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a b s t r a c t

This item explains a technical problem in the justification of Theorem 10 in Kenanian et al. (2019). The
theorem refers to a result in chance-constrained convex programming, but the hypotheses for applying
this result are not satisfied since the optimization problem involved in Theorem 10 is nonconvex.
However, under an additional mild assumption on the system, the conclusions of Theorem 10 hold,
as shown in this item.

© 2022 Elsevier Ltd. All rights reserved.
1. Problem in the proof of theorem 10

Theorem 10 in Kenanian et al. (2019) is provided without
roof, but with a reference to Theorem 3.3 in Calafiore (2010),
uggesting that the former is a particular case of the latter. How-
ver, Theorem 3.3 in Calafiore (2010) assumes that the underlying
ptimization problem is convex, but (8) in Kenanian et al. (2019)
s nonconvex (because of the term γ ∗(ωN )), so that Theorem 10
n Kenanian et al. (2019) cannot be derived from Theorem 3.3
n Calafiore (2010).

emark 1. If γ ∗(ωN ) in (8) in Kenanian et al. (2019) is replaced
by a fixed value (say γ ), then the problem becomes convex.
In that case, the conclusion that can be drawn from Theorem
3.3 in Calafiore (2010) is that with probability β(ϵ,N) on the
sampling of ωN , either (8) in Kenanian et al. (2019) with γ ∗(ωN )
replaced by γ is not feasible, or when it is feasible, then a
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guarantee similar to (9) in Kenanian et al. (2019) holds. However,
there is no way to guarantee in advance that (8) in Kenanian et al.
(2019) with γ ∗(ωN ) replaced by γ is feasible, so that this modified
problem cannot be used for the problem at stake.

2. A proof based on chance-constrained quasi-convex opti-
mization

It happens that (8) in Kenanian et al. (2019) is very close to
being a quasi-convex optimization problem. To see this, let M =

{Ai : i ∈ M} ⊆ Rn×n be as in (2) in Kenanian et al. (2019) and
let ωN be as in (6) in Kenanian et al. (2019), and consider the
following optimization problem:

min
P∈Sn,γ

(γ , ∥P∥F )

s.t. (Ajx)⊤PAjx ≤ γ 2ℓx⊤Px, ∀ (x, j) ∈ ωN ,

I ⪯ P ⪯ CI, γ ≥ 0,

(1)

where C > 1 is a parameter, and Aj is defined as in (7) in Ke-
nanian et al. (2019). The objective of (1) is to minimize γ and
then, if there is more than one feasible solution with the optimal
γ , find the one such that ∥P∥F (Frobenius norm) is the smallest;
hence, this is the same as (8) in Kenanian et al. (2019) with η = 0
and with λmax(P) replaced by ∥P∥F (the latter is just a technical
fix made to ensure that the optimal solution is unique). We have
also added a constraint P ⪯ CI , to ensure that the set of feasible
P is compact, so that an optimal solution is always guaranteed to
exist.

Problem (1) is a quasi-linear optimization problem, as defined
in (2) in Berger et al. (2021). Therefore, we may apply Theorem
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in Berger et al. (2021) to get the following result (which relies
n Assumption 4, discussed below):

heorem 2 (Corollary 12 in Berger et al., 2021). Consider Problem
(1) and let M satisfy Assumption 4. Let d =

n(n−1)
2 . For any ϵ ∈

0, 1] and N ≥ d+ 1, the bound (9) in Kenanian et al. (2019) holds,
here P(ωN ) and γ ∗

ωN
are understood as the optimal solutions of (1).

Remark 3. Note that d in Theorem 2 is smaller by one unit than
the d used in Theorem 10 in Kenanian et al. (2019). Hence, the
bound, similar to (9) in Kenanian et al. (2019), obtained by using
Theorem 2 is stronger than the bound (9) in Kenanian et al. (2019)
since β(ϵ,N) is decreasing with d.

Theorem 2 relies on the following assumption:

ssumption 4 (Assumption 8 in Berger et al., 2021). M contains
no Barabanov matrix.
2

We recall that, by Proposition 9 in Berger et al. (2021), a real
square matrix is Barabanov if and only if it is diagonalizable and
all its eigenvalues have the same modulus. Hence, Assumption 4
can be assumed to hold in most practical situations. We are
currently working on alleviating this assumption.
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