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Abstract
We show that Hölder continuity of the gradient is not only a sufficient condition, but
also a necessary condition for the existence of a global upper bound on the error of
the first-order Taylor approximation. We also relate this global upper bound to the
Hölder constant of the gradient. This relation is expressed as an interval, depending
on the Hölder constant, in which the error of the first-order Taylor approximation is
guaranteed to be. We show that, for the Lipschitz continuous case, the interval cannot
be reduced. An application to the norms of quadratic forms is proposed, which allows
us to derive a novel characterization of Euclidean norms.

Keywords Hölder continuous gradient · First-order Taylor approximation · Lipschitz
continuous gradient · Lipschitz constant · Euclidean norms
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1 Introduction

The purpose of this paper is to investigate the relation between two properties of a
real-valued function, which play crucial roles in optimization. The first property of
interest is the Hölder continuity of the gradient, which means that the variation of
the gradient of the function between two points is upper bounded by a power (with
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exponent smaller than or equal to one) of the distance between the two points; up to
some multiplicative constant, called the Hölder constant of the gradient. The second
property is that there exists a global upper bound on the error of the first-order Taylor
approximation of the function. This global upper bound takes the formof a power (with
exponent between one and two) of the distance between the point of interest and the
reference point for the Taylor approximation; the power of the distance can be scaled
by a multiplicative constant, called the approximation parameter of the function.

The class of functions with Hölder continuous gradient is ubiquitous in optimiza-
tion. Indeed, the vast majority of first-order optimization methods (e.g., the gradient
descent) requires Hölder continuity of the gradient to compute the optimal step size
and to assert the convergence of themethod to a stationary point [1–4]. It is well known
that, if a function has Hölder continuous gradient, then there is a global upper bound on
the error of the first-order Taylor approximation of the function at any point. Actually,
it appears that the majority of the above-mentioned developments only make use of
the Hölder continuity of the gradient as a convenient sufficient condition to ensure the
global upper bound on the error of the first-order Taylor approximation.

For example, in the global convergence analysis found in [2, Section 3], the function
is assumed to have Hölder continuous gradient, and the very first step is a lemma,
stating that this property implies the existence of a global upper bound on the error
of the first-order Taylor approximation of the function. In fact, the main complexity
result [2, Corollary 2] can be obtained by assuming the global upper bound on the
error of the first-order Taylor approximation, while disregarding the Hölder continuity
of the gradient.

Another evidence of the prominent importance of the second property (global upper
bound on the error of the first-order Taylor approximation) over the first one (Hölder
continuity of the gradient) is that it is a generalization of the second property—and not
of the first one—that is used as an assumption in [5] to generalize global complexity
bounds for the minimization of functions defined on Riemannian manifolds.

As already mentioned, the first property is sufficient for the second one. The fol-
lowing questions then naturally arise. Is it also necessary? And, if it is, how can we
relate the Hölder constant of the gradient to the approximation parameter arising in
the second property? To the best of the authors’ knowledge, an answer to this second
question is available in the literature only for convex functionswithHölder exponent of
the gradient equal to one (the particular case of Hölder continuity with exponent equal
to one is generally referred to as Lipschitz continuity); see, e.g., [6, Theorem 2.1.5].
However, this second question is important for its implications in optimization: The
upper bound on the error of the first-order Taylor approximation is used to compute
the step size and to estimate the global rate of convergence of first-order optimization
methods; the more accurately we know this bound, the better we can choose the step
size and estimate the rate of convergence (see, e.g., Example 3.1).

In this paper, we provide an answer to the above questions.We show in Theorem 4.1
that a function satisfies the second property, if and only if it satisfies the first one. We
also provide an interval, depending on the Hölder constant of the gradient, in which
the approximation parameter of the function is guaranteed to be. We show that, in the
case of functions with Lipschitz continuous gradient and quadratic upper bound on
the first-order Taylor approximation, this interval is tight (see Example 5.1). We also
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provide a more detailed analysis, when the domain of the function is endowed with a
Euclidean norm, i.e., a norm induced by a scalar product. Finally,we apply these results
to quadratic functions; see Sect. 6. This allows us to obtain a novel characterization
of Euclidean norms.

The paper is organized as follows. In Sect. 2, we introduce notation and definitions.
The questions we address are motivated in Sect. 3 with an example that demonstrates
their importance in optimization. In Sect. 4, we prove the equivalence between the two
properties described above, and explain the relation between the Hölder constant of
the gradient and the approximation parameter. In Sect. 5, we particularize the results
of Sect. 4 to the case of functions with Lipschitz continuous gradient, and we show
that the bounds, derived in this specific case, are tight. The application to quadratic
functions is presented in Sect. 6.

2 Notation and Preliminaries

In the sequel, E is a real finite-dimensional normed vector space with norm ‖·‖. The
norm ‖·‖ is said to be Euclidean, if it is induced by a scalar product. Equivalently, ‖·‖
is Euclidean, if and only if every pair of vectors u, v ∈ E satisfies the parallelogram
law ‖u + v‖2 + ‖u − v‖2 = 2‖u‖2 + 2‖v‖2 (Jordan–von Neumann theorem [7]). In
this paper, we will consider both cases of Euclidean and non-Euclidean norms.

On R, we denote the absolute value by |·|. The dual of E is the space of linear
maps from E to R and is denoted by E∗. We denote by 〈ϕ, h〉 the image of h ∈ E by
ϕ ∈ E∗. We endow E∗ with the dual norm, ‖·‖∗, defined by

‖ϕ‖∗ = max {〈ϕ, h〉 : h ∈ E, ‖h‖ = 1}.

Let f be a function from E to R. In the sequel, we will always assume that f is
differentiable. For x ∈ E , we denote by f ′(x) the derivative—which we also term
gradient as in [1]—of f at x . Note that f ′(x) ∈ E∗. (Thus, it acts on vectors h ∈ E ,
and 〈 f ′(x), h〉 is sometimes called the directional derivative of f at x , in the direction
h.)

The first property of interest is defined by:

Definition 2.1 (ν-Hölder continuous gradient) Let 0 ≤ ν ≤ 1. We say that f has
ν-Hölder continuous gradient, if there exists an M ≥ 0, such that, for every x, y ∈ E ,

‖ f ′(x) − f ′(y)‖∗ ≤ M‖x − y‖ν . (1)

In this case, it is easily seen that there exists a smallest M satisfying inequality (1) for
every x, y ∈ E . This M is called the ν-Hölder constant of the gradient of f and is
denoted by M f (ν):

M f (ν) := sup
x 
=y

‖ f ′(x) − f ′(y)‖∗
‖x − y‖ν

< ∞.
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Note that not every function has ν-Hölder continuous gradient for some ν ∈ [0, 1].1
The next definition particularizes the former for ν = 1.

Definition 2.2 (Lipschitz continuous gradient) We say that f has Lipschitz continuous
gradient, if f has 1-Hölder continuous gradient. In this case, M f (1) is called the
Lipschitz constant of the gradient of f .

As for the second property of interest in this paper, it reads as:

Definition 2.3 (ν-approximable) We will say that f is ν-approximable, if there exists
an L ≥ 0, such that, for every x, y ∈ E ,

| f (y) − f (x) − 〈 f ′(x), y − x〉| ≤ L

1 + ν
‖y − x‖1+ν . (2)

The smallest such L will be called the ν-approximation parameter of f and will be
denoted by L f (ν):

L f (ν) := (1 + ν) sup
x 
=y

| f (y) − f (x) − 〈 f ′(x), y − x〉|
‖y − x‖1+ν

< ∞.

Remark 2.1 Clearly, Definitions 2.1–2.3 are invariant under translation and addition
of linear functions. In other words, if g(x) = f (x + a) + 〈ϕ, x〉 + c for some a ∈ E ,
ϕ ∈ E∗ (i.e., ϕ is a linear map from E to R), and c ∈ R, then g is ν-approximable
(resp. has ν-Hölder continuous gradient), if and only if f is ν-approximable (resp. has
ν-Hölder continuous gradient); moreover, Mg(ν) = M f (ν) and Lg(ν) = L f (ν).

The following proposition is a classical result in optimization. It states that, if f
has ν-Hölder continuous gradient for some 0 ≤ ν ≤ 1, then f is ν-approximable.
Moreover, the ν-Hölder constant is an upper bound on the ν-approximation parameter:

Proposition 2.1 Let f have ν-Hölder continuous gradient. Then, f is ν-approximable,
and L f (ν) ≤ M f (ν).

Proof See [2, Lemma 1], for instance. �

3 Motivation

We present an example of optimization method, which uses inequality (2) to assert the
convergence of the method to a stationary point. To compute the step size, the method
requires an L satisfying (2). For a given such L , the global complexity of the method
is proportional to L1/ν . It is thus beneficial to choose L as small as possible, ideally
L = L f (ν). The results in the next section provide an interval (or a specific value),
depending on M f (ν), in which L f (ν) is guaranteed to be.

Example 3.1 (from [2]) Let f be a real-valued function, defined on E = R
n (with

any norm ‖·‖), and satisfying (2) for some L ≥ 0 and some2 0 < ν ≤ 1 (i.e., f

1 For example, x ∈ R �→ x3, or x ∈ R �→ x2 sin(1/x2) (with continuous extension at 0).
2 Note that the method requires ν > 0. In fact, finding a descent direction for a non-smooth non-convex
function is NP-hard [1], and thus, it is reasonable to ask that ν > 0.
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is ν-approximable with parameter L f (ν) ≤ L). Suppose that there is a lower bound
f∗ ∈ R on f : f (x) ≥ f∗ for all x ∈ E . We use the gradient method to find a stationary
point of f . The step size depends on L and ν, and on the norm of the gradient at each
iteration point.

The method goes as follows. (For more details, we refer the reader to [2].) We start
from a point x0 ∈ R

n . For k = 0, 1, 2, . . . , let xk be the iterate at step k. The norm
of f ′(xk) is denoted by nk = ‖ f ′(xk)‖∗. Let dk ∈ R

n be such that ‖dk‖ = 1 and
〈 f ′(xk), dk〉 = nk (i.e., −dk is a steepest descent direction).

Fix 0 < ξ < 1. Define the step size at iteration k as hk = ξ
( 1+ν

L

)1/ν
n1/ν

k . Then,
the next iterate is defined by xk+1 = xk − hkdk . From (2), we have

f (xk+1) ≤ f (xk) − 〈 f ′(xk), hkdk〉 + L

1 + ν
‖hkdk‖1+ν .

This gives

f (xk+1) ≤ f (xk) − ξ

(
1 + ν

L

)1/ν

n1+1/ν
k + ξ1+ν

(
1 + ν

L

)1/ν

n1+1/ν
k

= f (xk) − ξ(1 − ξν)

(
1 + ν

L

)1/ν

n1+1/ν
k .

Summing over k from 0 to K , we get

ξ(1 − ξν)

(
1 + ν

L

)1/ν K∑

k=0

n1+1/ν
k ≤ f (x0) − f (xK+1) ≤ f (x0) − f∗.

We conclude that

min
0≤k≤K

‖ f ′(xk)‖1+1/ν∗ ≤ 1

K + 1

(
L

1 + ν

)1/ν f (x0) − f∗
ξ(1 − ξν)

.

In particular, if we choose ξ =
(

1
1+ν

)1/ν
, we obtain

min
0≤k≤K

‖ f ′(xk)‖1+1/ν∗ ≤ 1

K + 1

1 + ν

ν
L1/ν( f (x0) − f∗).

The objective is to converge to a quasi-stationary point: For some fixed ε > 0, we
want to find an x̄ such that ‖ f ′(x̄)‖∗ ≤ ε. Then, the above-presented method stops
after a number of iterations not greater than

⌈
1

ε1+1/ν

1 + ν

ν
L1/ν( f (x0) − f∗)

⌉
, (3)

where �·� denotes the ceiling operator.
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In summary, with the above example, we have shown that:

– The existence of an L satisfying (2) (i.e., being ν-approximable) is sufficient to
assert the convergence of the method to a quasi-stationary point. Contrary to the
way it is presented in many textbooks, it is not necessary to resort to the ν-Hölder
continuous gradient assumption (1).

– The bound (3) on the number of iterations shows that the knowledge of the smallest
L satisfying (2) (i.e., L f (ν)) allows us to have a better bound on the total number
of iterations required by the method.

As we will see in the next section, a lower bound on L f (ν) can be obtained from
the ν-Hölder constant of the gradient. In the above developments, the derivation of
(3) requires only a global upper bound on the difference between the function and
its first-order approximation, and not on the absolute value thereof, as in (2). A more
general class of functions can be analyzed, if we allow for different parameters in the
lower bound and in the upper bound on the difference between the function and its
first-order approximation. For this class of functions, we obtain similar conclusions
as for the case of ν-approximable functions (see next section as well).

4 Main Results

The main contributions of this paper are summarized in Theorems 4.1–4.2. Theo-
rem 4.1 shows that ν-approximability implies ν-Hölder continuity of the gradient, and
also provides an upper bound on the Hölder constant of the gradient. From this upper
bound, we obtain an interval, depending on M f (ν), in which the value of L f (ν) is
guaranteed to be. We also show that a smaller interval can be obtained, if we further
assume that the norm ‖·‖, on the domain of f , is Euclidean.

Theorem 4.1 Let 0 ≤ ν ≤ 1. Let f be a differentiable function from E (with norm ‖·‖)
to R. Suppose that f is ν-approximable, and denote by L f (ν) its ν-approximation
parameter. Then, f has ν-Hölder continuous gradient with ν-Hölder constant M f (ν)

satisfying3

L f (ν) ≤ M f (ν) ≤ 21−ν

(
1 + ν

ν

)ν

L f (ν). (4)

Moreover, if we further assume that ‖·‖ is Euclidean, then

L f (ν) ≤ M f (ν) ≤ 21−ν

√
1 + ν

(
1 + ν

ν

)ν/2

L f (ν). (5)

See Fig. 1 for a comparison of (4) and (5).

Proof Let us fix arbitrary x̄, ȳ ∈ E . From Remark 2.1, we may assume, without loss
of generality, that x̄ = 0, f (x̄) = 0, and f ′(x̄) = 0. Let ϕ = f ′(ȳ). Then, for

3 With the convention that 00 = 1, hence,
(
1+ν
ν

)ν =
(
1+ν
ν

)ν/2 = 1, when ν = 0.
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Fig. 1 Comparison of the coefficients appearing in the upper bounds on the ν-Hölder constant in (4) and
(5) in Theorem 4.1

any two directions z1, z2 ∈ E , we have (from (2) with (x, y) = (0, z1) and with
(x, y) = (ȳ, z1))

−L f (ν)

1 + ν
‖z1‖1+ν ≤ f (z1) ≤ f (ȳ) + 〈ϕ, z1 − ȳ〉 + L f (ν)

1 + ν
‖z1 − ȳ‖1+ν,

and (from (2) with (x, y) = (0, z2) and with (x, y) = (ȳ, z2))

L f (ν)

1 + ν
‖z2‖1+ν ≥ f (z2) ≥ f (ȳ) + 〈ϕ, z2 − ȳ〉 − L f (ν)

1 + ν
‖z2 − ȳ‖1+ν .

Subtracting the rightmost and leftmost sides of the first set of inequalities from the
second one, we get

〈ϕ, z2 − z1〉 ≤ L f (ν)

1 + ν

(
‖z1‖1+ν + ‖z2‖1+ν + ‖z1 − ȳ‖1+ν + ‖z2 − ȳ‖1+ν

)
.

Let v̂ ∈ E be such that ‖v̂‖ = 1 and 〈ϕ, v̂〉 = ‖ϕ‖∗. (From the compactness of
{x ∈ E : ‖x‖ = 1}, it is always possible to find such a v̂.) Then, let α ≥ 0, and define
z1 = ȳ−αv̂

2 and z2 = ȳ+αv̂
2 . This gives

α 〈ϕ, v̂〉 ≤ 2
L f (ν)

1 + ν

(∥∥∥
∥

ȳ − αv̂

2

∥∥∥
∥

1+ν

+
∥∥∥
∥

ȳ + αv̂

2

∥∥∥
∥

1+ν
)

. (6)
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Non-Euclidean case Let r = ‖ȳ‖. The right-hand side of (6) can be bounded as
follows:

∥∥∥
∥

ȳ − αv̂

2

∥∥∥
∥

1+ν

+
∥∥∥
∥

ȳ + αv̂

2

∥∥∥
∥

1+ν

≤ 2

(
r + α

2

)1+ν

.

If ν > 0, then, from (6) and the above inequality, we obtain (letting α = r
ν
)

〈ϕ, v̂〉 ≤ 4
L f (ν)

1 + ν

ν

r

(
r(1 + ν)

2ν

)1+ν

= 2L f (ν)

(
1 + ν

2ν

)ν

rν.

Hence, we have the conclusion in the case of ν > 0. On the other hand, if ν = 0, we
get M f (0) ≤ 2L f (0), by letting α → +∞ in (6).

Euclidean case Now, assume that ‖·‖ is Euclidean. Then, using the inequality
a p + bp ≤ 21−p (a + b)p for every a, b ≥ 0 and p ∈ [0, 1], (resulting from the
concavity of x �→ x p), we get the following upper bound on the right-hand side of
(6):

∥
∥∥∥

ȳ − αv̂

2

∥
∥∥∥

1+ν

+
∥
∥∥∥

ȳ + αv̂

2

∥
∥∥∥

1+ν

≤ 2(1−ν)/2

(∥
∥∥∥

ȳ − αv̂

2

∥
∥∥∥

2

+
∥
∥∥∥

ȳ + αv̂

2

∥
∥∥∥

2
)(1+ν)/2

.

Let r = ‖ȳ‖. Using the parallelogram identity, we obtain

∥
∥∥∥

ȳ − αv̂

2

∥
∥∥∥

1+ν

+
∥
∥∥∥

ȳ + αv̂

2

∥
∥∥∥

1+ν

≤ 2(1−ν)/2
(

r2 + α2

2

)(1+ν)/2

.

For ν > 0, we get (letting α = r√
ν
)

〈ϕ, v̂〉 ≤ L f (ν)
21−ν

√
1 + ν

(
1 + ν

ν

)ν/2

rν.

This concludes the proof of the theorem. �
We now move to the second main result. Observe that inequality (2) is equivalent

to

−L

1 + ν
‖y − x‖1+ν ≤ f (y) − f (x) − 〈 f ′(x), y − x〉 ≤ L

1 + ν
‖y − x‖1+ν . (7)

In some situations, we may also want to have different values of L for the lower bound
and the upper bound in (7). This arises, for example, if we consider convex functions.
In this case, the lower bound is zero, since the first-order approximation of a convex
function always lies below the graph of the function. This leads to the following
theorem. (Note that, for this theorem, we do not make the distinction between the
Euclidean and non-Euclidean case.)
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Theorem 4.2 Let f be a differentiable function from E (with norm ‖·‖) to R. Let
0 ≤ ν ≤ 1, and suppose there exist L− ≥ 0 and L+ ≥ 0, such that, for every
x, y ∈ E,

−L−

1 + ν
‖x − y‖1+ν ≤ f (y) − f (x) − 〈 f ′(x), y − x〉 ≤ L+

1 + ν
‖y − x‖1+ν . (8)

Then, f has ν-Hölder continuous gradient, and the ν-Hölder constant M f (ν) satis-
fies4

M f (ν) ≤ 2−ν

(
1 + ν

ν

)ν (
L− + L+)

.

Proof The proof is similar to the proof of Theorem 4.1. Let us fix arbitrary x̄, ȳ ∈ E .
Without loss of generality, we may assume that x̄ = 0, f (x̄) = 0, and f ′(x̄) = 0.
Denote ϕ = f ′(ȳ). Then, for any two directions z1, z2 ∈ E , we have (from (8) with
(x, y) = (0, z1) and with (x, y) = (ȳ, z1))

−L−

1 + ν
‖z1‖1+ν ≤ f (z1) ≤ f (ȳ) + 〈ϕ, z1 − ȳ〉 + L+

1 + ν
‖z1 − ȳ‖1+ν,

and (from (8) with (x, y) = (0, z2) and with (x, y) = (ȳ, z2))

L+

1 + ν
‖z2‖1+ν ≥ f (z2) ≥ f (ȳ) + 〈ϕ, z2 − ȳ〉 − L−

1 + ν
‖z2 − ȳ‖1+ν .

Subtracting the rightmost and leftmost sides of the first set of inequalities from the
second one, we get

〈ϕ, z2 − z1〉 ≤ L−

1 + ν

(
‖z1‖1+ν + ‖z2 − ȳ‖1+ν

)
+ L+

1 + ν

(
‖z2‖1+ν + ‖z1 − ȳ‖1+ν

)
.

Let v̂ ∈ E be such that ‖v̂‖ = 1 and 〈ϕ, v̂〉 = ‖ϕ‖∗. Then, let α ≥ 0, and define
z1 = ȳ−αv̂

2 and z2 = ȳ+αv̂
2 . This gives

α 〈ϕ, v̂〉 ≤ 2

1 + ν

(

L−
∥
∥∥∥

ȳ − αv̂

2

∥
∥∥∥

1+ν

+ L+
∥
∥∥∥

ȳ + αv̂

2

∥
∥∥∥

1+ν
)

. (9)

Let r = ‖ȳ‖. The right-hand side of (9) can be bounded as follows:

L−
∥∥
∥∥

ȳ − αv̂

2

∥∥
∥∥

1+ν

+ L+
∥∥
∥∥

ȳ + αv̂

2

∥∥
∥∥

1+ν

≤ (L− + L+)

(
r + α

2

)1+ν

.

We conclude in the same way as for the proof of Theorem 4.1. �
4 With the convention that 00 = 1, as in Theorem 4.1.
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Corollary 4.1 Let f be ν-approximable. If f is convex, then the upper bound in (4)
can be improved by a factor 1/2: L f (ν) ≤ M f (ν) ≤ 2−ν

( 1+ν
ν

)ν
L f (ν).

5 Application to Functions with Lipschitz Continuous Gradient

In this section, we particularize Theorem 4.1 and Corollary 4.1 to the classical case of
ν = 1 (Lipschitz continuity). Moreover, we obtain that the bounds are tight, meaning
that there exist functions, such that M f (ν) attains either the lower or upper bound in
(4) when ν = 1. Recall that f is 1-approximable, if there exists an L ≥ 0, such that,
for every x, y ∈ E ,

| f (y) − f (x) − 〈 f ′(x), y − x〉| ≤ L

2
‖y − x‖2. (10)

To simplify the notation, we will denote L f = L f (1) and M f = M f (1).

Corollary 5.1 Let f be a differentiable function from E (with norm ‖·‖) to R. Then, f
is 1-approximable, if and only if the gradient of f is Lipschitz continuous. Moreover,
we have the following bounds, depending on the assumptions on f and ‖·‖:

1. In general, we have 1
2 M f ≤ L f ≤ M f .

2. If ‖·‖ is Euclidean, then L f = M f .
3. If f is convex, then L f = M f .

The proof of the corollary directly follows from Theorem 4.1 for the first and
second items. The third item can be easily proved with Corollary 4.1. (Let us also
mention that the case of convex functions is also proved, with different arguments, in
[6, Theorem 2.1.5], for example.)

We would like to know whether the bounds on L f that we obtained in the first
item of Corollary 5.1 are tight. The second and third items directly give that the upper
bound L f = M f is reached, when ‖·‖ is Euclidean, or when f (·) is convex. Hence,
the main question is: “Is there a normed space (E, ‖·‖) and a function f , defined on
E , such that L f = 1

2 M f ?” The answer is yes, as shown in the following example:

Example 5.1 Let E = R
2 with the infinity norm, ‖x‖ = max { |x (1)|, |x (2)| } for all

x = (x (1), x (2))� ∈ R
2. (We use superscripts to denote the components of vectors in

R
2.) Define f (x) = (x (1))2 − (x (2))2. The gradient of f at x satisfies 〈 f ′(x), h〉 =

2x (1)h(1) − 2x (2)h(2) for all h = (h(1), h(2))� ∈ E .
We check that (10) holds with L = 2. Indeed, for any x, y ∈ R

2,

Left-hand side of (10) =
∣∣∣
[
y(1) − x (1)]2 − [

y(2) − x (2)]2
∣∣∣

≤ max
{ ∣∣y(1) − x (1)

∣∣2,
∣∣y(2) − x (2)

∣∣2
}

= ‖y − x‖2.
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On the other hand, if x = (1, 1)�, and y = (0, 0)�, then 〈 f ′(x) − f ′(y), h〉 =
2h(1) − 2h(2) for every h ∈ R

2. Taking h = (1,−1)�, we get

‖ f ′(x) − f ′(y)‖∗ ≥ |〈 f ′(x), h〉 − 〈 f ′(y), h〉| = 4.

Since ‖h‖ = 1, it follows that M f ≥ 4. Hence, we have L f ≤ 2 ≤ 1
2 M f , which

concludes the proof that L f = 1
2 M f for some functions f .

Before ending this section, wewould like to point out that there is still a gap between
the first and the second items of Corollary 5.1. Indeed, in the second item, we state: if
the norm on E is Euclidean, then L f = M f . On the other hand, if ‖·‖ is any norm, then
we can ensure that 12 M f ≤ L f . However, we do not say anything about the possibility
of finding a space E with a non-Euclidean norm, but such that every function on E
satisfies L f = M f . We will prove in Sect. 6 that this situation is impossible. In other
words, if all functions on a space E (with norm ‖·‖) satisfy L f = M f , then ‖·‖ is
Euclidean. In fact, it suffices to have L f = M f for every quadratic function with rank
2 (to be defined below), to conclude that the norm ‖·‖ is Euclidean.

6 Application: Norm of Quadratic Functions

In this section, we apply the results of the previous section to quadratic functions,
that is, functions defined by self-adjoint operators. We will use Corollary 5.1 to derive
bounds on the norms of self-adjoint operators; see Proposition 6.1. We do not believe
that the results presented in Proposition 6.1 are new. (For instance, the case of ‖·‖
Euclidean is a standard result in functional analysis on Hilbert spaces; see, e.g., [8].)
However, we will use these results—and more precisely the fact that they are a con-
sequence of Corollary 5.1—to show that it is impossible to have a space E with a
non-Euclidean norm, but such that every function on E satisfies L f = M f (cf. the
last paragraph of the previous section).

Definition 6.1 (Self-adjoint operator) Let E be a real finite-dimensional vector space.

1. A self-adjoint operator on E is a linear map B : E → E∗, x �→ Bx , satisfying
〈Bx, y〉 = 〈By, x〉 for every x, y ∈ E .

2. If B is a self-adjoint operator on E , we let Q B : E → R be the quadratic form
associated with B, defined by Q B(x) = 〈Bx, x〉 for every x ∈ E .

The set of self-adjoint operators on E is a real (finite-dimensional) vector space.
Given a norm ‖·‖ on E , we define the following norm on this space:

‖B‖ = max { 〈Bx, y〉 : ‖x‖ = ‖y‖ = 1 } = max { ‖Bx‖∗ : ‖x‖ = 1 }.

We also define the norm of a quadratic form Q B :

‖Q B‖ = max { |Q B(x)| : ‖x‖ = 1 } = max { |〈Bx, x〉| : ‖x‖ = 1 }.

The quantities ‖B‖ and ‖Q B‖ appear in several fields of mathematics:
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Example 6.1 If E = R
n , then B can be identified with a symmetric matrix B̃ ∈ R

n×n .
If ‖x‖ = √

x�x (canonical Euclidean norm), then ‖B‖ = ‖Q B‖ = ρ(B̃), where
ρ(B̃) is the largest absolute value of the eigenvalues of B̃.

If ‖·‖ is the �1-norm, i.e., ‖x‖ = ∑n
i=1|x (i)|, where x = (x (1), . . . , x (n))�, then

‖B‖ = max1≤i, j≤n |B̃(i, j)|, where B̃(i, j) is the (i, j)th entry of matrix B̃. On the other
hand, the value of ‖Q B‖ is, in general, NP-hard to compute. This quantity appears, for
instance, in the problem of determining the largest clique in a graph (Motzkin–Straus
theorem [9]).

The quantity ‖Q B‖, with ‖x‖ = max1≤i≤n |x (i)| (infinity norm), appears, for
instance, in the MAXCUT problem [10, Section 4.3.3]. If B̃ is a positive semidef-
inite matrix (as it is the case in the MAXCUT problem), then we can show that
‖Q B‖ = ‖B‖ (see Proposition 6.1).

Clearly, ‖Q B‖ ≤ ‖B‖. The following proposition, which follows from Corol-
lary 5.1, provides a partial converse result.

Proposition 6.1 Let E be a normed vector space with norm ‖·‖, and let B be a
self-adjoint operator on E. Then, we have the following results, depending on the
assumptions on E and on B:

1. In general, we have 1
2‖B‖ ≤ ‖Q B‖ ≤ ‖B‖.

2. If ‖·‖ is Euclidean, then ‖Q B‖ = ‖B‖.
3. If B is positive semidefinite,5 then ‖Q B‖ = ‖B‖.

Proof Let f (x) = 1
2 Q B(x) = 1

2 〈Bx, x〉. The gradient of f at x is f ′(x) = Bx ∈
E∗. Let x, y be in E . The difference between f (y) and its first-order approximation
f (x) + 〈 f ′(x), y − x〉 is given by

1

2
〈By, y〉 − 1

2
〈Bx, x〉 − 〈Bx, y − x〉 = 1

2
〈By, y〉 + 1

2
〈Bx, x〉 − 〈Bx, y〉

= 1

2
〈B(y − x), y − x〉

= 1

2
Q B(y − x).

Hence, f is 1-approximable, and L f = ‖Q B‖. It is also not hard to see that f has
Lipschitz continuous gradient, and M f = ‖B‖. Thus, we obtain the first and second
items of the proposition, from the first and second items of Corollary 5.1. Finally, f
is convex, if and only if B is positive semidefinite. Hence, we get the desired results
from the third item of Corollary 5.1. �

The second item in Proposition 6.1 states that, when the norm on E is Euclidean,
the two quantities ‖B‖ and ‖Q B‖ coincide for every B. The following theorem shows
that ‖Q B‖ = ‖B‖ for every self-adjoint operator B on a normed vector space E , only
if the norm of E is Euclidean.6 (The proof of the theorem is presented in “Appendix.”)

5 That is, 〈Bx, x〉 ≥ 0 for every x ∈ E .
6 The result presented in Theorem 6.1 seems to be a novel (to the best of the authors’ knowledge) charac-
terization of Euclidean norms in the finite-dimensional case. (For a detailed survey of results on equivalent
characterizations of Euclidean norms, we refer the reader to the celebrated book by Amir [11].)
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Theorem 6.1 Let (E, ‖·‖) be a finite-dimensional normed vector space. Then, ‖·‖ is
Euclidean, if and only if ‖Q B‖ = ‖B‖ for every self-adjoint operator B on E.

Remark 6.1 From the proof of Theorem 6.1 (see “Appendix”), we can obtain a stronger
version of this theorem: ‖·‖ is Euclidean, if and only if ‖Q B‖ = ‖B‖ for every self-
adjoint operator B on E with rank 2, that is, for every B that can be expressed as
Bx = 〈ϕ, x〉ϕ ± 〈ψ, x〉ψ for some ϕ,ψ ∈ E∗.

Finally, Theorem 6.1 allows us to answer the question in the last paragraph of the
previous section:

Corollary 6.1 Let (E, ‖·‖) be a finite-dimensional normed vector space, and suppose
that, for every real-valued function f on E, we have L f = M f (using the notation of
Corollary 5.1). Then, ‖·‖ is Euclidean.

Proof If L f = M f for every function f on E , this is also true for every quadratic
function f (x) = Q B(x) = 〈Bx, x〉, where B is any self-adjoint operator on E . Hence,
using similar developments as in the proof of Proposition 6.1,we get that ‖Q B‖ = ‖B‖
for every self-adjoint operator B on E . Thus, Theorem 6.1 implies that ‖·‖ must be
Euclidean. �

7 Conclusions

We have shown that Hölder continuity of the gradient is a sufficient and necessary
condition for a function to have a global upper bound on the error of its first-order
Taylor approximation. We established the link between the parameter appearing in
the global upper bound on the error of the first-order Taylor approximation and the
Hölder constant of the gradient: This takes the form of an interval, depending on the
Hölder constant, in which the approximation parameter is guaranteed to be.

For the Lipschitz case, an example shows that the interval cannot be shortened. On
top of this, tighter bounds can be obtained, if we further assume that the function is
convex, or if the underlying norm is Euclidean. In particular, for the Lipschitz case,
if the norm is Euclidean, then the interval reduces to a single point, and Theorem 6.1
shows that the assumption that the norm is Euclidean is not conservative. We have not
addressed in this paper the question of whether the interval for the general case (i.e.,
with Hölder exponent different than one) is tight or not. We leave it for further work.

Another follow-up topic is a generalization of Theorem 4.1 to higher-order deriva-
tives and higher-order Taylor approximations. Those play central roles in higher-order
optimization methods. By applying a similar argument as in the proof of Theorem 4.1,
one can obtain an interval, depending on the Hölder constant of the derivative of a
given order, in which the approximation parameter of the Taylor approximation (of
order equal to the one of the derivatives) is guaranteed to be. Drawing upon this obser-
vation, the following aspects still need to be addressed: Are the obtained bounds tight?
Can we obtain better bounds, if we further assume that the norm is Euclidean? We
plan to study these questions in further work.
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Appendix: Proof of Theorem 6.1

The proof relies on the fact that, if ‖·‖ is not Euclidean, then the unit ball defined by ‖·‖,
i.e., {x ∈ E : ‖x‖ ≤ 1}, is not equal to the ellipsoid with smallest volume containing
this ball. Based on this ellipsoid, we will build a self-adjoint operator B : E → E∗,
such that ‖Q B‖ < ‖B‖. The notions of ellipsoid and (Lebesgue) volume are defined
on R

n only. The following lemma implies, among other things, that there is no loss of
generality in restricting to the case E = R

n :

Lemma A.1 Let E be a real vector space with norm ‖·‖, and let A : E → E ′ be a
bijective linear map. Then, ‖·‖ is Euclidean, if and only if the norm ‖·‖′ on E ′, defined
by ‖x‖′ = ‖A−1x‖, is Euclidean.

Proof Straightforward from the definition of ‖·‖ being Euclidean, if and only if it
is induced by a scalar product, i.e., if and only if there exists a self-adjoint operator
H : E → E∗, satisfying ‖x‖2 = 〈H x, x〉 for all x ∈ E . �
Proof of Theorem 6.1 The “only if” part follows from Proposition 6.1. For the proof of
the “if” part, let E be an n-dimensional vector space, and let ‖·‖ be a non-Euclidean
norm on E . We will build a self-adjoint operator B on E , such that ‖Q B‖ < ‖B‖.

By Lemma A.1, we may assume that E = R
n and that ‖·‖ is a non-Euclidean

norm on R
n . We use superscripts to denote the components of vectors in R

n : x =
(x (1), . . . , x (n))�.

Let K = {x ∈ R
n : ‖x‖ ≤ 1}. Because K is compact, convex, with non-empty

interior, and symmetric with respect to the origin, the Löwner–John ellipsoid theorem
[12,13] asserts that there exists a unique ellipsoid E , with minimal volume, and such
that K ⊆ E . Moreover, E is centered at the origin, and K has n linearly independent
vectors on the boundary of E .

Let L : R
n → R

n be a linear isomorphism, such that LE is the Euclidean ball
B

n = {x ∈ R
n : ‖x‖2 ≤ 1}, where ‖x‖2 = √

x�x is the canonical Euclidean norm on
R

n . Let ‖x‖′ = ‖L−1x‖, and let K ′ = {x ∈ R
n : ‖x‖′ ≤ 1}. By Lemma A.1, ‖·‖′ is

not Euclidean. Since K ′ = L K , it is clear that K ′ is compact, convex, with non-empty
interior, and symmetric with respect to the origin. Moreover, K ′ is included in B

n , and
it has n linearly independent vectors on the boundary S

n−1 of B
n .

We will need the following lemma to conclude the proof of Theorem 6.1:

Lemma A.2 There exist u, v ∈ S
n−1 ∩ K ′, not colinear, such that u+v

‖u+v‖2 /∈ K ′.

We proceed with the proof of Theorem 6.1 (a proof of Lemma A.2 is provided at
the end of this “Appendix”). Let u, v be as in Lemma A.2, and define e1 = u+v

‖u+v‖2 and
e2 = u−v

‖u−v‖2 . Note that these vectors are orthonormal (w.r.t. the inner product x�y).
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Let κ = max {|e�
1 x | : x ∈ K ′}. Since |e�

1 x | < 1 for every x ∈ B
n \ {±e1}, and

±e1 /∈ K ′, we have that κ < 1. Moreover, κ > 0, since int(K ′) 
= ∅. Let B̃ be the
self-adjoint operator on R

n , defined by

〈B̃x, y〉 = 1

κ2

(
e�
1 x

) (
e�
1 y

)
−

(
e�
2 x

) (
e�
2 y

)

for every x, y ∈ R
n . Let x ∈ K ′. Then,

−1 ≤ −
(

e�
2 x

)2 ≤ 〈B̃x, x〉 ≤ 1

κ2

(
e�
1 x

)2 ≤ 1

κ2 κ2 = 1.

It follows that, for every x ∈ R
n with x 
= 0, |〈B̃x, x〉| = ‖x‖′2 |〈B̃ x

‖x‖′ , x
‖x‖′ 〉| ≤

‖x‖′2. Hence, ‖Q B̃‖ ≤ 1. Now, we will show that |〈B̃u, v〉| > ‖u‖′‖v‖′ (where
u, v are as above). Therefore, let α = ‖u + v‖2 and β = ‖u − v‖2. Observe that
u = αe1+βe2

2 and v = αe1−βe2
2 . Thus,

〈B̃u, v〉 = 1

κ2

α2

4
+ β2

4
= 1 − κ2

κ2

α2

4
+ α2

4
+ β2

4
.

This shows that 〈B̃u, v〉 > 1, since (by the parallelogram identity)

α2

4
+ β2

4
= 1

4

(
‖u + v‖22 + ‖u − v‖22

)
= 1,

0 < κ < 1, and α > 0. Since u, v ∈ K ′ (i.e., ‖u‖′, ‖v‖′ ≤ 1), we have that
‖u‖′‖v‖′ ≤ 1 < |〈B̃u, v〉|. Thus, ‖B̃‖ > 1.

Finally, define the self-adjoint operator B on E by 〈Bx, y〉 = 〈B̃Lx, Ly〉. It is clear,
from the definition of ‖·‖′, that |〈Bx, x〉| ≤ ‖x‖2 for every x ∈ E and |〈Bx, y〉| >

‖x‖‖y‖ for x = L−1u and y = L−1v (where u, v are as above). Hence, one gets
‖Q B‖ ≤ 1 < ‖B‖. This concludes the proof of Theorem 6.1. �

It remains to prove Lemma A.2. The following proposition, known as Fritz John
necessary conditions for optimality will be useful in the proof of Lemma A.2:

Proposition A.1 (Fritz John necessary conditions [12]) Let S be a compact metric
space. Let F(x) be a real-valued function on R

n, and let G(x, y) be a real-valued
function defined for all (x, y) ∈ R

n × S. Assume that F(x) and G(x, y) are both
differentiable with respect to x and that F(x), G(x, y), ∂ F

∂x (x), and ∂G
∂x (x, y) are

continuous on R
n × S. Let R = {x ∈ R

n : G(x, y) ≤ 0, ∀y ∈ S}, and suppose that
R is non-empty.

Let x∗ ∈ R be such that F(x∗) = maxx∈R F(x). Then, there is m ∈ {0, . . . , n},
and points y1, . . . , ym ∈ S, and nonnegative multipliers λ0, λ1, . . . , λm ≥ 0, such
that (i) G(x∗, yi ) = 0 for every 1 ≤ i ≤ m, (ii)

∑m
i=0 λi > 0, and (iii)

λ0
∂ F

∂x
(x∗) =

m∑

i=1

λi
∂G

∂x
(x∗, yi ).
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We refer the reader to [12] for a proof of Proposition A.1.

Proof of LemmaA.2 Consider the following optimization problem:

maximize F(x) := ‖x‖22
subject to G(x, y) := x�y − 1 ≤ 0 for every y ∈ S

n−1 ∩ K ′, (11)

with variable x ∈ R
n .

First, we show that (11) is bounded. Suppose the contrary, and, for every k ≥ 1, let
xk be a feasible solution with ‖xk‖2 ≥ k. Let x̂k = xk/‖xk‖2. Taking a subsequence if
necessary, wemay assume that x̂k converges to some x̂∗, with ‖x̂∗‖2 = 1. Since x̂�

k y ≤
1/‖xk‖2 for every y ∈ S

n−1 ∩ K ′, we have that x̂�∗ y ≤ 0 for every y ∈ S
n−1 ∩ K ′.

By symmetry of S
n−1 ∩ K ′, it follows that x̂�∗ y = 0 for every x ∈ S

n−1 ∩ K ′, a
contradiction with the fact that S

n−1 ∩ K ′ contains n linearly independent vectors.
Hence, the set of feasible solutions of (11) is bounded, and closed (as the intersection
of closed sets), so that (11) has an optimal solution, say x̄ .

We will show that ‖x̄‖2 > 1. Therefore, we use the fact that K ′ 
= B
n .7 Fix some

z ∈ S
n−1 \ K ′, and let η = max {z�y : y ∈ K ′}. Since z�y < 1 for every y ∈ B

n \{z},
and z /∈ K ′, we have that η < 1. Let x = z/η. From the definition of η, it is clear that
x is a feasible solution of (11). Moreover, ‖x‖2 = η−1 > 1, so that ‖x̄‖2 ≥ ‖x‖2 > 1.

The gradient of F at x̄ is equal to 2x̄ . Then, Proposition A.1 asserts that there exist
vectors y1, . . . , ym ∈ S

n−1 ∩ K ′, and nonnegative multipliers λ0, λ1, . . . , λm ≥ 0,
such that x̄�yi = 1 for every 1 ≤ i ≤ m,

∑m
i=0 λi > 0, and λ0 x̄ = ∑m

i=1 λi yi . If
λ0 = 0, then 0 = ∑m

i=1 λi x̄�yi = ∑m
i=1 λi > 0, a contradiction. Hence, λ0 > 0.

Suppose that y1, . . . , ym are colinear. This implies that all yi ’s must be parallel to x̄
(because λ0 x̄ = ∑m

i=1 λi yi and λ0 x̄ 
= 0), and since they are in S
n−1, we have that

yi = ±x̄/‖x̄‖2, so that x̄�yi = ‖x̄‖2 > 1 or −x̄�yi = ‖x̄‖2 > 1. This gives a
contradiction, since−yi and yi are both in S

n−1∩ K ′ (by the symmetry of S
n−1∩ K ′).

Thus, there exist at least two non-colinear vectors u, v ∈ S
n−1∩K ′ satisfying x̄�u = 1

and x̄�v = 1.
Let e1 = u+v

‖u+v‖2 . Since u and v are not colinear, ‖u + v‖2 < 2, and thus, x̄�e1 =
2/‖u + v‖2 > 1. This shows that e1 /∈ S

n−1 ∩ K ′. By definition, e1 is in S
n−1, so that

e1 /∈ K ′, concluding the proof of the lemma. �
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