As we can observe in Table C.3,
the resulting solution contains 102 non-zero values to be compared with a total of 315
(2× 6× 15 + 9× 15) entries in A,B,C.

Last but not least, we compute a 23-PD for the case of 〈3, 3, 3〉. The details of Phase 1
and Phase 2 are given in Fig. C.4. We use a “threshold” η of 0.8 in Phase 3, to get a final
decomposition containing 144 non-zero values out of the 621 (3× 9× 23) possible entries
in A,B,C. The decomposition is available in Table C.4.

We have seen that using a “medium” value of ρ, like 10−2, in Phase 2, allows us to
obtain a decomposition which is both sparse and not far from being a F -PD of Tmpn. We
wonder what would happen if we use a larger value for ρ, let’s say 10−1. Therefore, we
solve problem (4.1) with this ρ starting from the decomposition obtained after Pre-phase 1
and Phase 1 for X = T333 and F = 23 (c.f. Fig. C.4) and observe what happens. The
results and the details about the parameters are represented in Fig. C.5. We observe that,
as expected, the algorithm converges to a solution which is sparser than in the case of a
“medium” ρ. Indeed, this time, the factor matrices contain 134 non-zero values only, at the
end of Phase 2. The drawback is that the obtained solution is not an “almost accurate”
decomposition of T333 since ‖T333 − JA2,B2,C2K‖L2 ≈ 2.26. Hence, this decomposition
is not useful for building a matrix multiplication algorithm.

Finally, let us mention that we also tried to compute sparse discrete decompositions for
tensors larger than T333. Unfortunately, we were not able to compute SD-sol’s for them.
It is even difficult to obtain an accurate decomposition with Pre-phase 1 and Phase 1.
For example, in the case of 〈4, 3, 4〉 with F = 40 (as far as we know, F = 40 is the
smallest F for which we know [7, p. 7] that a F -PD of T434 exists), the best accuracy
we could obtain after Pre-phase 1 and Phase 1 was ‖T434 − JA1,B1,C1K‖L2 ≈ 1. We
also tried a “relaxed problem”: finding a sparse discrete decomposition of T434 with 41
rank-at-most-1 terms. In this case, we obtained a decomposition JA1,B1,C1K satisfying
‖T434 − JA1,B1,C1K‖L2 ≈ 0.1 after Pre-phase 1 and Phase 1. However, we did not achieve
to obtain a sparse decomposition for which the entries of the factor matrices belong to
{−1, 0,+1} using Phase 2, Pre-phase 3 and Phase 3 and starting from JA1,B1,C1K. Nev-
ertheless, using a modified version of Pre-phase 3 and Phase 3 (c.f. the remark at the end
of this section), we were able to compute a sparse 41-PD for the 〈4, 3, 4〉 case for which
the factor matrices have their entries in the set {−1,−1/2, 0,+1/2,+1}.

37

4.2.3 Comparison with two state-of-the-art methods

The results we obtain are not better than the results obtained by Smirnov in [6]. He
proposes a decomposition for the (3, 3) case with entries in {−1, 0,+1} and 139 non-zero
entries while the F -PD we present for the (3, 3) case has 144 non-zero values. The strength
of our method is its robustness, we had to use only a few random initial guesses to compute
a SD-sol for the (3, 3) case for example. We could thereby hope that, with more tries and
a bit of chance, we will be able to find SD-sol’s with less non-zero entries. It is difficult
to compare the robustness of our procedure with that one of Smirnov’s method since he
does not give the detail of the computations in his paper. Let us just mention that his
method implies at least 7 parameters that you need to update at the successive steps of
the method and he does not give any indications on how do it. Hence, it is difficult to
reproduce the results obtained by Smirnov.

We also compare our results with the SD-sol’s obtained by Tichavský et al. in their
paper [7]. The method is briefly described in Sec. 5.1. It seems that the largest case for
which they computed a sparse discrete decomposition is the 〈3, 2, 3〈 case. The decompo-
sition they propose contains values only in {−1, 0,+1} and has 94 non-zero values while
the decomposition we propose for the 〈3, 2, 3〈 case has 102 non-zero values. However,
Tichavský et al. do not present decompositions for larger tensors.

Remark. We would like to make a final comment before the end of the chapter. We men-
tioned in the introduction of Sec. 4.1 that the algorithm could be modified to compute
sparse decompositions with values in more general sets than {−1, 0,+1}. For example,
if we would like to find sparse F -PD’s with entries in {−1,−1/2, 0,+1/2,+1}, then we
would have to modify Pre-phase 3 and Phase 3 in the following way: this time, we do not
only fix the values that are close to ±1 but also the values close to ±1/2. Nevertheless, we
want to be careful when we fix values to ±1/2. Indeed, it might happen that some entries
decrease from a “high value” toward 0 and that, during their decrease, they approach the
value of ±1/2. Hence, we will have to fix value to ±1/2 only if have a strong intuition
that this might be the right value and we should also be prepared to unfix some values
if it happens that we cannot converge to an exact F -PD. Hence, the modified versions
of Pre-phase 3 and Phase 3 require an “active participation” of the person who executed
them and thus cannot be executed in an “automatic fashion” (in their original version,
the choice of the “threshold” η totally determined how Pre-phase 3 and Phase 3 would be
executed).

Using this modified algorithm, we computed a sparse 41-PD for the 〈4, 3, 4〉 case with
the entries of the factor matrices having values in {−1,−1/2, 0,+1/2,+1}. The decompo-
sition is presented in Table C.5, Table C.6 and Table C.7. According to [7], the rank of the
associated tensor is 40. Hence, we have one extra rank-at-most-1 term in our decomposition
compared to the theoretical minimal decomposition.

38

Chapter 5

Discretizing decompositions through inv-transformations

5.1 Properties of discretizable decompositions

Recall (c.f. Table 3.1) that a F -PD JA,B,CK of a matrix multiplication tensor is
discretizable if it is (T-scale+T-trace)-equivalent to a discrete decomposition. In the first
subsection, we explain why we are interested in discretizable solution or why it is interesting
to know whether a solution could be discretized? In a second time, we give a necessary
condition to be discretizable.

5.1.1 Motivation ← the two-steps approach

We already mention why we are interested in discrete decompositions. In Sec. 4.1,
we presented a method to compute SD-sol’s. This was an “all-at-once” method in the
sense that, before the end of the procedure, we have neither an exact decomposition or a
completely discrete decomposition. At the end of Phase 1, the decomposition JA1,B1,C1K
is almost a F -PD of Tmpn. However, the “accuracy of the decomposition” is not necessarily
preserved during Phase 2 and Phase 3, i.e.

‖Tmpn − JAα,Bα,CαK‖L2 ≤ ε 6⇒ ‖Tmpn − JAα+1,Bα+1,Cα+1K‖L2 ≤ ε .

The two-steps approach is different. The idea is to first compute a “very accurate” de-
composition JA1,B1,C1K of the matrix multiplication tensor and then, in a second time,
use transformations T-scale and T-trace to transform JA1,B1,C1K into a discrete decom-
position. A similar approach was used by Tichavský et al. in their paper [7]. First they
use a Levenberg-Marquardt method (c.f. Appendix D for a description of the method)
to compute an accurate F -PD of Tmpn, i.e. ‖Tmpn − JA,B,CK‖L2 ≤ ε for some very
small ε. Then they try to get a sparse decomposition by sequentially solving the following
optimization problems:

minimize
∥∥∥(Ip ⊗P−1

)
·A
∥∥∥

L1
+
∥∥∥(P> ⊗ In

)
·C
∥∥∥

L1
with variable P ∈ GL (m)

minimize
∥∥∥(In ⊗Q−1

)
·B
∥∥∥

L1
+
∥∥∥(Q> ⊗ Im

)
·A
∥∥∥

L1
with variable Q ∈ GL (p)

minimize
∥∥∥(Im ⊗R−1

)
·C
∥∥∥

L1
+
∥∥∥(R> ⊗ Ip

)
·B
∥∥∥

L1
with variable R ∈ GL (n)


.

39

This sequence of optimizations is repeated until convergence is obtained.
We wonder whether we can go further and also obtain discrete values using only inv-

transformations. Beside the difficulty to implement an algorithm for doing this, we first
wonder how worth it would be. Let us explain what we mean: the processes to compute
F -PD’s are generally iterative processes and need a initial guess JA0,B0,C0K. In general,
the starting guesses are chosen randomly. Hence, if the process converges to an accurate
decomposition JA1,B1,C1K of Tmpn, this decomposition will be one decomposition among
all possible F -PD’s of Tmpn. Before starting to try to make JA1,B1,C1K discrete with
transformations T-scale and T-trace, we would like to know whether there are any chances
for it to be discretizable. We give, in the following subsection, a necessary condition for
JA1,B1,C1K to be discretizable. If the condition is not satisfied, it is pointless to try to
transform JA1,B1,C1K into a discrete decomposition. In Sec. 5.2, we will also try to answer
the question “how often a decomposition JA1,B1,C1K will satisfy the necessary condition
if this decomposition is computed with the “Tichavský et al.’s LM-method” (abbreviation
of the “Tichavský et al.’s Levenberg-Marquardt method to compute F -PD’s”) and starting
from a random initial iterate JA0,B0,C0K?”.

5.1.2 Characteristic polynomials of a F -PD

In the following, when we use the “reshape operator”, we will not specify the size of the
reshaped matrix, i.e. “rshp [· , ·] (·)” is abbreviated as “rshp (·)”, since the size of rshp (·)
will be clear from the situation.

Let JA,B,CK be a F -PD of some matrix multiplication tensor Tmpn and suppose
it is (T-scale+T-trace)-equivalent to a discrete F -PD JA∗,B∗,C∗K. Denote {a1, . . . ,aF },
{b1, . . . ,bF } and {c1, . . . , cF } the columns of A, B and C respectively. Similarly, let
{a∗1, . . . ,a∗F }, {b∗1, . . . ,b∗F } and {c∗1, . . . , c∗F } denote the columns of A∗, B∗ and C∗ respec-
tively. Then, for all r ∈ {1, . . . , F}, we have that

rshp (ar) = P−1 · λr · rshp (a∗r) ·Q

rshp (br) = Q−1 · µr · rshp (b∗r) ·R

rshp (cr) = R−1 · νr · rshp (c∗r) ·P


.

for some matrices P ∈ GL (m), Q ∈ GL (p) and R ∈ GL (n) and some scaling coef-
ficients {λ1, . . . , λF }, {µ1, . . . , µF } and {ν1, . . . , νF } satisfying λrµrνr = 1 for all r ∈
{1, . . . , F}. Now define the (mp,mp) matrices Mr := rshp (ar) · rshp (br) · rshp (cr) and

40

M∗
r := rshp (a∗r) · rshp (b∗r) · rshp (c∗r) and observe that

rshp (ar) · rshp (br) · rshp (cr)
=[

P−1 · λr · rshp (a∗r) ·Q
]
·
[
Q−1 · µr · rshp (b∗r) ·R

]
·
[
R−1 · νr · rshp (c∗r) ·P

]
=

P−1 · [rshp (a∗r) · rshp (b∗r) · rshp (c∗r)] ·P


.

Hence, this shows that, for each r ∈ {1, . . . , F}, Mr and M∗
r are similar matrices and thus

they must have the same characteristic polynomial. If A∗,B∗,C∗ contain only entries be-
longing to {−1, 0,+1} for example, then charpoly (M∗

r) (t), the characteristic polynomial
of M∗

r , must contain only integer coefficients and thus so does charpoly (Mr) (t). Simi-
lar comments hold if the entries of A∗,B∗,C∗ belong to other sets consisting of a small
number of rational values. This must be treated case-by-case. Clearly, the more diverse
are those values, the more difficult it becomes to say something about the characteris-
tic polynomial of the Mr’s. But, in general, we only interest in sets like {−1, 0,+1} or
{−1,−1/2, 0,+1/2,+1} for example, then there is a reduced number of possibilities for
the coefficients of the charpoly (Mr) (t)’s.

Remark. In the developments above, we have used the (mp,mp) matrices Mr := rshp (ar)·
rshp (br) · rshp (cr). Would it be interesting to consider the (pn, pn) matrices M′

r :=
rshp (br)·rshp (cr)·rshp (ar) or the (nm, nm) matrices M′′

r := rshp (cr)·rshp (ar)·rshp (br)
as well? In fact, this would not bring extra information for the simple reason that Mr,
M′

r and M′′
r have more or less the same characteristic polynomial. This comes from the

following property of the characteristic polynomial: if X ∈ RI×J and Y ∈ RJ×I , then

tJ · charpoly (XY) (t) = tI · charpoly (YX) (t) .

The interested reader can find a proof in [14].

5.2 Distribution of discretizable decompositions

We would like to have an idea of the probability for a “randomly computed” decom-
position JA,B,CK of Tmpn to be discretizable. By “randomly computed”, we mean that:
we first define initial guesses A0,B0,C0 with entries chosen randomly uniform between
−1 and +1. Then we compute JA,B,CK with Tichavský et al.’s LM-method.

In the first subsection, we describe a procedure to compute statistics about the char-
acteristic polynomials of “randomly computed” F -PD’s. Those will help us to analyze the
distribution of discretizable solutions. Before comparing the characteristic polynomials of
two different F -PD’s, we want to get rid of the (T-perm)-equivalence that might exist
between the two decompositions. We explain in the second subsection how we computa-
tionally get rid of the permutation invariance without trying every permutations, which
would be too expensive. In the last subsection, we present the results and we will draw

41

the following conclusions: for the cases (1, 2, 1), (2, 1, 2), (2, 2, 2) and (3, 2, 3), 100% of the
decompositions satisfy the necessary condition to be discretizable. For the (2, 3, 2) case and
the (3, 3, 3) case, this percentage drops to respectively 56% and 79% of the decompositions
that are eligible to be discretizable.

5.2.1 Statistics on the characteristic polynomials

In order to have an idea of the distribution of discretizable solutions, we make the fol-
lowing procedure: define random starting guesses Ainit

κ′ ,Binit
κ′ ,Cinit

κ′ for κ′ ∈ {1, 2, 3, . . .} and
apply Tichavský et al.’s LM-method. The method converge to the matrices Aκ′ ,Bκ′ ,Cκ′

for κ′ ∈ {1, 2, 3, . . .}. Sometimes the method does not converge to an exact F -PD. In this
case, the solution is rejected. At the end, we keep 100 exact F -PD’s of Tmpn:{

JAκ,Bκ,CκK are F -PD’s of Tmpn

∣∣∣ κ ∈ {1, . . . , 100}
}
. (5.1)

Remark. At this point, the reader might wonder the two following questions: “why we
are interested in “randomly computed” decompositions instead of truly random decom-
positions?” and “why we use the Tichavský et al.’s LM-method to compute the F -PD’s
instead of another method?”. The answer to the first question lies in the fact that, if we
want to speak about a “random decomposition”, then we first have to define a probability
measure on the set of all decompositions of a given tensor. We could define such a proba-
bility measure but, since none of them seems very natural, we do not have a real interest
to do this. The only probability measure that seems natural for our purposes (computing
discrete solutions with the two-steps approach), is the probability measure inherent to the
“random computation” of F -PD’s with the Tichavský et al.’s LM-method or any other
method. This leads us to the second question: here the answer is still more subjective. The
fact is that we think that Tichavský et al.’s LM-method is very powerful for computing
accurate decompositions. Hence, for the implementation the two-steps approach (c.f. the
remark at the end of this section explaining why we do not present an implementation of
the two-steps approach), we would most likely use the Tichavský et al.’s LM-method for
the first step (the step during which we want to obtain an accurate decomposition).

For each κ ∈ {1, . . . , 100}, the columns of Aκ, Bκ and Cκ are respectively denoted by
{aκ1 , . . . ,aκF }, {bκ1 , . . . ,bκF } and {cκ1 , . . . , cκF }. Then, for each κ ∈ {1, . . . , 100} and for each
r ∈ {1, . . . , F}, we define the characteristic polynomial

pκr (t) := charpoly [rshp (aκr) · rshp (bκr) · rshp (cκr)] (t) .

For each κ ∈ {1, . . . , 100}, we consider the array of characteristic polynomials

Pκ := [pκ1(t) , pκ2(t) , . . . , pκF (t)]

associated to the decomposition JAκ,Bκ,CκK. We compute how many different Pκ’s occur
when κ varies in {1, . . . , 100}. Note that a transformation T-perm of the factor matrices

42

Aκ,Bκ,Cκ would result in a permutation of the polynomials of Pκ. We get rid of this
equivalence by considering that two arrays Pκ1 and Pκ2 are different if and only if they are
different for every permutation of their polynomials. We explain how we computationally
achieve this in the next subsection.

Evidently, all our computations are done in floating-point arithmetic. Hence, we need to
specify “within what tolerance, is a decomposition considered as exact?” and also “within
what tolerance, do we consider two arrays Pκ1 and Pκ2 as identical?”. In our computations,
we consider a decomposition as an exact F -PD of Tmpn if the L∞-norm of the difference
is smaller than 10−8, i.e. for all κ ∈ {1, . . . , 100}:

‖Tmpn − JAκ,Bκ,CκK‖L∞ ≤ 10−8 .

For each κ ∈ {1, . . . , 100} and each r ∈ {1, . . . , F}, let
{
ακr,0, . . . , α

κ
r,m

}
be the coefficients

of the polynomial pκr (t). Then, we define the distance between two of those polynomials,
let’s say pκ1

r1 (t) and pκ2
r2 (t), as follows:

dist
(
pκ1
r1 (t) , pκ2

r2 (t)
)

:= max
{ ∣∣∣ακ1

r1,q − α
κ2
r2,q

∣∣∣ ∣∣∣ 0 ≤ q ≤ m
}

The distance between two ordered arrays of polynomials is defined as

dist (Pκ1 ,Pκ2) := max
{

dist (pκ1
r (t) , pκ2

r (t))
∣∣∣ 1 ≤ r ≤ F

}
Let tol > 0 be our parameter for the comparison of the Pκ’s. We consider that two arrays
Pκ1 and Pκ2 are identical if and only if there exists a permutation of the pκ2

r (t)’s such
that the “permuted” Pκ2 provides dist (Pκ1 ,Pκ2) ≤ tol. Based on this “being identical”
criterion between the arrays of polynomials, the 100 Pκ’s will be partitioned into a certain
number of classes as follows: the arrays Pκ are the nodes of some graph G and there is an
edge between two nodes Pκ1 and Pκ2 if and only if they are identical within tol. Then
the classes correspond to the connected components of G, i.e. Pκ1 and Pκ2 are in the same
class if and only if there exists a sequence of arrays Pκs starting at Pκ1 and ending Pκ2

and such that each array is identical (within tol) to the next one.
The results of our experiments are gathered in Table 5.1. The first column indicates

which multiplication tensor we consider and the number of rank-at-most-1 terms in the
polyadic decomposition. The second column contains two sub-columns. The first one spec-
ifies which parameter we used for the Tichavský et al.’s LM-method (c.f. Appendix D for
a description of the method). Note that, if we are not interested in the Tichavský et
al.’s LM-method, this sub-column is not very relevant. Yet we prefer to clarify which pa-
rameter we used since this might have an impact on the distribution of the “randomly
computed” decompositions JAκ,Bκ,CκK. The same comment holds for the third column.
This column indicates the number of tries Aκ′ ,Bκ′ ,Cκ′ that where needed to compute
100 exact decompositions. Hence, this column just gives an idea of the global convergence
of the Tichavský et al.’s LM-method for the different cases. The second sub-column of the

43

Multiplication
and number of

terms in the F -PD
Parameters

initial
guesses
needed

population of
the 5 most

populated classes

〈1, 2, 1〉 F = 2 θ = 20 tol = 10−9 100 { 100 , 0 , 0 , 0 , 0 }

〈2, 1, 2〉 F = 4 θ = 50 tol = 10−9 100 { 100 , 0 , 0 , 0 , 0 }

〈2, 2, 2〉 F = 7 θ = 100 tol = 10−9 108 { 100 , 0 , 0 , 0 , 0 }

〈2, 3, 2〉 F = 11 θ = 120 tol = 10−2 100 { 56 , 2 , 1 , 1 , 1 }

〈3, 2, 3〉 F = 15 θ = 140 tol = 10−9 190 { 94 , 6 , 0 , 0 , 0 }

〈3, 3, 3〉 F = 23 θ = 150 tol = 10−2 149 { 79 , 2 , 1 , 1 , 1 }

Table 5.1 – Distributions of the characteristic polynomials.

second column indicates which tolerance tol we used for deciding whether two arrays of
polynomials are considered as equal or not.

Remark. Note that the larger is the tolerance tol, the more edges there will be in G and
thus the less number of different classes of arrays of polynomials there will be. Hence, in
Table 5.1, we have used two kinds of tol: (a) we used small tol’s (10−9) when the arrays
Pκ can be grouped in a small number of classes. The small value of tol proves that those
classes are effectively very narrow; (b) we used larger values (10−2) for tol when there are
many classes of Pκ’s. With those high tol’s, we see that, even if characteristic polynomials
having a “large” distance between them to are considered as identical, then we still have
many different classes of Pκ’s.

5.2.2 Implementation → getting rid of T-perm

We explain how we check whether two arrays Pκ1 and Pκ2 are identical within the
tolerance tol without trying every permutation of the pκr (t)’s. Define the following (F, F)
matrix which computes pair-wise the polynomial distance:

G (r1, r2) := dist
(
pκ1
r1 (t) , pκ2

r2 (t)
)

for each r1, r2 ∈ {1, . . . , F}. Consider the bipartite graph G consisting of two distinct sets
of nodes U1 :=

{
u1

1, . . . , u
1
F

}
and U2 :=

{
u2

1, . . . , u
2
F

}
and where the weight of each edge

between a node u1
r1 ∈ U1 and a node u2

r2 ∈ U2 is given by G (r1, r2). A perfect matching
in G is a subset M of the edges of G such that each node is incident to one and only one
edge of M. The “max-cost” of the matching is the maximal weight of the edges in M.

Finding a permutation of the polynomials in Pκ2 that minimizes the distance between
Pκ1 and the permuted Pκ2 can be rephrased as a problem of finding a perfect matching
M in G such that the “max-cost” of M is minimal. This problem is also called the “Linear

44

Bottleneck Assignment Problem”. We solve the “Linear Bottleneck Assignment Problem”
with the method proposed in [15]. The method consists of applying several times the
“Hungarian Algorithm” on the graph G′ defined as the graph G where only the edges with
the smallest weights are conserved (the other edges get a infinite weight). A comprehensive
description of the “Hungarian Algorithm” can be found in [16] and, for the implementation,
we relied on [17].

5.2.3 Case-by-case analysis and conclusions

We will analyze in more details each case presented in Table 5.1. For each case, let D be
the number of classes of Pκ’s, i.e. the number of connected components in the associated
graph, we have obtained. Those classes are denoted by Cη where the index η varies in
{1, . . . , D}. For certain classes, we would like to exhibit a P

η
∗ that will be “representative”

for this class. Clearly, being “representative” is not well-defined but we will see, in the
case-by-case analysis below, that the most populated classes (c.f. Table 5.1) contain Pκ’s
for which the polynomials pκr (t) have integer coefficients. Hence, in this case, it is not
difficult to point out what is a “representative” array P

η
∗ for the class. Moreover, to show

that this P
η
∗ is indeed “representative” for Cη, we also provide the maximal deviation of

the class from this “representative” array, i.e. the maximal distance between P
η
∗ and an

array Pκ of Cη.
First, let us consider the 〈1, 2, 1〉 case with F = 2. As indicated in Table 5.1, all the

polynomial arrays Pκ are in the same class. Hence, we just have to consider C1. Since tol

is very small, this class is very narrow, in the sense that all the Pκ’s are identical to each
other within a tolerance of 100·tol (since the longest path between two nodes has a length
of at most 100). Concretely, this gives the following results:

Cη
polynomials pr(t) appearing in
some P

η
∗ “representative” for Cη

number of
Pκ’s in Cη

maximal distance
between P

η
∗ and

any Pκ of Cη

C1 t− 1 (×02) 100 0.000e+00

We observe that the pκr (t)’s contain integer coefficients. Hence, this suggests (do not forget
that the criterion is a necessary condition and not a sufficient condition) that, if we “ran-
domly compute” a decomposition JA,B,CK with the Tichavský et al.’s LM-method, then
this decomposition will be discretizable with probability one. In fact, we will see in Sec. 6.2
that there is only a unique algorithm (up to inv-equivalence) for computing 〈1, 2, 1〉 and
this algorithm uses factor matrices with values only in {−1, 0,+1}. Hence, for this case,
we are sure that every decomposition is discretizable. This is also a way to check that our
procedure gives exploitable results.

We do the same steps for the 〈2, 1, 2〉 case and F = 4. Again, there is only one class
of Pκ’s and we give a “representative” P1

∗ for this class. The polynomials appearing in P1
∗

45

are listed below:

Cη
polynomials pr(t) appearing in
some P

η
∗ “representative” for Cη

number of
Pκ’s in Cη

maximal distance
between P

η
∗ and

any Pκ of Cη

C1 t2 − t (×04) 100 1.699e-13

This is more interesting since, as we will see in Sec. 6.2, there are more than one algorithm
for computing 〈2, 1, 2〉. Nevertheless, the results above suggest that all “randomly com-
puted” decompositions have the same characteristic polynomials with probability one.
Moreover, those polynomials have integer coefficients so that we may suppose that the
decompositions are discretizable with probability one as well.

For 〈2, 2, 2〉 with F = 7, there is again only one class of Pκ’s and they contain the
following polynomials (up to the maximal deviation of the class):

Cη
polynomials pr(t) appearing in
some P

η
∗ “representative” for Cη

number of
Pκ’s in Cη

maximal distance
between P

η
∗ and

any Pκ of Cη

C1
t2 − 2t+ 1 (×01)

t2 − t (×06)
100 1.202e-10

The same comment holds as for the 〈1, 2, 1〉 case: we will see in Sec. 6.2 that every 7-PD of
T222 is unique up to inv-transformations. Considering the decomposition (3.1), we observe
that this decomposition is discrete so that every decomposition is discretizable.

The case of 〈3, 2, 3〉 with F = 15 is more interesting. Indeed, we observe that there
are two and only two classes of Pκ’s. The first class is the most populated. Let P1

∗ be a
“representative” array for the first class and let P2

∗ be a “representative” array for the
second class. The polynomials appearing in P1

∗ and P2
∗ as well as the maximal deviation

46

of each class from its “representative” are listed below:

Cη
polynomials pr(t) appearing in
some P

η
∗ “representative” for Cη

number of
Pκ’s in Cη

maximal distance
between P

η
∗ and

any Pκ of Cη

C1
t3 − 2t+ t (×03)

t3 − t2 (×12)
094 1.292e-11

C2

t3 − 2t (×01)

t3 − 2t+ t (×02)

t3 − t2 (×12)

006 1.072e-12

Now let us consider the 〈2, 3, 2〉 case with F = 11 and also the 〈3, 3, 3〉 case with
F = 23. We can make more or less the same comment for those two cases: there are
many different classes of Pκ’s even though we have used a larger value of tol (10−2) for
considering two Pκ’s as belonging to the same class:

Multiplication and num-
ber of terms in the F -PD

Number of dif-
ferent classes

〈2, 3, 2〉 F = 11 44

〈3, 3, 3〉 F = 23 21

Nevertheless, for those two cases, the most populated class, let’s say C1, still contains a
“representative” P1

∗ for which the polynomials have integer coefficients only. More precisely,
we have for 〈2, 3, 2〉 and F = 11, the following pr(t)’s in P1

∗:

Cη
polynomials pr(t) appearing in
some P

η
∗ “representative” for Cη

number of
Pκ’s in Cη

maximal distance
between P

η
∗ and

any Pκ of Cη

C1
t2 − 2t+ 1 (×01)

t2 − t (×10)
056 9.011e-03

47

Finally, the case of 〈3, 3, 3〉 with F = 23 provides

Cη
polynomials pr(t) appearing in
some P

η
∗ “representative” for Cη

number of
Pκ’s in Cη

maximal distance
between P

η
∗ and

any Pκ of Cη

C1
t3 − 2t+ t (×04)

t3 − t2 (×19)
079 1.395e-02

Clearly, the maximal deviation of the C1’s from their “representative” P1
∗ is larger than in

the previous cases. This comes from the fact that we have used a larger tol for considering
two Pκ’s as identical.

It is difficult to draw further conclusions. Let us just mention that, for the cases
when there are many different classes of Pκ’s, i.e. the two last considered cases, the ar-
rays Pκ that are not in the most populated class, i.e. the arrays we have not described
just above, contains very diverse values that are clearly not integers or something close
to coefficients that might emerge if we consider factor matrices A,B,C with entries in
{−1,−1/2, 0,+1/2,+1} for example. Hence, we suppose that those decompositions are
not discretizable.

Remark. We have seen that, for the (1, 2, 1), (2, 1, 2), (2, 2, 2) and (3, 2, 3) cases, the de-
compositions seem to satisfy the necessary condition to be discretizable with probability
one. Hence, a natural question arises: why did we not implement the two-steps approach
(for computing SD-sol’s), at least for those four cases? The answer is that we tried to im-
plement such an algorithm. For the first step, we used the Tichavský et al.’s LM-method
and thus we had to find a way to implement the second step: play on the variables P,Q,R
and {λ1, . . . , λF }, {µ1, . . . , µF } and {ν1, . . . , νF } to transform the F -PD into a sparse dis-
crete decomposition. None of the algorithms we tried gave good enough results so that we
chose to not present them in this report.

Hence, we might also wonder why we have kept and presented this chapter since the
motivation to compute the characteristic polynomials of the F -PD’s was to know whether
we should or not implement the two-steps approach. In fact, we think that the results are
still interesting: for each of the considered cases, the vast majority of the decompositions
has the same characteristic polynomials. We believe that those results might be interesting
for further research.

48

Chapter 6

Analysis of the inv-equivalence classes of decompositions

6.1 Computing the inv-transformations joining two F -PD’s

In this section, we first introduce a novel concept: the ⊕-rank of a matrix. In Sec. 6.2,
we will see that the factor matrices of “randomly computed” F -PD’s for tensors larger or
with the same size as T222 seem to have a ⊕-rank of 1 with probability one. Before that,
in the current section, we present an algorithm for deciding whether two such F -PD’s
(hence, for which the factor matrices have a ⊕-rank of 1) JA1,B1,C1K and JA2,B2,C2K
are inv-equivalent. The algorithm provides the inv-transformations joining the two F -PD’s
or conclude that they are not inv-equivalent.

6.1.1 Preliminaries → the ⊕-rank of a matrix

Let A be a (m,n) matrix. Let {U1, . . . ,US} be a family of linearly independent non-
trivial sub-spaces of Rm, i.e. the Us’s are different from {0} and Us1 ∩ Us2 = {0} whenever
s1 6= s2. If each column of A belongs to one of the Us’s (in fact, excepting the case where
the column contains only zeros, it may belong to at most one of the Us’s since they are
linearly independent), then we say that {U1, . . . ,US} is a covering of A. The maximal
integer S∗ such that there exists a covering of A with S∗ linearly independent non-trivial
sub-spaces is called the ⊕-rank of a A and is denoted rank⊕ (A) = S∗ (the choice of
the symbol “⊕” comes from the fact that, if {U1, . . . ,US} is a “maximal” covering, then
U1 ⊕ · · · ⊕ US = Rm).

Let U1 := colspan (A) and suppose that the rank of A is r. Then it is easy to build a
covering

{
U1, Û1, . . . , Ûm−r

}
where the Ûs’s have dimension one. Hence, we can conclude

that rank (A) + rank⊕ (A) ≥ m+ 1.
Suppose that A has full row-rank, i.e. rank (A) = m. We give a characterization of the

⊕-rank of A in terms of the connected components of a graph. Denote by {a1, . . . ,an}
the columns of A. Without loss of generality, we may assume that the m first columns
of A span Rm. Those columns will be the nodes of our graph. Let A′ := A (: , 1:m) and
A′′ := A (: ,m+1:n), the columns of A′′ will be used to define the edges of the graph.
For each column aj′′ of A′′, compute its coordinates qj′′ :=

(
qj
′′

1 , . . . , qj
′′
m

)
> in terms of

the m first columns of A′, i.e. qj′′ = [A′]−1 aj′′ . For each j′1, j
′
2 ∈ {1, . . . ,m}, draw an

edge between the nodes j′1 and j′2 if and only if there is a column aj′′ of A′′ such that its

49

1 0 0 1 0 1

0 1 0 1 0 2

0 0 1 0 1 0




1

2 3

4

6

4

6

4

6

5

1 2 3 4 5 6

indices j′ indices j′′

Figure 6.1 – Example of matrix A and the associated graph G.

coordinates vector has a non-zero component in both A (: , j′1) and A (: , j′2), i.e. if and
only if there exists a j′′ ∈ {m+1, . . . , n} such that both qj

′′

j′1
and qj

′′

j′2
are non-zero. Clearly,

there might be multiple edges and also loops. Moreover, each edge receives a “label”: this
“label” is simply j′′, the index of the column of A′′ that led to this edge. We denote this
graph by G. An example is represented on Fig. 6.1. This construction allows us to state
the following lemma:

Lemma 6.1. Let A and G be defined as explained above. Then the
⊕-rank of A is equal to the number of connected components of G.

Proof. Let {G1, . . . ,GT } be the connected components of G. Now, for each t ∈ {1, . . . , T},
let It be the set of all column indices involved in the nodes of Gt. For example, considering
the graph in Fig. 6.1, we would have I1 = {1, 2} and I2 = {3}. For each t ∈ {1, . . . , T},
define the sub-space Ut as the sub-space spanned by the columns of A with their index in
It, i.e. Ut := colspan [A (: , It)]. By hypothesis on A′, i.e. A′ has full rank, the sub-spaces
Ut are linearly independent. We have to show that each column of A′′ belongs to at least
one of the Ut’s.

Let j′′ ∈ {m+1, . . . , n}, we show that the “label” j′′ appears in the edges of at most
one component Gt. Indeed, if j′′ appears in Gt1 and Gt2 , then aj′′ has a non-zero component
in at least one node j′1 of Gt1 and one node j′2 of Gt2 . Hence, there must be an edge between
j′1 and j′2 and thus Gt1 and Gt2 are not distinct components. Hence, j′′ appears in at most
one Gt and thus, by hypothesis on A′ spanning Rm, we have aj′′ ∈ Ut. Hence, we have
shown that {U1, . . . ,UT } is a covering of Rm and thus rank⊕ (A) ≥ T .

Reversely, let S := rank⊕ (A) and let {U1, . . . ,US} be a covering of Rm. For each
s ∈ {1, . . . , S}, let Js be the set of the indices of the columns of A′ belonging to Us, i.e.
j′ ∈ Js if and only if aj′ ∈ Us and j′ ∈ {1, . . . ,m}. Since A′ has full rank, it is clear that
Us = colspan [A (: , Js)]. If there is an edge with “label” j′′ between two nodes j′1 ∈ Is1

50

and j′2 ∈ Is2 , then aj′′ has non-zero components in aj′1 and in aj′2 and thus it belongs to
the sub-spaces Us1 and Us2 . But we know that the Us’s are linearly independent. Hence,
we must have that s1 and s2 are equal. We conclude that there are at least S components
in G and thus T ≥ rank⊕ (A).

We give a method to compute efficiently the ⊕-rank of a given matrix. Therefore, let
A be a (m,n) matrix and consider the following linear problem:

solve system

M ·A = A · diag (ξ1, . . . , ξn)

with variables

M ∈ Rm×m , Ξ := (ξ1, . . . , ξn) ∈ Rn .

. (6.1)

Clearly the system is homogeneous; hence, the trivial solution will always be valid. Let
us denote by S the sub-space of matrices M and vectors Ξ that satisfy (6.1). We are now
able to introduce a useful lemma:

Lemma 6.2. Let A have full row-rank and no zero columns
and let S be defined as above. Then the ⊕-rank of A is equal to
the dimension of S.

Proof. First note that, if A has full row-rank, then n is larger or equal to m. Let A′ and
A′′ be defined as previously. Without loss of generality, we may again assume that A′ has
full rank. Let (ξ1, . . . , ξm) be fixed. Then we must have

M = A′ · diag (ξ1, . . . , ξm) ·
[
A′
]−1

.

Hence, M is completely determined by (ξ1, . . . , ξm). Reversely, if M is known, then every
{ξ1, . . . , ξn} are also determined since A has no zero columns. Hence, we only have to
check the number of “degrees of freedom” in (ξ1, . . . , ξm) to compute the dimension of S.

Let G be the graph associated to A. Suppose that j′1 and j′2 are two nodes that are
adjacent to each other with an edge j′′. Then, we have

M · aj′′ =
[
A′ · diag (ξ1, . . . , ξm) ·

[
A′
]−1
]
· aj′′ =

m∑
j′=1

aj′ξj′qj
′′

j′ = aj′′ξj′′ .

Since the aj′ ’s are linearly independent and since qj
′′

j′1
and qj

′′

j′2
are non-zero, then the only

solution provides that ξj′1 and ξj′2 are equal to ξj′′ . Hence, we conclude that, if two nodes
j′1, j

′
2 ∈ {1, . . . ,m} belong to the same component Gt, then the two variables ξj′1 and ξj′2

must have the same value. Hence, the dimension of S is lower or equal to rank⊕ (A).

51

On the other hand, let S := rank⊕ (A) and let {U1, . . . ,US} be a covering of A. Then,
for each s ∈ {1, . . . , S}, let Ms be the “projection on Us” operator:

Ms (x + y) := x for all x ∈ Us and y ∈
⊕
s′ 6=s

Us′ .

Let (η1, . . . , ηS) be a fixed vector and define M :=
∑S
s=1 ηsMs and for each j ∈ {1, . . . , n},

let ξj := ηsj where sj is the unique index in {1, . . . , S} such that aj ∈ Usj . Then this M
and this Ξ are solutions to (6.1). Hence, the dimension of S is at least rank⊕ (A).

We are now able to prove the main theorem for this subsection:

Theorem 6.3. Let A be a (m,n) matrix with rank r and let Z be
the number of zero columns in A. Then the following formula links
the ⊕-rank of A with the dimension of the solution space S:

dim (S) = rank⊕ (A) + (m− 1) (m− r) + Z .

Proof. First we suppose that there are no zero columns in A. Let X ∈ GL (m) and observe
that the ⊕-rank of XA and the ⊕-rank of A are equal. Define the space S′ as follows:

S′ :=
{(

X−1MX,Ξ
) ∣∣∣ (M,Ξ) ∈ S

}
.

Clearly S′ has the same dimension as S. Hence, we may assume, without loss of generality,
that the m− r last rows of A are zero and that Ã := A (1 :r, :) has full row-rank. In this
case, it is easy to check that rank⊕ (A) = rank⊕

(
Ã
)

+ (m− r). The matrix M may be
“block-partitioned” into the following sub-matrices:

M =




M1

M2

M3 where


M1 ∈ Rr×r

M2 ∈ R(m−r)×r

M3 ∈ Rm×(m−r)

.

From Lemma 6.2, we know that the dimension of the space containing valid M1’s is
rank⊕

(
Ã
)
. On the other hand, M2 is necessarily zero and, finally, the sub-matrix M3

might take any value. Hence, the dimension of the space of valid M3’s is m (m− r). The
coefficients (ξ1, . . . , ξn) are completely determined by M1 if there are no zero columns.

Finally, observe that appending a zero column to A does not change its ⊕-rank and
also does not change the space of valid M’s. The only thing that changes is that the
coefficient ξn+1 affected to this zero column might take any value. Hence, the dimension
of S is increased by one. This concludes the proof of the theorem.

52

6.1.2 Computation (part 1) → T-scale + T-trace

Let JA1,B1,C1K and JA2,B2,C2K be two F -PD’s of a matrix multiplication tensor
Tmpn. We would like to know whether the two F -PD’s are inv-equivalent and, if they
are, to compute the inv-transformations for joining JA1,B1,C1K to JA2,B2,C2K. First
suppose that the two F -PD’s are inv-equivalent and also suppose that we know which
transformation T-perm is involved in the inv-transformations. We will see in the next
subsection how we can compute T-perm without trying every permutation of {1, . . . , F}.
Hence, it remains to compute the transformations T-scale and T-trace.

First we would like to make two observations: the first observation is that, in general,
the factor matrices of “realistic” F -PD’s JA,BCK contain no zero columns. Indeed, if one
of the factor matrices contains such a zero column, let’s say the r-th column is zero for
example, then we can remove the r-th column of A, B and C, this will still provide a F -
PD of Tmpn. Hence, we can easily construct a F -PD with less rank-at-most-1 terms and,
in this sense, this F -PD is not “realistic” (c.f. the hardness of the matrix multiplication
tensor decomposition problem briefly exposed in Chapter 2). The second observation about
JA,B,CK is summarized in the following theorem:

Theorem 6.4. Let Tmpn be a matrix multiplication ten-
sor and let JA,B,CK be a F -PD of Tmpn. Let I ⊆
{1, . . . , F} be a set of indices such that #I + n ≥ F + 1.
Then the sub-matrix A (: , I) has full row-rank.

Proof. Suppose, on the contrary, that there exists a set I ⊆ {1, . . . , F} with size E such
that E+n ≥ F +1 and such that A (: , I) has not full row-rank. Let A′ := A (: , I) and let
B′ := B (: , {1, . . . , F} \ I). Since A′ has not full row-rank, we can find a non-zero vector
x with mp-elements such that x>A′ = 0. Denote Y the space of pn-elements vectors y
such that y>B′ = 0. Since the number of columns in B′ is lower or equal to n− 1, there
are at most n − 1 “constraints” on y and thus the dimension of Y is at least pn − n + 1.
Let X := rshp [m,p] (x) and define the sub-space V containing pn-elements vectors as

V :=
{

vec
[
(ZX)>

] ∣∣∣ Z ∈ Rn×m
}

= colspan
(
In ⊗X>

)
.

Since X is non-zero, its rank is at least 1 and thus the dimension of V is at least n. Now
let v = vec

[
(ZX)>

]
be an element of V and let y be an element of Y. Define z := vec (Z)

and, finally, define Y := rshp [p,n] (y), then observe that

v>y = trace (ZXY) =
F∑
r=1

[
x>A (: , r)

]
·
[
y>B (: , r)

]
·
[
z>C (: , r)

]
.

We have used the fact that the trace of a product is stable under cycle-shifting of its
factors. Hence, we conclude that v>y = 0 so that Y ⊆ V⊥. But a simple look at the
dimensions of Y and V shows that this is a contradiction.

53

Note that Theorem 6.4 applies in a similar way on B and C. To see this, it suffices to
note that, if JA,B,CK is a F -PD of Tmpn, then JB,C,AK and JC,A,BK are F -PD’s of
Tpnm and Tnmp respectively. Among other conclusions of this theorem, we conclude that
each factor matrices in a F -PD of a matrix multiplication tensor must have full row-rank.
Indeed, it suffices to apply Theorem 6.4 with I := {1, . . . , F}.

We now present the algorithm to compute the (T-scale+T-trace)-equivalence between
two F -PD’s of a matrix multiplication tensor. The algorithm will work provided we make
the following hypothesis on the two decompositions:

Hypothesis 6.5. We suppose that the factor matrices of
the two decompositions JA1,B1,C1K and JA2,B2,C2K have
no zero columns and also that they all have a ⊕-rank of 1.

As we have already mentioned, the first part of the hypothesis is valid for every “realistic”
decomposition. We will see, in Sec. 6.2, that the second part of the hypothesis is verified
with probability one for tensors larger or with the same size as T222 and when the F -
PD’s are “randomly computed”. The goal of the algorithm is to compute matrices P ∈
GL (m), Q ∈ GL (p) and R ∈ GL (n) and scaling coefficients {λ1, . . . , λF }, {µ1, . . . , µF }
and {ν1, . . . , νF } such that

[
Q> ⊗P−1

]
·A1 = A2 · diag (λ1, . . . , λF)[

R> ⊗Q−1
]
·B1 = B2 · diag (µ1, . . . , µF)[

P> ⊗R−1
]
·C1 = C2 · diag (ν1, . . . , νF)


. (6.2)

Let E1 and E2 be two (I, J) matrices with full row-rank, containing no zero columns
and whose ⊕-rank is 1. Then consider the following linear problem:

solve system

M ·E1 = E2 · diag (ξ1, . . . , ξJ)

with variables

M ∈ RI×I , Ξ = (ξ1, . . . , ξJ) ∈ RJ .

. (6.3)

This problem is close to problem (6.1) except that we allow distinct E1 and E2. Let S be
the space of M’s and Ξ’s that are solutions to (6.3). Then consider the following lemma:

54

Lemma 6.6. If the solution space S of (6.3) contains a
solution (M,Ξ) such that ξj 6= 0 for every j ∈ {1, . . . , J},
then the dimension of S is one.

Proof. Let (M,Ξ) be a solution of (6.3) with ξj 6= 0 for every j ∈ {1, . . . , J}. We have
assumed that E2 has full row-rank and thus E2 ·diag (ξ1, . . . , ξJ) has full row-rank as well.
Hence, M must be invertible. In a similar way as in the proof of Lemma 6.2, we may
assume, without loss of generality, that E1 (: , 1:I) has full rank. Hence, E2 (: , 1:I) has
full rank too. We conclude the proof with a similar reasoning as for the first part of the
proof of Lemma 6.2.

In a first time, suppose that JA1,B1,C1K and JA2,B2,C2K are (T-scale+T-trace)-
equivalent and let P,Q,R and {λ1, . . . , λF }, {µ1, . . . , µF } and {ν1, . . . , νF } be some ma-
trices and scaling coefficients satisfying (6.2). Let S1 be the solution space of (6.3) with
(E1,E2) = (A1,A2). Similarly, let S2 and S3 be the solution spaces of (6.3) with (E1,E2) =
(B1,B2) and (E1,E2) = (C1,C2) respectively. Since S1, S2 and S3 admit the solutions

[
Q> ⊗P−1 , (λ1, . . . , λF)

]
∈ S1

[
R> ⊗Q−1 , (µ1, . . . , µF)

]
∈ S2

[
P> ⊗R−1 , (ν1, . . . , νF)

]
∈ S3


, (6.4)

the dimension of S1, S2 and S3 must be one. Let
(
M1,Ξ1), (M2,Ξ2) and

(
M3,Ξ3) be

non-zero solutions belonging to S1, S2 and S3 respectively. From the dimension of S1, S2

and S3 being one, we know that there exist constants α, β, γ ∈ R such that

M1 = α
[
Q> ⊗P−1

]
and ξ1

r = αλr for all r ∈ {1, . . . , F}

M2 = β
[
R> ⊗Q−1

]
and ξ2

r = βµr for all r ∈ {1, . . . , F}

M3 = γ
[
P> ⊗R−1

]
and ξ3

r = γνr for all r ∈ {1, . . . , F}


.

Hence, we can also easily find matrices
S1

1,S3
2 ∈ Rm×m such that

∥∥S1
1
∥∥

L2 =
∥∥S3

2
∥∥

L2 = 1
S2

1,S1
2 ∈ Rp×p such that

∥∥S2
1
∥∥

L2 =
∥∥S1

2
∥∥

L2 = 1
S3

1,S2
2 ∈ Rn×n such that

∥∥S3
1
∥∥

L2 =
∥∥S2

2
∥∥

L2 = 1

 (6.5)

and satisfying 
M1 = α̂

[
S1

2 ⊗ S1
1
]

for some α̂ ∈ R

M2 = β̂
[
S2

2 ⊗ S2
1
]

for some β̂ ∈ R

M3 = γ̂
[
S2

2 ⊗ S3
1
]

for some γ̂ ∈ R

 . (6.6)

55

Hence, we also have that
S1

1 = α′1P−1 and S1
2 = α′2Q> for some α′1, α′2 ∈ R

S2
1 = β′1Q−1 and S2

2 = β′2R> for some β′1, β′2 ∈ R

S3
1 = γ′1R−1 and S3

2 = γ′2P> for some γ′1, γ′2 ∈ R

 .

Now let ζ1 := α′1γ
′
2, ζ2 := β′1α

′
2 and ζ3 := γ′1β

′
2 and observe that

S1
1 ·
[
S3

2

]>
= ζ1Im and S2

1 ·
[
S1

2

]>
= ζ2Ip and S3

1 ·
[
S2

2

]>
= ζ3In .

Then define

S̃1
1 := 1√

ζ1
S1

1 , S̃1
2 := 1√

ζ2
S1

2 and ξ̃1
r := 1

α̂
√
ζ1ζ2

ξ1
r for all r ∈ {1, . . . , F}

S̃2
1 := 1√

ζ2
S2

1 , S̃2
2 := 1√

ζ3
S2

2 and ξ̃2
r := 1

β̂
√
ζ2ζ3

ξ2
r for all r ∈ {1, . . . , F}

S̃3
1 := 1√

ζ3
S3

1 , S̃3
2 := 1√

ζ1
S3

2 and ξ̃3
r := 1

γ̂
√
ζ3ζ1

ξ3
r for all r ∈ {1, . . . , F}


.

and let
P̃ :=

[
S̃1

1

]−1
and Q̃ :=

[
S̃2

1

]−1
and R̃ :=

[
S̃3

1

]−1
.

Then we clearly have 
1
α̂M1 = 1√

ζ1ζ2

[
Q̃> ⊗ P̃−1

]
1
β̂
M2 = 1√

ζ2ζ3

[
R̃> ⊗ Q̃−1

]
1
γ̂M3 = 1√

ζ3ζ2

[
P̃> ⊗ R̃−1

]
 .

Finally, note that, since α = α̂α′1α
′
2, β = β̂β′1β

′
2 and γ = γ̂γ′1γ

′
2, and since the coefficients

{λ1, . . . , λF }, {µ1, . . . , µF } and {ν1, . . . , νF } satisfy λrµrνr = 1 for all r ∈ {1, . . . , F}, we
also have that ξ̃1

r ξ̃
2
r ξ̃

3
r = 1 for all r ∈ {1, . . . , F}. Hence, we have shown that the matrices P̃,

Q̃ and R̃ together with the scaling coefficients
{
ξ̃1

1 , . . . , ξ̃
1
F

}
,
{
ξ̃2

1 , . . . , ξ̃
2
F

}
and

{
ξ̃3

1 , . . . , ξ̃
3
F

}
provide valid transformations T-scale and T-trace for joining JA1,B1,C1K to JA2,B2,C2K.

We have just seen that, if JA1,B1,C1K and JA2,B2,C2K are two (T-scale+T-trace)-
equivalent F -PD’s, then the solution spaces S1, S2 and S3 can be used to find transfor-
mations T-scale and T-trace for joining them. On the other hand, suppose that we have
computed S1, S2 and S3 and, from them, we would like to know whether JA1,B1,C1K
and JA2,B2,C2K are (T-scale+T-trace)-equivalent. From Lemma 6.6 and from (6.4), we
know that, if one the solution spaces S1, S2 or S3 has dimension different from one, then
the decompositions are not (T-scale+T-trace)-equivalent. Hence, we might suppose that
the dimension of S1, S2 and S3 is one. As of now, choose non-trivial solutions

(
M1,Ξ1),(

M2,Ξ2) and
(
M3,Ξ3) from S1, S2 and S3 respectively. Then try to compute (c.f. the

remark just below this paragraph) the matrices
(
S1

1,S1
2
)
,
(
S2

1,S2
2
)
and

(
S3

1,S3
2
)
and the

corresponding coefficients α̂, β̂ and γ̂ satisfying (6.5) and (6.6). If it is not possible to find
such matrices and coefficients, then we can conclude that the F -PD’s JA1,B1,C1K and

56

JA2,B2,C2K are not (T-scale+T-trace)-equivalent. Now compute S1
1 ·
[
S3

2
]>, S2

1 ·
[
S1

2
]> and

S3
1 ·
[
S2

2
]> and check whether there exist constants ζ1, ζ2, ζ3 ∈ R such that

S1
1 ·
[
S3

2

]>
= ζ1Im and S2

1 ·
[
S1

2

]>
= ζ2Ip and S3

1 ·
[
S2

2

]>
= ζ3In .

If this is not the case, then we can conclude again that JA1,B1,C1K and JA2,B2,C2K are
not (T-scale+T-trace)-equivalent. On the other hand, if such ζ1, ζ2 and ζ3 do exist, then
it suffices to check whether

ξ1
rξ

2
rξ

3
r =

(
α̂β̂γ̂

)
· (ζ1ζ2ζ3) for each r ∈ {1, . . . , F}. (6.7)

If this is the case, then we can define P̃, Q̃ and R̃ and the coefficients
{
ξ̃1

1 , . . . , ξ̃
1
F

}
,{

ξ̃2
1 , . . . , ξ̃

2
F

}
and

{
ξ̃3

1 , . . . , ξ̃
3
F

}
in the same way as above. Those will provide valid trans-

formations T-scale and T-trace. If (6.7) is not satisfied, then JA1,B1,C1K and JA2,B2,C2K
are not (T-scale+T-trace)-equivalent.

Remark. We explain how we compute the matrices
(
S1

1,S1
2
)
,
(
S2

1,S2
2
)
and

(
S3

1,S3
2
)
and the

coefficients α̂, β̂ and γ̂ satisfying (6.5) and (6.6), especially when we have to take into
account the floating-point inaccuracy. The problem can be rephrased as follows: let M be
a (mp,mp) matrix and we search a (m,m) matrix P and a (p, p) matrix Q, both with
L2-norm equals 1, and a coefficient α such that ‖M− α (P⊗Q)‖L2 is minimal.

To solve the problem, first “block-partition” M in m2 matrices with size (p, p) and
number them with respect to the “column-major order”. For example, if m = 3, we would
have the following block partition:

M =

M1 M4 M7

M2 M5 M8

M3 M6 M9




where the Ms’s are (p, p) matrices. Now let M′ be the

(
p2,m2) matrix defined as

M′ := [vec (M1) , vec (M2) , . . . , vec (Mm2)] .

Hence, M′ is a reshaped version of M and observe that

minimize ‖M− α (P⊗Q)‖L2 with variables P,Q, α

is equivalent to

minimize
∥∥∥M′ − α

[
vec (Q) vec (P)>

]∥∥∥
L2

with variables P,Q, α. (6.8)

Solutions to (6.8) can be obtained by considering the singular value decomposition M′,
i.e. M′ = UΣV> where U and V are orthogonal matrices and Σ is a diagonal matrix
with non-negative diagonal elements in decreasing order. A solution is then given by

P := V (: , 1) , Q := U (: , 1) and α := Σ (1, 1) .

57

6.1.3 Computation (part 2) → getting rid of T-perm

The problem in the computation of the (T-scale+T-trace)-equivalence above is that
we do not know what is the permutation that act on the columns of JA2,B2,C2K. A
straightforward method would be to test every permutation of {1, . . . , F} and, for each
permuted decomposition JA2,B2,C2K, try to find a (T-scale+T-trace)-equivalence with
JA1,B1,C1K. The drawback is that this would be prohibitive in running time. For instance,
if F = 7 (like in the 〈2, 2, 2〉 case), we would have 5040 permutations to try. Hence, we
have developed more clever method.

Let
{
a1

1, . . . ,a1
F

}
,
{
b1

1, . . . ,b1
F

}
and

{
c1

1, . . . , c1
F

}
be the columns of A1, B1 and C1

respectively. Similarly, let
{
a2

1, . . . ,a2
F

}
,
{
b2

1, . . . ,b2
F

}
and

{
c2

1, . . . , c2
F

}
be the columns of

A2,B2,C2 respectively. For each r ∈ {1, . . . , F}, define the following matrices:
M1

r := rshp
(
a1
r

)
· rshp

(
b1
r

)
· rshp

(
c1
r

)
M2

r := rshp
(
a2
r

)
· rshp

(
b2
r

)
· rshp

(
c2
r

)
 .

Suppose that JA1,B1,C1K and JA2,B2,C2K are inv-equivalent and let σ be the permuta-
tion involved in T-perm. Similarly, let P ∈ GL (m), Q ∈ GL (p) and R ∈ GL (n) be the
matrices involved in T-trace. Then, for each r ∈ {1, . . . , F}, we have that

M1
r = P−1 ·M2

σ(r) ·P .

Now consider the two vectors (r1, . . . , rE) and (s1, . . . , sE). We say that those two vectors
form a “restriction of σ” if we have s` = σ (r`) for each ` ∈ {1, . . . , E}. In this case, we
can check that, for every randomly chosen coefficients {α1, . . . , αE} ⊆ R, we have

α1 ·M1
r1 + . . .+ αE ·M1

rE
= P−1 ·

(
α1 ·M2

s1 + . . .+ αE ·M2
sE

)
·P

and thus

eig
(
α1 ·M1

r1 + . . .+ αE ·M1
rE

)
= eig

(
α1 ·M2

s1 + . . .+ αE ·M2
sE

)
(6.9)

where eig (E) is the function returning the eigenvalues of E.
The idea of the algorithm is the following: first we start from small vectors (r1, . . . , rE)

and (s1, . . . , sE). We check whether they are susceptible to form a “restriction of σ” by
checking whether (6.9) is satisfied or not. If (6.9) is satisfied, then we try to extend
(r1, . . . , rE) and (s1, . . . , sE) to larger vectors (r1, . . . , rE , rE+1) and (s1, . . . , sE , sE+1) and
we check again whether those extended vectors might provide a “restriction of σ” according
to (6.9). Otherwise, we try other vectors

(
r1, . . . , rE , r

′
E+1

)
and

(
s1, . . . , sE , s

′
E+1

)
. If every

possible rE+1’s and sE+1’s have been tried and none of them provides a correct “restriction
of σ” according to (6.9), then we start from the last (r1, . . . , rE−1) and (s1, . . . , sE−1) and
test different rE ’s and sE ’s. On the other hand, when we reach a “complete permutation”,
i.e. when E is equal to F , then we can try to compute the (T-scale+T-trace)-equivalence

58

Function [R,S,EquivFound]← RecursiveSearch (R,S,EquivFound) :

If EquivFound = True :

There is no need to search a (T-scale+T-trace)-equivalence fur-
ther. Hence, return [R,S,EquivFound] and exit the function.

If length (S) = F :

Try to find a (T-scale+T-trace)-equivalence between JA1,B1,C1K
and JA2,B2,C2K permuted according to R and S. If such a equiv-
alence exists, then return [R,S,True] and exit the function. Else,
return [R,S,False] and exit the function.

For each r+ /∈ R and s+ /∈ S :

Let R+ :=
[
R, r+] and S+ :=

[
S, s+] and check whether R+

and S+ satisfy (6.9). If they do, then set [R,S,EquivFound] ←
RecursiveSearch

(
R+, S+,EquivFound

)
. If EquivFound = True,

then return [R,S,EquivFound] and exit the function. On the other
hand, if EquivFound = False or if R+ and S+ do not satisfy (6.9),
then continue to the next iteration of the “for each” loop. If it is the
last iteration of the “for each” loop, then return [R,S,EquivFound]
and exit the function.

Algorithm 2 – Recursive function to compute the inv-equivalence.

between JA1,B1,C1K and JA2,B2,C2K permuted with this “complete permutation”. If a
(T-scale+T-trace)-equivalence exists, then we have found the inv-equivalent between the
two F -PD’s. If they are not (T-scale+T-trace)-equivalent, then we search another per-
mutation. At the end of the algorithm, we have either found the inv-equivalent between
JA1,B1,C1K and JA2,B2,C2K or we can conclude that they are not inv-equivalent. We im-
plemented the algorithm as the recursive function described in Algorithm 2. The recursive
function must be called with

[R,S,EquivFound]← RecursiveSearch (∅,∅,False) .

If the obtained EquivFound is true, then the two decompositions are inv-equivalent and the
transformation T-perm is given by the vectors R and S. On the other hand, if EquivFound
is false, then the two F -PD’s are not inv-equivalent.

Remark. Strictly speaking, the use of Algorithm 2 supposes that Hypothesis 6.5 is satis-
fied. We wonder whether we can still obtain some information from Algorithm 2 even if
Hypothesis 6.5 is not satisfied. The answer is yes. We modify the algorithm as follows, if

59

the condition length (S) = F is satisfied, then, instead of searching a (T-scale+T-trace)-
equivalence between the F -PD’s (which is not possible since the ⊕-rank of the factor
matrices is not 1 anymore), we directly do:

Return [R,S,True] and exit the function.

With this modified algorithm, if the call of the function

[R,S,EquivFound]← RecursiveSearch (∅,∅,False)

returns the value of true for EquivFound, then we cannot say anything: the two F -PD’s
might be inv-equivalent or not. However, if EquivFound is false, then we are sure that the
two F -PD’s are not inv-equivalent. This modification will be helpful in Sec. 6.2, when we
will consider the distribution of the inv-equivalent classes for the 〈2, 1, 2〉 case.

6.2 Distribution of the ⊕-ranks and inv-equivalence classes

In this section, we would like to apply the algorithms we have developed in Sec. 6.1 on
“randomly computed” decompositions. Specifically, we would like to have an idea about
the distribution of the ⊕-rank of the factor matrices. We also want to inquire “what is the
probability for two “randomly computed” decompositions to be inv-equivalent?”.

6.2.1 Distribution of the ⊕-rank of the factor matrices

Remember that, in Sec. 5.2, we have computed the set (5.1) consisting of 100 decom-
positions JAκ,Bκ,CκK for the different matrix multiplication tensors between T121 and
T333. We reuse those JAκ,Bκ,CκK’s and we compute the ⊕-rank of the factor matri-
ces Aκ,Bκ,Cκ for each κ ∈ {1, . . . , 100}. For the computation of the ⊕-ranks, we use
Theorem 6.3. The “⊕-ranks’ vector” of the F -PD JAκ,Bκ,CκK is defined by

⊕-vecκ := [rank⊕ (Aκ) , rank⊕ (Bκ) , rank⊕ (Cκ)] .

For each case described in the two first columns of Table 6.1, we have computed the
⊕-vecκ’s for the different decompositions JAκ,Bκ,CκK. It appears that, in each case (taken
separately), the ⊕-vecκ’s are the same for 100% of the F -PD’s. The results are gathered
in Table 6.1. Those “⊕-ranks’ vectors”, which seem to appear with probability one, will
be called the “generic ⊕-vec’s for the F -PD’s of Tmpn”.

Let us analyze, case-by-case, the different situations. The generic ⊕-vec for the 2-PD’s
of T121, is [2, 2, 1]. In fact, this is not surprising for the following reasons: A and B are
(2, 2) matrices and C is a (1, 2) matrix. From Theorem 6.4, we know that A, B and C
have full row-rank. Hence, with Lemma 6.1, we conclude that there is only one possibility
for the ⊕-vec’s of the 2-PD’s of T121: in this case, the generic “⊕-ranks’ vector” is also
the only possible “⊕-ranks’ vector”.

For the 4-PD’s of T212, the generic “⊕-ranks’ vector” is [1, 1, 4]. The factor matrix C
is a (4, 4) matrix with full row-rank; hence, by Lemma 6.1, we conclude that its ⊕-rank is

60

Multiplication
and number of

terms in the F -PD

100% of the JAκ,Bκ,CκK’s have
the following “⊕-ranks’ vector”

〈1, 2, 1〉 F = 2 [2 , 2 , 1]

〈2, 1, 2〉 F = 4 [1 , 1 , 4]

〈2, 2, 2〉 F = 7 [1 , 1 , 1]

〈2, 3, 2〉 F = 11 [1 , 1 , 1]

〈3, 2, 3〉 F = 15 [1 , 1 , 1]

〈3, 3, 3〉 F = 23 [1 , 1 , 1]

Table 6.1 – Generic values of the ⊕-ranks of the factor matrices.

necessarily 4. The ⊕-rank of A and the ⊕-rank B seem to be 1 with probability one. Is it
possible that they are different ⊕-ranks for A and B, even if this happens with probability
zero? To answer this question, consider the following 4-PD of Tmpn:

A> B> C>


+1 0
+1 0

0 +1
0 +1




+1 0

0 +1
+1 0

0 +1




+1 0 0 0

0 +1 0 0
0 0 +1 0
0 0 0 +1


. (6.10)

In this decomposition, both A and B have a ⊕-rank of 2 contradicting the hypothesis
whereby rank⊕ (A) and rank⊕ (B) are always equal to 1. However, such situations seem
to occur with probability zero. As a corollary, we also conclude that the Tichavský et al.’s
LM-method seems to have a zero probability to produce a decomposition of T212 in the
same inv-equivalence class as (6.10).

For the four last cases, namely 〈2, 2, 2〉 with F = 7, 〈2, 3, 2〉 with F = 11, 〈3, 2, 3〉 with
F = 15 and 〈3, 3, 3〉 with F = 23, 100% of the decompositions JAκ,Bκ,CκK have a ⊕-vec
equal to [1, 1, 1]. This is good news, since it implies that we can use Algorithm 2 to check
whether the decompositions are pair-wise inv-equivalent.

6.2.2 Distribution of the inv-equivalence classes of F -PD’s

For each case, except the 〈1, 2, 1〉 case with F = 2, we use the 100 decompositions
JAκ,Bκ,CκK from (5.1). Then we compute 100 random pairs (κs1, κs2) where κs1 6= κs2 and
κs1, κ

s
2 ∈ {1, . . . , 100} for each s ∈ {1, . . . , 100}. We use Algorithm 2 on

q
Aκs

1
,Bκs

1
,Cκs

1

y

and
q
Aκs

2
,Bκs

2
,Cκs

2

y
to check whether they are inv-equivalent or not. The results are

61

Multiplication
and number of

terms in the F -PD

Percentage of the
random (κs1, κs2)’s

such that
q
Aκs

1
,Bκs

1
,Cκs

1

y
and

q
Aκs

2
,Bκs

2
,Cκs

2

y
are

inv-equivalent

Average
computing time
of Algorithm 2

〈1, 2, 1〉 F = 2 100 % not applic.

〈2, 1, 2〉 F = 4 000 % 2.317e-03 sec

〈2, 2, 2〉 F = 7 100 % 1.032e-02 sec

〈2, 3, 2〉 F = 11 000 % 9.076e-03 sec

〈3, 2, 3〉 F = 15 000 % 3.665e-02 sec

〈3, 3, 3〉 F = 23 000 % 4.559e-02 sec

Table 6.2 – Distributions of the inv-equivalence classes.

represented in Table 6.2. We have also represented the average computing time (on an
ordinary personal computer) of Algorithm 2 for the different cases. Note that a dashed
line separates the first two cases from the last four cases. This is because the 〈1, 2, 1〉 case
and the 〈2, 1, 2〉 case had to be handled differently because the F -PD’s for those cases do
not satisfy Hypothesis 6.5.

For the 〈1, 2, 1〉 case with F = 2, we claim that all decompositions JAκ,Bκ,CκK are
inv-equivalent to each other. How do we know that? In fact, we show that if JA1,B1,C1K
and JA2,B2,C2K are two F -PD’s (not necessarily “randomly computed”) of T121, then
they are necessarily inv-equivalent. To see this, observe that the size of T121 is (2, 2, 1)
and thus it might be represented by the following (2, 2) matrix:

T121 :=

 1 0
0 1


and each F -PD JA,B,CK of T121 must satisfy 1 0

0 1

 = A · diag (C (1, 1) ,C (1, 2)) ·B> .

Using a transformation T-scale if necessary, we may assume, without loss of generality
that C2 (1, 1) and C2 (1, 2) are equal to 1. Hence, A1 and B>1 are inverse of each other
and so do A2 and B>2 . Then let P := A1B>2 and observe that

P−1 ·A1 =
[
A2A−1

1

]
·A1 = A2

P> ·B1 =
[
B2B−1

1

]
·B1 = B2

 .

62

Hence, we have found a transformation T-trace between the F -PD’s.
For the 〈2, 1, 2〉 case with F = 4, we have used the modified version of Algorithm 2 (c.f.

the remark at the end of Sec. 6.1). We obtain that the decompositions
q
Aκs

1
,Bκs

1
,Cκs

1

y

and
q
Aκs

2
,Bκs

2
,Cκs

2

y
are never inv-equivalent. Let us link this result with the results of

Sec. 5.2. We had obtained that only one class of polynomial arrays Pκ exists for the
different JAκ,Bκ,CκK’s. Hence, we could have thought that there would be only a few
different inv-equivalence classes among the decompositions JAκ,Bκ,CκK. However, we
must observe that this is not the case.

We already mentioned that the 7-PD’s of T222 are unique up to inv-transformations,
i.e. there is only one inv-equivalence class of 7-PD’s of T222 (c.f. [2] for a proof). This result
is supported by our computations with Algorithm 2: for each pair (κs1, κs2),

q
Aκs

1
,Bκs

1
,Cκs

1

y

and
q
Aκs

2
,Bκs

2
,Cκs

2

y
are inv-equivalent.

For the three last cases, namely 〈2, 3, 2〉 with F = 11, 〈3, 2, 3〉 with F = 15 and 〈3, 3, 3〉
with F = 23, we have that none of the (κs1, κs2)’s lead to inv-equivalent

q
Aκs

1
,Bκs

1
,Cκs

1

y

and
q
Aκs

2
,Bκs

2
,Cκs

2

y
. For the 〈2, 3, 2〉 and 〈3, 3, 3〉 cases, we could argue that this is not

surprising since we already had a certain amount of different classes of Pκ’s and since
two decompositions with Pκ’s belonging to distinct classes cannot be inv-equivalent. The
〈3, 2, 3〉 is probably more surprising since we had only two classes of arrays Pκ and thus a
similar comment as for the 〈2, 1, 2〉 case holds.

63

Chapter 7

Conclusions

In this thesis, we tackled the problem of fast matrix multiplication. This problem is
quite old but we have seen that only partial results are known so far. We tried to bring
some contribution to the field, both for the development of fast matrix multiplication
algorithms and for the understanding of the behavior of matrix multiplication tensors.

In Chapter 4, we have presented an algorithm to compute sparse discrete decompo-
sitions which might be used to build fast (stable) matrix multiplication algorithms. We
have seen that, with this algorithm, we could compute sparse discrete decompositions for
tensors up to the 〈3, 3, 3〉 case, which is not, in general, an easy task. Nevertheless, we
were not able to compute sparse discrete decompositions for larger tensors (c.f. also the
remark concerning the 〈4, 3, 4〉 case, at the end of Sec. 4.2) and, because of that, we do
not have faster or more stable matrix multiplication algorithms than some authors like
Ballard et al. [8] or Smirnov [6]. Our hope is that our algorithm for computing SD-sol’s
could be modified or executed on more powerful computers so that we would probably be
able to compute sparse discrete decompositions for larger matrix multiplication tensors.

The methodology of Chapter 5 can be rephrased as follows: we try to find an “invariant”
for the inv-equivalence classes and we draw conclusions about what this “invariant” must
look like if the inv-equivalence class contains a particular decomposition. In our case, the
“invariant” is the array P of characteristic polynomials, i.e. every decomposition in the
same inv-equivalence class must have the same P. The particular decompositions we hope
to find in the inv-equivalence class are the discrete decompositions, i.e. we hope that every
F -PD is inv-equivalent to a discrete F -PD. This implies that the P’s might take only a
restricted number of values. For example, if we hope to find a F -PD for which the factor
matrices have values only in {−1, 0,+1}, then all the P’s must contain polynomials with
integer coefficients only. We presented an algorithm to compute and compare efficiently
the different P’s between each other and we concluded that, for four cases on the six
considered cases, all the decompositions provide a P containing polynomials with integer
coefficients only. As we already mentioned, this does not necessarily mean that, for those
cases, every F -PD can be discretized but this is a good indicator.

In Chapter 6, we addressed the problem of determining whether two F -PD’s of a
same matrix multiplication tensor are inv-equivalent. To do this, we introduced a new

64

concept which is also an “invariant” of the inv-equivalence classes: the ⊕-rank of the factor
matrices, i.e. every inv-equivalent decompositions involve factor matrices with mutually
equal ⊕-ranks. We presented an algorithm for computing the inv-equivalence between two
F -PD’s or concluding that such an inv-equivalence does not exist. We had to find a clever
way to get rid of the (T-perm)-equivalence without trying every possible permutation. We
have applied the algorithm on some cases and observed the following results: except for
the 〈1, 2, 1〉 and 〈2, 2, 2〉 cases, where every F -PD’s are inv-equivalent to each other, the
F -PD’s are pair-wise inv-equivalent with probability zero.

To conclude, we would like to say that the problem of fast matrix multiplication remains
a challenging field. We hope that our contribution will help to understand the problem
better or will be the starting point for some further research. In any case, it was very
interesting to treat this subject and discover that there is still so much to do with a
problem as old and widely used as matrix multiplication.

65

Bibliography

[1] V. Strassen, “Gaussian elimination is not optimal,” Numerische Mathematik, vol. 13,
no. 4, pp. 354–356, 1969.

[2] H. de Groote, “On varieties of optimal algorithms for the computation of bilinear
mappings II. Optimal algorithms for 2× 2-matrix multiplication,” Theoretical Com-
puter Science, vol. 7, no. 2, pp. 127–148, 1978.

[3] J. Laderman, “A noncommutative algorithm for multiplying 3 × 3 matrices using
23 multiplications,” Bulletin of the American Mathematical Society, vol. 82, no. 1,
pp. 126–128, 1976.

[4] M. Bläser, “On the complexity of the multiplication of matrices of small formats,”
Journal of Complexity, vol. 19, no. 1, pp. 43–60, 2003.

[5] O. Makarov, “A noncommutative algorithm for multiplying 5 × 5-matrices using
one hundred multiplications,” USSR Computational Mathematics and Mathematical
Physics, vol. 27, no. 2, pp. 311–315, 1987.

[6] A. Smirnov, “The bilinear complexity and practical algorithms for matrix multi-
plication,” Computational Mathematics and Mathematical Physics, vol. 53, no. 12,
pp. 1781–1795, 2013.

[7] P. Tichavský, A.-H. Phan, and A. Cichocki, “Numerical CP decomposition of some dif-
ficult tensors,” Journal of Computational and Applied Mathematics, vol. 317, pp. 362–
370, 2017.

[8] G. Ballard, A. Benson, A. Druinsky, B. Lipshitz, and A. Schwartz, “Improving the
numerical stability of fast matrix multiplication algorithms,” SIAM Journal on Matrix
Analysis and Applications, vol. 37, no. 4, pp. 1382—-1418, 2016.

[9] R. Brockett and D. Dobkin, “On the optimal evaluation of a set of bilinear forms,”
Linear Algebra and its Applications, vol. 19, no. 3, pp. 207–235, 1978.

[10] P. Bürgisser, T. Lickteig, M. Clausen, and A. Shokrollahi, Algebraic Complexity The-
ory. Grundlehren der mathematischen Wissenschaften, Springer Berlin Heidelber,
1996.

66

[11] D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic progres-
sions,” Journal of Symbolic Computation, vol. 9, no. 3, pp. 251–280, 1990.

[12] R. Tibshirani, “Regression shrinkage and selection via the Lasso,” Journal of the
Royal Statistical Society, Series B, vol. 58, no. 1, pp. 267–288, 1994.

[13] Y. Nesterov, “Gradient methods for minimizing composite functions,” Mathematical
Programming, vol. 140, no. 1, pp. 125–161, 2013.

[14] R. Howard, “The characteristic polynomial of a product.” http://people.math.sc.

edu/howard/Classes/700/charAB.pdf. Accessed: 2017-May-11.

[15] P. Pundir, S. Porwal, and B. Singh, “A new algorithm for solving linear bottleneck
assignment problem,” Journal of Institute of Science and Technology, vol. 20, no. 2,
pp. 101–102, 2015.

[16] M. Golin, “Bipartite matching & the Hungarian method.” http://www.cse.ust.hk/

~golin/COMP572/Notes/Matching.pdf. Accessed: 2017-May-15.

[17] Y. Cao, “Hungarian algorithm for linear assignment problems (V2.3).”
https://www.mathworks.com/matlabcentral/fileexchange/20652-hungarian-

algorithm-for-linear-assignment-problems--v2-3-. Accessed: 2017-May-15.

[18] K. Madsen, H. Nielsen, and O. Tingleff, “Methods for non-linear least squares prob-
lems (second ed.).” Informatics and Mathematical Modelling, Technical University of
Denmark, DTU, 2004. Richard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby.

67

http://people.math.sc.edu/howard/Classes/700/charAB.pdf
http://people.math.sc.edu/howard/Classes/700/charAB.pdf
http://www.cse.ust.hk/~golin/COMP572/Notes/Matching.pdf
http://www.cse.ust.hk/~golin/COMP572/Notes/Matching.pdf
https://www.mathworks.com/matlabcentral/fileexchange/20652-hungarian-algorithm-for-linear-assignment-problems--v2-3-
https://www.mathworks.com/matlabcentral/fileexchange/20652-hungarian-algorithm-for-linear-assignment-problems--v2-3-

Appendix A

Lipschitz-continuous gradient and quadratic upper bound

Let U be a finite-dimensional vector space over R with inner product (u, v) 7→ 〈u, v〉
and associated norm u 7→ ‖u‖. We want to prove the following theorem:

Theorem A.1. Let f (x) be differentiable on U. Then ∇f (x) satisfies

‖∇f (x1)−∇f (x2)‖ ≤M ‖x1 − x2‖ for all x1, x2 ∈ U

if and only if

|f (x)− [f (x̄) + 〈∇f (x̄) , x− x̄〉]| ≤ M

2 ‖x− x̄‖
2 for all x, x̄ ∈ U. (A.1)

The “only if” part is a classical result. Proofs of the “if” part in the convex case are
also current in the literature. However, we have not found any proofs of the “if” part for
the non-convex case. Hence, the motivation for this appendix.

Proof. First we prove the “only if” part. Let x̄ ∈ U and h ∈ U. Then, using the fundamental
theorem of integration, we have

|f (x̄+ h)− [f (x̄) + 〈∇f (x̄) , h〉]| =
∣∣∣∣w 1

0
〈∇f (x̄+ th)−∇f (x̄) , h〉 dt

∣∣∣∣
and thus

|f (x̄+ h)− [f (x̄) + 〈∇f (x̄) , h〉]| ≤
w 1

0
|〈∇f (x̄+ th)−∇f (x̄) , h〉|dt .

From Cauchy-Schwartz inequality and the Lipschitz-continuity of the gradient, we have

|f (x̄+ h)− [f (x̄) + 〈∇f (x̄) , h〉]| ≤
w 1

0
tM ‖h‖2 dt = M

2 ‖h‖
2 .

In order to prove the “if” part, suppose, on the contrary, that there exist x̃, y ∈ U

such that ‖∇f (x̃)−∇f (y)‖ > M ‖x̃− y‖. Without loss of generality, we may assume
that f (x̃) = 0, ∇f (x̃) = 0 and x̃ = 0. Denote v := 1

M∇f (y). From the assumptions,

68

‖v‖ > ‖y‖. Suppose that (A.1) is satisfied. From the lower bound emanating from (A.1)
with x̄ = 0 and the upper bound emanating from (A.1) with x̄ = y, we have

−M
2 ‖z‖2 ≤ f (z) ≤ f (y) + 〈Mv, z − y〉+ M

2 ‖z − y‖
2

for all z ∈ U. The difference between the right-hand term minus the left-hand term is
minimal at z := 1

2 (y − v). For this value, we get

−M
8 ‖y − v‖2 ≤ f (y)− M

2 〈v, y + v〉+ M

8 ‖y + v‖2 . (A.2)

A similar reasoning with the upper bound emanating from (A.1) with x̄ = 0 and the lower
bound emanating from (A.1) with x̄ = y provides

M

2 ‖z‖
2 ≥ f (z) ≥ f (y) + 〈Mv, z − y〉 − M

2 ‖z − y‖
2

for all z ∈ U. The minimizer of the difference between the left-hand term minus the
right-hand term is z := 1

2 (y + v) and, for this value, we have

M

8 ‖y + v‖2 ≥ f (y)− M

2 〈v, y − v〉 −
M

8 ‖y − v‖
2 . (A.3)

By subtracting (A.3) minus (A.2), we get

M

4 ‖y + v‖2 + M

4 ‖y − v‖
2 ≥M ‖v‖2

and thus
M

2 ‖y‖
2 ≥ M

2 ‖v‖
2 ,

a contradiction

69

Appendix B

Gradient of the F -terms polyadic decomposition error

Let X be a third-order tensor with size (I, J,K) and let A,B,C be matrices with
respective sizes (I, F), (J, F) and (K,F). Consider the L2-error between X and the F -PD
induced by A,B,C:

f (A,B,C) := ‖X− JA,B,CK‖2L2 .

Let Y := JA,B,CK. We will consider the unfolding of Y along the 2-nd mode, the other
unfoldings follow in the same way. Let (i, j, k) be fixed indices and recall that

Y (i, j, k) = unfold [2] (Y) (j, [i− 1]K + k) .

But also

Y (i, j, k) =
F∑
r=1

B (j, r) A (i, r) C (k, r) =
F∑
r=1

B (j, r) · (A�C) ([i− 1]K + k, r)

where we have used the definition of the Khatri-Rao product. Hence, this shows

unfold [2] (Y) = B (A�C)> .

Since the unfolding does nothing more than rearranging the entries of X and Y, the
L2-norm of X−Y is the same as the L2-norm of unfold [2] (X−Y), i.e.

f (A,B,C) =
∥∥∥unfold [2] (X)−B (A�C)>

∥∥∥2

L2
.

Let X̂ := unfold [2] (X) and let E := (A�C)>, then observe that

f (A,B,C) = trace
(
X̂>X̂

)
− 2 trace

(
EX̂>B

)
+ trace

(
EE>B>B

)
.

Hence, we deduce that the gradient of f (A,B,C) with respect to B is

∇B (f) = −2X̂E> + 2BEE> .

70

Appendix C

Tables and figures for the computation of SD-sol’s

A> B> C>

+1 +1 0 0
0 0 +1 0

+1 0 −1 0
0 −1 0 0
0 +1 +1 0
0 0 +1 +1
0 +1 0 −1

+1 0 +1 0
0 0 −1 −1
0 0 +1 0

−1 −1 0 0
0 +1 −1 0
0 +1 0 +1
0 −1 0 0

+1 0 0 0
0 −1 0 +1

−1 +1 0 0
−1 0 +1 0
+1 0 0 −1

0 0 0 +1
0 0 +1 −1

Table C.1 – Sparse discrete 7-PD of T222.

A> B> C>

0 0 −1 0 0 0
0 0 0 +1 0 0
0 −1 0 0 0 0
0 0 0 0 +1 +1

+1 +1 0 0 0 0
0 −1 0 0 −1 0
0 0 0 0 +1 0

+1 0 0 0 −1 0
0 0 0 −1 0 0
0 0 +1 0 0 0
0 −1 0 0 0 +1

0 0 0 0 +1 0
0 −1 0 0 0 0

+1 0 +1 0 0 0
0 0 +1 0 0 −1

−1 0 0 +1 0 0
0 0 −1 −1 0 0
0 0 0 +1 0 +1
0 0 0 −1 0 0
0 0 0 0 −1 0
0 +1 0 0 0 0
0 0 −1 0 0 0

0 −1 0 0
0 0 −1 0

+1 0 −1 0
0 0 0 −1

−1 0 0 0
+1 0 0 +1

0 +1 0 −1
−1 −1 0 0

0 0 0 +1
+1 0 0 0

0 0 −1 −1

Table C.2 – Sparse discrete 11-PD of T232.

71

A> B> C>

0 +1 0 +1 +1 +1
0 0 0 −1 −1 −1
0 +1 +1 0 0 0

+1 0 0 +1 0 0
+1 0 0 +1 +1 +1

0 −1 0 0 0 +1
0 0 0 +1 0 +1

+1 0 +1 0 0 0
+1 0 0 0 0 −1

0 −1 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 −1 −1
0 −1 0 0 −1 0
0 0 +1 0 0 +1

−1 0 0 0 0 0

−1 0 −1 +1 0 0
+1 −1 +1 −1 0 0

0 0 −1 0 −1 0
0 +1 0 0 0 −1

+1 −1 +1 0 0 +1
0 0 0 +1 +1 0
0 −1 0 0 0 0

+1 0 0 0 0 0
0 −1 0 0 −1 +1
0 0 +1 −1 0 0
0 0 0 0 +1 −1
0 0 0 +1 0 +1
0 0 0 +1 0 0
0 0 0 0 −1 0

−1 +1 0 0 +1 −1

0 0 0 −1 0 0 0 0 0
0 +1 0 +1 0 0 0 0 0
0 0 0 0 0 0 0 −1 0
0 +1 −1 0 0 0 0 0 0
0 +1 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 +1 0

−1 +1 −1 +1 0 0 0 0 0
0 0 0 0 0 0 +1 0 0

−1 +1 −1 0 0 0 +1 0 0
0 0 0 +1 −1 0 0 +1 0

−1 +1 −1 0 0 −1 +1 0 +1
0 +1 0 0 0 −1 0 0 0
0 0 0 0 −1 +1 0 0 0
0 0 0 0 0 0 0 +1 −1

+1 −1 0 0 0 0 −1 0 0

Table C.3 – Sparse discrete 15-PD of T323.

A> B> C>

0 0 0 −1 0 0 0 0 −1
0 0 0 0 0 0 0 +1 0

+1 0 0 0 0 0 0 −1 0
+1 −1 −1 0 −1 −1 0 0 0
+1 −1 −1 0 −1 0 0 0 0
−1 0 0 0 0 0 0 0 0

0 −1 −1 0 0 0 0 +1 +1
0 0 0 +1 0 0 +1 −1 0

−1 0 0 0 0 0 +1 0 −1
0 +1 0 0 0 0 0 −1 0
0 +1 +1 0 0 0 0 −1 0
0 0 0 0 +1 0 0 0 0

−1 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 −1
0 0 0 0 +1 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 +1 0 0 0 0 0

−1 +1 0 0 +1 0 0 0 0
+1 −1 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 +1
+1 0 0 0 0 0 −1 0 0

0 0 +1 0 0 0 0 0 0
0 0 0 +1 0 −1 0 0 0

0 0 −1 0 0 0 0 −1 0
0 0 0 0 0 0 −1 0 −1
0 0 +1 0 0 0 +1 0 +1
0 0 0 0 −1 0 0 0 0

−1 0 0 0 +1 0 0 0 0
0 0 0 −1 0 −1 0 0 0
0 0 0 0 0 +1 0 0 0
0 0 +1 0 0 0 0 0 0
0 0 −1 0 0 +1 0 0 −1
0 0 0 0 0 0 +1 0 0
0 0 0 0 0 −1 −1 0 0

−1 +1 0 0 0 0 0 0 0
+1 0 +1 0 0 0 +1 0 +1

0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 +1 0 0 0 0
0 +1 −1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0
0 0 0 +1 −1 +1 0 0 0
0 0 0 0 0 −1 0 −1 +1
0 0 0 0 0 −1 0 0 0

−1 0 0 +1 0 0 −1 0 0
0 −1 0 0 +1 0 0 −1 0

0 0 +1 0 0 0 +1 0 0
+1 0 −1 +1 0 −1 0 0 0
−1 0 +1 −1 0 0 0 0 0

0 0 0 0 0 0 +1 +1 0
0 0 0 0 −1 0 +1 +1 0
0 +1 0 0 +1 0 0 0 0
0 0 0 0 0 0 0 +1 +1

+1 0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
0 0 0 0 +1 +1 0 −1 −1
0 0 0 0 +1 0 0 −1 −1
0 0 0 +1 0 0 0 0 0

−1 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 −1 0 +1
0 0 0 0 0 −1 0 0 0
0 −1 0 0 0 0 +1 0 0

+1 0 0 0 0 0 +1 0 0
0 0 0 −1 −1 0 +1 +1 0
0 0 0 0 −1 0 0 0 0
0 0 +1 0 0 0 0 0 +1
0 +1 +1 0 0 0 0 0 0
0 0 0 0 −1 0 0 +1 0
0 0 0 0 0 0 +1 0 0

Table C.4 – Sparse discrete 23-PD of T333.

72

0
50
0

1,
0
00

1,
50
0

2,
00
0

2,
50
0

10
−
7

10
−
6

10
−
5

10
−
4

10
−
3

10
−
2

10
−
1

10
0

10
1

10
2

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

it
er
at
io
n
κ

‖X−JA,B,CK‖L2

nnz(A)+nnz(B)+nnz(C)

‖X
−

JA
,B
,C

K‖
L
2

n
n
z
(A

)
+
n
n
z
(B

)
+
n
n
z
(C

)

65
0
it
er
at
io
n
s

19
50

it
er
at
io
n
s

ρ
=

10
−
4

ε
=

10
−
4

P
h
a
se

1

ρ
=

1
0−

2

ε
=

10
−
4

P
h
a
se

2

Figure C.1 – Phase 1 and Phase 2 of the proce-
dure for the computation of a 7-PD of T222.

73

0
1,
00
0

2,
00
0

3,
00
0

4
,0
00

5
,0
00

6
,0
00

7,
0
00

8,
00
0

10
−
7

10
−
6

10
−
5

10
−
4

10
−
3

10
−
2

10
−
1

10
0

10
1

10
2

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

it
er
at
io
n
κ

‖X−JA,B,CK‖L2

nnz(A)+nnz(B)+nnz(C)

‖X
−

JA
,B
,C

K‖
L
2

n
n
z
(A

)
+
n
n
z
(B

)
+
n
n
z
(C

)

14
50

it
.

45
0
it
.

69
00

it
er
a
ti
on

s

ρ
=

10
−
4

ε
=

10
−
4

l
b
=
−
10

u
b
=

+
10

P
re
-p
h
a
se

1

ρ
=

10
−
4

ε
=

10
−
4

l
b
=
−
1

u
b
=

+
1

P
h
a
se

1

ρ
=

10
−
2

ε
=

1
0−

4

l
b
=
−
1

u
b
=

+
1

P
h
a
se

2

Figure C.2 – Pre-phase 1, Phase 1 and Phase 2 of the
procedure for the computation of a 11-PD of T232.

74

0
2
,0
00

4,
0
00

6,
0
00

8,
00
0

1
0,
0
0
0

12
,0
00

1
4
,0
0
0

10
−
7

10
−
6

10
−
5

10
−
4

10
−
3

10
−
2

10
−
1

10
0

10
1

10
2

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

2
2
0

2
4
0

2
6
0

2
8
0

3
0
0

it
er
at
io
n
κ

‖X−JA,B,CK‖L2

nnz(A)+nnz(B)+nnz(C)

‖X
−

JA
,B
,C

K‖
L
2

n
n
z
(A

)
+
n
n
z
(B

)
+
n
n
z
(C

)

22
00

it
.

14
00

it
.

11
2
00

it
er
a
ti
on

s

ρ
=

10
−
4

ε
=

10
−
4

l
b
=
−
10

u
b
=

+
10

P
re
-p
h
a
se

1

ρ
=

10
−
4

ε
=

10
−
4

l
b
=
−
1

u
b
=

+
1

P
h
a
se

1

ρ
=

10
−
2

ε
=

1
0−

4

l
b
=
−
1

u
b
=

+
1

P
h
a
se

2

Figure C.3 – Pre-phase 1, Phase 1 and Phase 2 of the
procedure for the computation of a 15-PD of T323.

75

0
5,
00
0

10
,0
00

15
,0
00

20
,0
00

2
5
,0
0
0

3
0
,0
0
0

3
5
,0
0
0

10
−
7

10
−
6

10
−
5

10
−
4

10
−
3

10
−
2

10
−
1

10
0

10
1

10
2

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

it
er
at
io
n
κ

‖X−JA,B,CK‖L2

nnz(A)+nnz(B)+nnz(C)

‖X
−

JA
,B
,C

K‖
L
2

n
n
z
(A

)
+
n
n
z
(B

)
+
n
n
z
(C

)

86
00

it
.

80
00

it
.

19
6
00

it
er
a
ti
on

s

ρ
=

10
−
4

ε
=

10
−
4

l
b
=
−
10

u
b
=

+
10

P
re
-p
h
a
se

1

ρ
=

10
−
4

ε
=

1
0−

4

l
b
=
−
1

u
b
=

+
1

P
h
a
se

1

ρ
=

10
−
2

ε
=

10
−
4

l
b
=
−
1

u
b
=

+
1

P
h
a
se

2

Figure C.4 – Pre-phase 1, Phase 1 and Phase 2 of the
procedure for the computation of a 23-PD of T333.

76

16
,5
00

17
,0
00

17
,5
00

1
8,
0
0
0

10
−
7

10
−
6

10
−
5

10
−
4

10
−
3

10
−
2

10
−
1

10
0

10
1

10
2

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

it
er
at
io
n
κ

‖X−JA,B,CK‖L2

nnz(A)+nnz(B)+nnz(C)

‖X
−

JA
,B
,C

K‖
L
2

n
n
z
(A

)
+
n
n
z
(B

)
+
n
n
z
(C

)

16
00

it
er
at
io
n
s

P
re
-p
h
as
e
1
an

d
P
h
as
e
1
ar
e
th
e

sa
m
e
as

in
F
ig
.
C
.4

ρ
=

10
−
1

ε
=

10
−
4

l
b
=
−
1

u
b
=

+
1

P
h
a
se

2

Figure C.5 – Impact of a larger “L1-regularization” factor ρ in
Phase 2 of the procedure for the computation of a 23-PD of T333.

77

A> in the 41-PD JA,B,CK of T434

−1 +1 0 0 0 0 −1/2 0 0 0 −1/2 0
0 0 −1 0 0 0 −1/2 0 0 0 −1/2 0
0 0 0 −1 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 +1 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0

+1 −1 0 0 0 0 0 0 +1 −1 0 0
−1 +1 0 −1 0 0 0 0 0 0 0 0

0 0 −1 +1 0 0 0 0 0 0 −1 +1
−1 +1 +1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 +1 0 0 0 0
0 +1 0 0 +1 0 −1 0 +1 0 −1 0
0 0 0 −1 0 0 0 0 0 0 +1 −1

−1 0 0 −1 −1 0 0 −1 0 0 0 0
0 0 0 0 +1 0 0 0 −1 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 +1 0 −1/2 0 +1/2 0
0 −1 0 0 0 0 0 0 0 −1 0 0

−1 +1 0 0 0 0 0 0 0 +1 0 0
0 0 0 0 0 0 +1 0 0 0 0 0
0 0 0 0 −1 +1 0 −1 0 0 0 0
0 −1 0 0 0 −1 0 0 0 0 0 0

+1 0 0 0 +1 0 +1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0
0 +1 0 0 0 +1 0 0 0 0 0 0

−1 +1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 −1
0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 +1 0 0 +1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 +1 −1
0 0 0 0 0 0 0 0 −1 0 −1 0
0 0 0 0 0 0 +1 0 0 0 +1 0
0 0 0 0 +1 0 0 +1 0 0 0 0
0 0 0 0 +1 0 0 +1 −1 0 0 −1
0 0 0 0 0 −1 0 0 0 +1 0 0
0 0 0 0 0 0 0 0 0 −1 0 0

−1 0 0 0 −1 0 0 −1 0 0 0 0
0 +1 0 0 +1 0 0 +1 0 0 0 0

+1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 +1 0
0 0 0 0 −1/2 0 0 −1/2 −1/2 +1 0 0
0 0 0 0 0 0 +1 0 0 0 −1 0

Table C.5 – Sparse discrete 41-PD of T434 (part 1).

78

B> in the 41-PD JA,B,CK of T434

+1 0 0 0 0 0 0 0 0 −1 +1 +1
+1 0 0 0 0 0 0 0 0 −1 0 0

0 0 0 0 0 −1 0 0 +1 0 0 0
0 −1 +1 0 −1/2 0 0 −1/2 +1 0 0 0
0 0 0 0 0 0 +1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 +1 +1

+1 0 0 −1 0 0 +1 0 0 −1 0 0
0 0 0 +1 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 +1 0 0 0 0 0 0 0
0 +1 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 +1 0 0 −1 0 0 0
0 0 0 +1 0 0 −1 0 0 +1 0 0
0 0 0 0 0 0 0 0 0 0 −1 0

+1 −1 0 0 0 0 0 0 0 0 0 0
0 +1 −1 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 +1 −1 0 −1 0 0
0 0 0 0 0 0 +1 −1 0 −1 +1 +1
0 0 0 0 −1 0 0 +1 0 0 0 0
0 +1 0 0 −1 0 0 +1 0 0 0 0
0 +1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 +1 +1
0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 +1 0 0 −1 +1 0 0
0 0 0 0 0 +1 0 0 −1 0 +1 +1
0 0 0 −1 0 +1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 +1 0 0 0

+1/2 0 −1 0 0 0 0 0 −1 −1/2 +1/2 +1/2
0 0 0 −1 +1 +1 +1 −1 −1 −1 +1 +1
0 0 0 0 0 −1 0 0 +1 0 0 −1
0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 −1 +1 +1 +1 −1 −1
0 0 0 +1 0 0 −1 +1 0 +1 0 0
0 −1 0 +1 0 0 −1 0 0 +1 0 0
0 0 0 0 0 0 −1 +1 0 0 0 0
0 +1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 +1 0 0 −1 0 +1 +1
0 0 0 0 0 0 0 0 0 0 +1 −1

Table C.6 – Sparse discrete 41-PD of T434 (part 2).

79

C> in the 41-PD JA,B,CK of T434

−1 0 0 0 0 0 0 0 −1 0 0 −1 +1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 +1 0 0 0 0
0 0 0 0 0 0 0 0 0 +1 0 0 0 +1 0 −1
0 +1 +1 0 0 0 0 0 0 −1 −1 0 0 −1 −1 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 −1 0 +1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 −1 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 0 +1 0 0

+1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 +1 0 0 0 +1 +1 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 +1 0
0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 +1

−1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
+1 +1 +1 0 0 0 0 0 +1 −1 −1 0 −1 −1 −1 0

0 −1 0 +1 0 −1 0 +1 0 0 0 0 0 0 0 0
0 −1 0 +1 0 0 +1 +1 0 0 0 0 0 0 0 0
0 +1/2 −1/2 0 0 0 0 0 0 −1/2 +1/2 0 0 −1/2 +1/2 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 0 0 +1 0
0 0 0 0 +1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0

+1 0 0 0 0 0 −1 −1 +1 0 0 +1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 +1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1
0 −1 0 0 0 −1/2 0 0 0 0 0 0 0 0 0 +1
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0

+1/2 −1/2 −1/2 0 0 0 0 0 +1/2 −1/2 −1/2 0 −1/2 −1/2 −1/2 0
−1 0 0 0 0 0 0 0 −1 0 0 0 +1 0 0 0

0 +1 0 0 0 +1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +1
0 0 0 0 0 0 0 +1 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 +1 0 0 0 0 0 0 −1 0 0 0
0 0 −1 −1 0 0 −1 −1 0 0 0 0 0 0 0 0

+1/2 −1/2 −1/2 0 0 0 0 0 −1/2 +1/2 +1/2 0 −1/2 +1/2 +1/2 0
0 0 0 0 0 +1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 +1/2 0 0 0 0

Table C.7 – Sparse discrete 41-PD of T434 (part 3).

80

Appendix D

Description of the Tichavský et al.’s LM-method

In this appendix, we describe the method used by Tichavský et al. in their paper
[7] to compute F -PD’s of small tensors. Let us insist on the fact that we do not bring
anything new in this appendix. The only purpose is that the reader can understand the
quasi-totality of the report without resorting to external resources.

The method proposed by Tichavský et al. works as follows: let θ be a positive parameter
and consider the following optimization problem:

minimize

‖X− JA,B,CK‖2L2

subject to

‖A‖2L2 + ‖B‖2L2 + ‖C‖2L2 = θ2

with variables

A ∈ RI×F , B ∈ RJ×F , C ∈ RK×F .

.

The authors use the Levenberg-Marquardt method to solve this problem. Let us explain
how it works. Let f (x) be a function from Rn to Rm. We consider the problem of

minimize φ (x) := ‖f (x)‖2 with variable x ∈ Rn.

The Jacobian of f (x) at x̄ is denoted by J(x̄). Hence, the gradient of φ (x) at x̄ is

∇φ (x̄) = 2
[
J(x̄)> f (x̄)

]
.

The Levenberg-Marquardt method, which is a quasi-Newton method, consists of approxi-
mating the Hessian of φ (x) at x̄ with

H (x̄) := 4
[
J(x̄)> J(x̄)

]
.

To avoid singular H (x̄)’s, they add a “damping parameter” µ to the approximate Hessian,
i.e. Hµ (x̄) := H (x̄) + µIn. The parameter µ is updated at each iteration according to a

81

rule described in [18]. Define the following quadratic approximation the φ (x) around x̄:

mµ (x | x̄) := φ (x̄) + 〈∇φ (x̄) , x− x̄〉+ 1
2 〈Hµ (x̄) [x− x̄] , x− x̄〉 .

Let T ′µ (x̄) be the minimizer of mµ (x | x̄) on the subset
{
x ∈ Rn

∣∣ 〈x− x̄, x̄〉 = 0
}
. Using

the Lagrange multipliers method, we obtain a closed expression for T ′µ (x̄) as follows: if
T ′µ (x̄) is optimal, then there exists a constant λ ∈ R such that

∇φ (x̄) + Hµ (x̄)
[
T ′µ (x̄)− x̄

]
= λx̄ .

Now we determine the value of λ with〈
T ′µ (x̄)− x̄, x̄

〉
=
〈
λHµ (x̄)−1 x̄−Hµ (x̄)−1∇φ (x̄) , x̄

〉
= 0 .

Finally, we find that

T ′µ (x̄) = x̄−Hµ (x̄)−1∇φ (x̄) +

〈
Hµ (x̄)−1∇φ (x̄) , x̄

〉
〈
Hµ (x̄)−1 x̄, x̄

〉 Hµ (x̄)−1 x̄ .

We come back on the ball
{
x ∈ Rn

∣∣ ‖x‖ = θ
}
by setting

Tµ (x̄) :=
[
θ
∥∥∥T ′µ (x̄)

∥∥∥−1
]
T ′µ (x̄) .

The algorithm starts with a random initial point x0 satisfying ‖x0‖ = θ and with a
initial “damping parameter” µ > 0. For each k ≥ 0, we compute Tµ (xk). If φ (Tµ (xk)) is
lower than φ (xk), then Tµ (xk) becomes the new point xk+1 and we decrease µ according
to the rules in [18]. On the other hand, if φ (Tµ (xk)) ≥ φ (xk), then we increase µ with
respect to the rules in [18] and we do the same steps for the new Tµ (xk). We repeat this
sequence until convergence is obtained.

About the global convergence of Tichavský et al.’s LM-method, i.e. the chance of
converging to an accurate decomposition of X when starting from a random initial guess
A0,B0,C0, we quote the following paragraph from [7]:

“The method works well for small matrices. For example, for decom-
position of the T333 and constraint θ = 150 we need only a few random
trials to obtain an exact fit solution. On the other hand, for tensor T444

the false local minima are so numerous that it is almost impossible to get
an exact fit decomposition when the algorithm is started from random
initial conditions.”

This is also the reason why we have considered cases up to the 〈3, 3, 3〉 case and not
further when we have analyzed the distribution of the discretizable decompositions and
the distributions of the ⊕-ranks and inv-equivalence classes of F -PD’s.

82

Appendix E

Overview of the Matlab codes attached to the report

The code are available at the address https://drive.google.com/file/d/0B_BURx

d4zWUIZjN4U2ZmTVQ1TjQ/view?usp=sharing. The way to use the functions and especially
the scripts is explained in their comments. The purpose of this appendix is to give an
overview of the different functions and scripts we have implemented so that the reader can
easily navigate through them and find the function/script he needs.

Functions

apply_permx.m : apply transformation T-perm on F -PD (c.f. Sec. 3.4)

apply_scale.m : apply transformation T-scale on F -PD (c.f. Sec. 3.4)

apply_trace.m : apply transformation T-trace on F -PD (c.f. Sec. 3.4)

array_matri.m : unfold tensor along the n-th mode (c.f. Sec. 3.1)

bottl_assig.m : solve the “Linear Bottleneck Assignment Problem” (c.f. Sec. 5.2)

build_matmu.m : build matrix multiplication tensor (c.f. Sec. 3.2)

chpol_array.m : compute the charpoly’s of an array of Mr’s (c.f. Sec. 5.1)

cpdxx_ticha.m : compute F -PD with Tichavský et al.’s LM-method (c.f. Sec. 5.2)

disti_subsp.m : compute the ⊕-rank of a matrix (c.f. Sec. 6.1)

findx_invar.m : implementation of Algorithm 2 (c.f. Sec. 6.1)

hadam_squar.m : compute
(
E>1 E1

)
~
(
E>2 E2

)
(c.f. Sec. 4.1)

hunga_algor.m : implementation of the “Hungarian Algorithm” (c.f. Sec. 5.2)

khatr_raoxx.m : compute the Khatri-Rao product (c.f. Sec. 3.1)

krone_demul.m : compute P and Q minimizing ‖X− (P⊗Q)‖L2 (c.f. Sec. 6.1)

83

https://drive.google.com/file/d/0B_BURxd4zWUIZjN4U2ZmTVQ1TjQ/view?usp=sharing
https://drive.google.com/file/d/0B_BURxd4zWUIZjN4U2ZmTVQ1TjQ/view?usp=sharing

matri_array.m : recover X from unfold [n] (X) (c.f. Sec. 3.1)

produ_facto.m : compute the matrices Mr (c.f. Sec. 5.1)

rando_facto.m : generate random factor matrices (c.f. Sec. 3.1)

rando_scale.m : generate random coefficients λr, µr and νr (c.f. Sec. 3.4)

rando_trace.m : generate random matrices P, Q and R (c.f. Sec. 3.4)

resha_facto.m : reshape factor matrices according to m, p, n (c.f. Sec. 3.4)

scale_trans.m : solve system (6.1) (c.f. Sec. 6.1)

sdsol_nonsm.m : solve optimization problem (4.1) (c.f. Sec. 4.1)

simil_check.m : check whether two arrays of Mr’s satisfy (6.9) (c.f. Sec. 6.1)

tenso_recom.m : compute the “polyadic recomposition” JA,B,CK (c.f. Sec. 3.1)

Scripts

script_sparse_discre_comput.m : implement the procedure described in Fig. 4.1
to compute sparse discrete decompositions (c.f. Sec. 4.1)

script_tichav_genera_trials.m : generate 100 F -PD’s JAκ,Bκ,CκK with the
Tichavský et al.’s LM-method and save them in a file name .mat (c.f. Sec. 5.2)

script_statis_discre_distri.m : load the F -PD’s from name .mat and compute
statistic about the different classes of arrays Pκ (c.f. Sec. 5.2)

script_statis_oplusx_rankxx.m : load the F -PD’s from name .mat and compute
statistic about for the ⊕-ranks of the factor matrices Aκ,Bκ,Cκ (c.f. Sec. 6.2)

script_statis_equiva_distri.m : load the F -PD’s from name .mat and compute
statistics about the inv-equivalence classes among the JAκ,Bκ,CκK’s (c.f. Sec. 6.2)

We also provide examples of the files name .mat containing 100 decompositions for the
cases 〈1, 2, 1〉 to 〈3, 3, 3〉. The names of those files are stat_dec_ m x p x n _array.mat

where m, p, n refer to the multiplication 〈m, p, n〉.

84

85

Rue Archimède, 1 bte L6.11.01, 1348 Louvain-la-Neuve www.uclouvain.be/epl

	Introduction and outline
	State of the art
	The problem of fast matrix multiplication
	Basic definitions and notations
	Presentation of the problem
	Complexity of matrix multiplication
	The matrix multiplication tensor
	Relation between rank and complexity

	Sparse discrete decompositions
	Sparse solutions stability + complexity
	Discrete solutions exactness + complexity

	Invariant transformations
	Elementary transformations
	``Trace-like'' transformations

	Computation of sparse discrete decompositions
	A procedure to compute SD-sol's
	A non-smooth optimization problem
	Gradient method for composite functions
	Practical use of the gradient method

	Examples of computation of SD-sol's
	Sparse discrete decompositions of small tensors
	Sparse discrete decompositions of larger tensors
	Comparison with two state-of-the-art methods

	Discretizing decompositions through inv-transformations
	Properties of discretizable decompositions
	Motivation the two-steps approach
	Characteristic polynomials of a F-PD

	Distribution of discretizable decompositions
	Statistics on the characteristic polynomials
	Implementation getting rid of T-perm
	Case-by-case analysis and conclusions

	Analysis of the inv-equivalence classes of decompositions
	Computing the inv-transformations joining two F-PD's
	Preliminaries the -rank of a matrix
	Computation (part 1) T-scale + T-trace
	Computation (part 2) getting rid of T-perm

	Distribution of the -ranks and inv-equivalence classes
	Distribution of the -rank of the factor matrices
	Distribution of the inv-equivalence classes of F-PD's

	Conclusions
	Lipschitz-continuous gradient and quadratic upper bound
	Gradient of the F-terms polyadic decomposition error
	Tables and figures for the computation of SD-sol's
	Description of the Tichavský et al.'s LM-method
	Overview of the Matlab codes attached to the report

