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Abstract: In the realm of system analysis, data-driven methods have gained a lot of attention
in recent years. We introduce a new innovative approach for the data-driven stability analysis
of switched linear systems which is adaptive sampling. Our aim is to address limitations of
existing approaches, in particular, the fact that these methods suffer from ill-conditioning of
the optimal Lyapunov function, which is a direct consequence of the way the data is collected
by sampling uniformly the state space. Our adaptive-sampling approach consists in a two-step
procedure, in which an optimal sampling distribution is estimated in the first step from data
collected with a non-optimal distribution, and then, in the second step, new data points are
sampled according to the identified distribution to establish the final probabilistic guarantee for
the convergence rate of the system. Numerical experiments show the efficiency of our approach,
namely, in terms of the total number of data points needed to guarantee stability of the system
with given confidence.
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1. INTRODUCTION

In recent years, data-driven methods have gained a lot of
attention for the study of cyber-physical systems because
of the increasing number of applications in which no
model of the system is available. At the same time,
data has become more and more accessible due to the
outbreak of cheap, accurate sensors, user feedback and
open-source databases. Finally, statistical learning, the
mathematical field of learning from data, has known
many great advances in recent years both in theory and
practice (Shalev-Shwartz and Ben-David, 2014). All this
together opened the door to a new era in control theory
where control and system analysis is made from data
harvested from observation of the system and comes with
formal guarantees of correctness; we refer the reader to
(Mitra, 2021, Chapter 11) for an introduction and further
references on data-driven verification and control of cyber-
physical systems.

In this paper, we consider a prototypical class of cyber-
physical systems, known as switched linear systems (Sun
and Ge, 2011). Those systems consist in several linear
modes among which the system can switch over time.
They appear naturally in a wide range of applications
(Liberzon, 2003), or as approximations of more complex
systems. A crucial question in the study of switched linear
systems is their stability analysis (Sun and Ge, 2011).
It turns out that the stability analysis of these systems
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is a very challenging problem in general, even when the
model of the system is available (Jungers, 2009). For
instance, approximating the rate of convergence of the
system (known as the Joint Spectral Radius, or JSR) is
known to be NP-hard. Nevertheless, several approximation
techniques have been proposed in the last decades leading
to good results in the model-based setting (Jungers, 2009;
Ahmadi et al., 2014).

Because a model of the system is not always available,
several approaches were proposed in recent years for the
data-driven analysis of the JSR of switched linear systems
(Kenanian et al., 2019; Berger et al., 2021; Rubbens et al.,
2021; Wang et al., 2021). These approaches use advanced
tools from statistical learning, such as scenario optimiza-
tion (Calafiore and Campi, 2006), to derive bounds on the
JSR and provide probabilistic guarantees on the correct-
ness of the bound.

In this paper, we first discuss two important weaknesses
of the previous data-driven approaches (Sec. 3). Namely,
(i) that the bounds are often very conservative, and
(ii) that they strongly suffer from a bad choice of the
distribution used to sample the data. We then propose
two approaches to overcome these weaknesses. First, we
provide a heuristic formula to replace the bound (Sec. 4),
that can be useful when the JSR needs to be approximated
from data, but no formal guarantee is needed. Numerical
experiments demonstrate the accuracy of the heuristic.
Then, to alleviate the dependence on a bad choice of
sampling distribution, we propose a two-step approach
in which the optimal distribution is first estimated from
a batch of data and then new data points are sampled
according to this distribution, from which the probabilistic
bound on the JSR is derived (Sec. 5). Furthermore, we
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discuss the choice of the data sizes to use in each step of
the two-step approach (Sec. 6); in particular, we propose
a heuristic formula for choosing the data sizes that aims
at providing the lowest bound on the JSR, given a total
budget of data points. For that, we use the heuristic found
in Sec. 4, because choosing the data sizes does not require
a formal bound but rather an accurate approximation of
the JSR. Finally, we demonstrate on numerical examples
the feasibility of our approach and its advantage compared
to state-of-the-art approaches in the literature.

Related Works

Data-driven techniques for the verification and control of
black-box dynamical systems and cyber-physical systems
have received a lot of attention in recent years (Duggirala
et al., 2013; Margellos et al., 2014; Coulson et al., 2019; Ne-
jati et al., 2023). Data-driven stability analysis of switched
linear systems is studied in Kenanian et al. (2019); Berger
et al. (2021); Rubbens et al. (2021); Wang et al. (2021).
This work improves on the existing approaches by iden-
tifying their main limitations and proposing a way to fix
them via adaptive sampling. We further demonstrate in
numerical examples the strong benefits of the proposed
solution over the previous approaches.

Notation. RIG"™ denotes the set of positive definite n x n
matrices. For a natural number N, [N] denotes the set
{1,...,N}. We denote the unit sphere in R™ by S"~!.

Proofs can be found in the extended version of the paper
on arXiv.

2. PROBLEM STATEMENT

We consider a discrete-time switched linear system with m
modes:

z(t+1) e {Ax(t): A e A}, (1)
wherein A = {A,,..., A, } CR™ ™ is a set of m matrices
in R™ ™. Since A characterizes the system in (1), in the
following, we will refer to the system simply by A. A
trajectory of A is a function z : N — R™ such that for
all ¢t € N, the condition in (1) holds.

We are interested in the stability of 4. We remind that A
is asymptotically stable if all trajectories of A converge to

the origin. The rate of exponential convergence is called
the Joint Spectral Radius (JSR) of A.

Definition 1. The joint spectral radius of A, denoted by
p(A), is the infimum of all » > 0 for which there exists
C > 1 such that every trajectory z of A satisfies that for
allt e N, ||lz(t)]] < Crt||x(0)].

2.1 Quadratic Approzimation of the JSR

The JSR is notoriously difficult to approximate, even when
the matrices in A are known (Jungers, 2009). One way to
obtain an upper bound on the JSR is by finding a quadratic
“Lyapunov” function for the system, and the associated

contraction rate of the system.
nxn

Definition 2. Given a positive definite matrix P € R

=0
we define the contraction rate of A with respect to P by
(Az) T P(Ax)
A, P) = —_—
PAL)= el acaV ™ oTPa

The contraction rate is an upper bound on the JSR (see,
e.g., Jungers, 2009, Proposition 2.8):

Theorem 3. For any P € RI§", p(A) < p(A, P).

Theorem 3 motivates the notion of best quadratic approxi-
mation of the JSR of A defined as the smallest contraction
rate with respect to a positive definite matrix:
pquad('A) = inf p(-A? P)
PeRZG™
By Theorem 3, pquad is an upper bound on p.

Note that when A is known, pquad(A) can be approximated
with accuracy e > 0 efficiently with respect to n, |A| and
log(€) because the problem can be formulated as a quasi-
convex optimization problem (Jungers, 2009, Sec. 2.3.7).

Note that in general the quadratic approximation is not
tight i.e., pquad(A) < p(A) and might be too conservative
in several situations. Nevertheless it often provides suffi-
ciently accurate upper bounds on the JSR.

In some situations, we want to restrict the set of “Lya-
punov” functions to avoid ill-conditioned ones. Therefore,
we introduce the class of §-conditioned matrices as the set
of symmetric matrices P satisfying I < P < 61. We then
define the best quadratic approximation of the JSR of A
by a d-conditioned matriz by

min

Pquad (A7 6) =
PER] X", IXP=0T

By Theorem 3, p(A) < pquad (A, d). Furthermore, it holds
that lims_, o Pquad (A7 5) = Pquad ("4> = Pquad (A7 OO)

p(A, P).

In summary, computing the JSR is generally intractable,
but we can compute efficiently upper bounds on it by using
quadratic “Lyapunov” functions. However, this approach,
as many other approaches for approximating the JSR, are
model-based because they require the knowledge of A. By
contrast, data-driven methods, studied in this paper, allow
to approximate the JSR of A, without knowing A, by using
observation data (such as a finite set of trajectories) of A.
Considering the inherent challenges of approximating the
JSR even in the model-based setting, we will focus on the
problem of approximating the quadratic approximation of
the JSR in a data-driven fashion. In other words, we seek
data-driven upper bounds on the best quadratic approxi-
mation of the JSR (pquaa), and ideally these bounds should
be as close as possible to pquad-

2.2 Data-Driven Analysis and Random Data Collection

In the setting considered in this paper, we collect data
by setting the system to an initial state x and observing
the state y after one time step. Repeating this process NV
times yields a data set comprising N one-step trajectories
(zi,9;) € R™ x R™ for each ¢ € [N]. As the system is
nondeterministic, the matrix in A responsible for each
trajectory cannot be chosen or known. Nevertheless, we
assume that the system’s switching is a stochastic process,
wherein each matrix in A has a nonzero probability of
being applied independently at each time step.
Assumption 4. For each i € [N], let X; and Y; be the
random variables describing the initial and terminal states
in the i*" experiment. We assume that there exists o €
(0,1] such that for all A € A and i € [N],

PlY; = AX; | Xi = 2, (X;,Y)) = (z5,y5) Vi # 1] > o
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Regarding the choice of the initial state of each experi-
ment, we assume that x; can be chosen for each i € [N].
However, because the observation already contains non-
determinism (in the choice of A), we will choose these
points randomly according to some distribution that we
can design. In particular, we will consider the uniform
spherical distribution (possibly after applying a change of
basis): !

Definition 5. We say that a random variable X has uni-
form distribution on S*~! if X has the same distribution
as U/||U|| where U is a vector of n independent standard
Gaussian random variables 2.

3. PREVIOUS DATA-DRIVEN BOUNDS ON THE JSR

In this section, we present a data-driven bound on the JSR.
This bound was proposed in Kenanian et al. (2019), and
refined in Berger et al. (2021); other bounds were proposed
in Rubbens et al. (2021) and Wang et al. (2021). Note
that since the data is random, the data-driven bounds can
provide only probabilistic guarantees on the value of the
JSR, i.e., one can only guarantee with some confidence
that the bound computed from the data is a valid upper
bound on the JSR. After presenting the bound and the
associated guarantees, we discuss some limitations.

3.1 Data-Driven Bound and Probabilistic Guarantees

Given a data set D = {(z;, y;)} Y, consisting in N one-step
trajectories, we formulate the problem of finding a positive
definite matrix P with the smallest data-based contraction
rate defined by

-
R Yi Py
D,P) = i )
APD) =05\ 2P,

To do that, we solve the following optimization problem:

inf v,
>0, PERY ("
s.t I <P =<6, (2)

yTPy7 < 'yzasiTPxi Vi € [N],

wherein ¢ € [1,00] is a parameter (if § = oo, then there is
no upper bound on the eigenvalues of P). If § < oo, then
the inf is actually a min. The optimal cost of Prob. (2) is
denoted by v«(D, §), and the optimal solution if it exists is
denoted by P, (D, ). We assume without loss of generality
that if P,(D,0) exists, then it is unique; this can be done,
e.g., by using a tie-breaking rule (Berger et al., 2021).

The main result regarding Prob. (2) that appears in Berger
et al. (2021) is that we can guarantee an upper bound on
the JSR with some predetermined confidence level if some
very mild and technical assumptions on the matrices in A
holds.

Assumption 6. The matrices in A4 do not have the Bara-
banov property, meaning that for each A € A, either A is
not diagonalizable or A has at least two eigenvalues with
different modulus.

1 Because of the scaling invariance, a data point (x;,y;) carries the
same information as the data point (Az;, Ay;) for every A # 0. This
is why it is sufficient to sample on the unit sphere S*~1 in R™.

2 TLe.,U=[Ui,...,Us]" where Uy, ..., Uy, are independent and for
each i € [n], U; ~ N(0,1).

We are now able to present the main result from Berger

et al. (2021) regarding Prob. (2):

Theorem 7. Assume that N > d = w, that {x;}N,

are sampled independently and uniformly on S*~' and

that Assumptions 4 and 6 hold. Let 8 € (0,1]. Then,

with probability at least 1 — 8 on the sampling of D =

{(zs,y:)} Y, it holds that3

'7*(D7 5) < pquad(A7 6) < p('A’ P*(D) 6)) <

’Y*(D,§)'f(ﬁ,H(P*(D7(S)),N,d7OZ,TL), (3>

wherein
o 5(P) = /5y
.f(ﬁ7k’N’d7a7n)_ 1

B V1-IH (Bt (Bd—1N); 2523 3) ;
I71(y;a;b) is the inverse incomplete regularized beta
function, i.e., it is the unique z € [0, 1] such that

Joteta—o)btar
Jyta=1(1—t)p-de
®~1(B;¢; N) is the unique € € [0,1] such that
(e N) = i (N> fl-—eN'=p

i

=0

I(z;a;b) = v;

Before discussing the limitations of Theorem 7 (Sec. 3.2),
which motivated this work, we present below two straight-
forward extensions of Theorem 7.

A-Priori Tightness The inflation factor
f = f(B,k(Pu(D,d)),N,d,a,n)

reflects the tightness of the bound on pquad(A4, d) (i.e., how
close is the upper bound to the quantity of interest) since

7*(Dv 5) < pquad(-A7 6) < ’Y*(Dv 6) : f
(with confidence 1—3). As we see, the factor f depends on
the sample set D via k(P (D, d)). Therefore, we cannot fix
the tightness a priori, i.e., before knowing D. Nevertheless,
we can upper-bound the tightness by noting that

I<P=6I oM < on L

It follows that #(P,(D,d)) < 6(»~1/2, Thus, we can obtain
an upper bound on f that is independent of D:

f<f=f(B,6"V2 N dan). (4)

=

Constrained P Theorem 7 readily extends to the case
where P in Prob. (2) is further constrained to be in a linear
subspace U C R™*"™. Indeed, if d,, is the dimension of U,
then Theorem 7 applies with d equals d,,. More precisely,
(3) just needs be replaced by

7+(D,d) < p(A, Pu(D,9)) <
V«(D, ) - f(B,k(Pu(D,0)), N, du,,n). (5)
For a proof, see Berger et al. (2021).

8.2 Limitations of the Data-Driven Bound

The data-driven bound on pquad (A4, d) in Theorem 7 suffers
from two important limitations that we explain here.

3 Note that the first and second inequalities in (3) are always
satisfied, while the third one is guaranteed to hold with probability
at least 1 — 3.
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Fig. 1. Boxplots of the ratio 7 defined in (6) for different
dimensions n and data sizes N = |D|. For each n, a
different randomly generated system with m = |A| =
n matrices was used. For a given n and for each N, the
boxplots were obtained by running 32 experiments,
with different randomly sampled data sets D. We also
represented the boundf = f(8,6""V/2 N d,a,n)
on the inflation factor f for different values of 8, and
for 6 = 5 and @ = 1/m. For the bottom plots, some
curves are not visible because their value is so large
(> 10%) that it is outside of the vertical range.

Conservative Upper Bound In numerical experiments,
we observe that the upper bound is often conservative, in
the sense that v, (D, d) - f is often quite large compared to
Pquad (A, 0). This is illustrated in Fig. 1 for randomly gen-
erated systems in dimension n € {2,3,4,5}. Namely, for
different values of NV, we sampled N one-step trajectories
as described in Theorem 7 and we computed the ratio

. p(A, Pi(D,9))
7= —’Y*(D7 5 (6)

We then compare 7 with the a-priori upper bound f on the
inflation factor f, introduced in (4). The ratio of f over 7
measures how conservative the probabilistic upper bound
in Theorem 7 is since

pquad (Aa 5) o p(Av P* (D? 6)) B r
In Fig. 1, we observe that this ratio is quite large, especially
when n increases and N decreases.

Uniform Sampling  Another important limitation of the
data-driven bound in Theorem 7 is the factor k(P, (D, 9)).
This factor reflects the fact that we use a uniform sampling
on the sphere for selecting the initial states x; for i € [N],
while to be optimal we should use a uniform sampling on
the ellipsoid corresponding to Py(D,d), in a sense that we
will precise in Sec. 5. A large value of (P, (D, d)) implies
that the sampling is far from being uniform on the ellip-
soid. Consequently, the factor f(8,k(Pi(D,d)), N,d,a,n)
in the upper bound in (3) will blow up (see the extended
version on arXiv for an illustration).We are thus facing the
following chicken-and-egg problem: knowing the ellipsoid
requires the data set D in order to compute P, (D, §); and
reversely, in order to sample the data set D uniformly on
the ellipsoid, we need the ellipsoid. The main contribution
of this work is precisely to solve this problem by consid-
ering two data sets D; and Ds: the first one is used to

compute an ellipsoid, and the second one is obtained by
sampling uniformly on the ellipsoid and used to compute
the upper bound on pguad (A, 9).

4. ESTIMATION OF THE DATA-DRIVEN BOUND’S
TIGHTNESS

As noted in Sec. 3.2, the upper bound
f=f(8.6""V2 N,dan)

on the ratio 7 in (6) that measures the ratio of p(A, P,(D, 9))
over v,(D,d) is conservative. In this section, we propose
a heuristic value fpeu that will be useful to obtain in
practice a more accurate estimation of 7, even though it
does not come with a probabilistic guarantee. The heuris-
tic provided in this section will be reused in section 6 to
build another heuristic based on it. The proposed heuristic

1S
fheur:f(576n/47N_d717a7n)' (7)

‘We motivate this choice in the extended version available
on arXiv.

5. ADAPTIVE SAMPLING: A TWO-STEP
APPROACH

The primary goal of adaptive sampling is to address the
second limitation of the approach used in Theorem 7 (see
Sec. 3.2): namely, that the uniform sampling on the sphere
is not optimal and should instead be made uniformly on
the ellipsoid associated to P,(D,d). However, as noted in
Sec. 3.2, we are facing a chicken-and-egg problem because
we do not know P, (D, §) before sampling D. To resolve this
issue, we propose a two-step approach in which we first use
a data set D; to compute P, (D1,0), and then, we build a
new data set Dy by sampling initial states uniformly on
the ellipsoid associated to P,(Dy, ).

5.1 Two-Step Approach

The two-step approach to compute bounds on pyuad (A, 9)
is described by the following pseudo-code:

Input: A switched linear system A in the form of a random
oracle ¥ where each matrix has a probability at least a > 0
of being applied. Two positive integers N7 and No. Two
conditioning parameters 6; > 1 and do > 1.

Step 1:

(1) Build a data set Dy = {(zi,y:)}Y!, of N; one-step
trajectories of A as follows: for each ¢ € [IN1], sample
the initial state x; uniformly at random on S"~! and
observe the state y; after feeding to X;

(2) Solve Prob. (2) with D = D; to get P.(Dy,01).

Step 2:

(1) Compute the change of basis B = P, (D1, 6,) /2.

(2) Build a data set Dy = {(zi, i)} 2 of Ny one-step
trajectories of A as follows: for each i € [INa], sample
a point x; uniformly at random on S"~! and define
the initial state as =, = Buz;, then observe the state
y! after feeding to X, and finally, define y; = B~1y/;

(3) Solve Prob. (2) with D = Dy to get v,(D2,d2) and
P, (Ds, 62).
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(4) OutPUt ’Y*(D27§2) : f(ﬁa R(P*(D2562))7N27d7a7n)'

Output: With probability 1 — 3 on the sampling of D5, the
output is an upper bound on pyuad(A).

The change of basis defined in Step 2.1 is motivated by
the following observation:

Proposition 8. Let P, (A, ¢) provide the smallest contrac-
tion rate of A among all §-conditioned matrices, that is,
I < P,(A9) = 0I and p(A, P(A,0)) = pguad(A,9).
Define B = P,(A,8)""/? and let A’ = {B~'AB: A c A}.
Let ' > 1 and let P,(A’,¢") provide the smallest contrac-
tion rate of A’ among all §’-conditioned matrices. It holds
that p(A’, P,(A",¢")) < pquad (A, 9).

Proposition 8 shows that in the appropriate coordinate
system, a matrix with low conditioning § ~ 1 can do as well
as a matrix with large conditioning § > 1 in the original
coordinate system. Thus, given the appropriate coordinate
system, we can set ¢ close to one, thereby ensuring that
k(P (D, d)) < 6(»=1/2 is close to one as well.

Unfortunately, we do not know the optimal coordinate
system, because A is unknown so that we cannot compute
P,(A,0). The idea of the two-step approach is to approx-
imate P,(A,0d) in the first step with P, (D1, d1), and then,
use the coordinate system induced by P, (D1, 1) to sample
in the second step. The expectation is that if P,(A,J) is
close to Py (D1, d1), then k(P (D2, d2)) will be close to one.

6. TOWARD OPTIMAL DATA SET SIZES

In this section, we address the question: given a maximum
total number of samples N (i.e., a budget), how to allocate
the samples between the first and second step in order to
obtain the best probabilistic upper bound? More precisely,
how to choose Ny and N, under the constraint that Ny +
N5 = N, such that

]E{(Xnyq)}fvzl 7*(D27 62) ’ f(ﬁa H(P*(DQv 62))7 Na, d, a)”‘)

is minimal?

Solving exactly the above optimization problem seems out
of reach as the output will depend on the underlying
unknown system. Therefore, in this section, we limit our-
selves to first explaining the underlying trade-off for the
allocation of the N samples among N; or Ns; and second,
proposing a heuristic approach for the optimal trade-off.

6.1 Allocation Trade-Off

To minimize the output of the two-step approach, on the
one hand, one hopes to have a good approximation of
P, (A, d1) at the end of step one, because by Proposition 8
this implies that at the end of step two, 7, (D2, J2) can be
close to pquad (A, 61) even with k(P, (D2, d2)) close to one.
For that, intuitively one needs N; as large as possible. But,
on the other hand, one needs N5 to be large enough too,
so that the inflation factor f(8, k(Pi(Da,d2)), Na,d, a,n)
is close to one. Thus, the optimal choice of N7 results from
a trade-off between taking N7 large, but not too large so
that No = N — Ny is still large enough.

Fig. 2 illustrates the trade-off of the two-step approach on
randomly generated switched linear systems in dimension
3 and with 3 matrices.

#® N with heuristic
® Ny with smallest average bound (in this experiment)

—

Output of two-step approach

Fig. 2. Output of the two-step approach for different values
of Ny, with Ny + No = N := 100, n = 3, |A| = 3,
01 =92 =5, 8 =0.05 and o = 1/|A|. The results are
the average output value over 10 randomly generated
systems A for which pquada(A,d1) = 1.

6.2 Heuristic for Choosing Ny

In this subsection, we propose a heuristic for choosing Ny
that aims at minimizing the output

0= 7*(12)2’ 62) : f(ﬁa H(P*(DQ; 52))a N27 d7 «, n)
of the two-step approach. Let us stress that in the follow-
ing, we use the term “minimize” in a loose sense, because
minimizing a random variable is not well defined, but we

mean that we minimize the “magnitude” of the variable
with respect to some metric (e.g., the expected value).

The first thing that we note is that *
Y+(D2,02) < p(A, Pi(D1,61)).
Next, we remember from Theorem 7 that

Y (D:[) 51) S pquad(A7 61)
Thus, by combining the above, it holds that

p(Aa P*(Dlaal))
* D 76 S ua A,6 .
Y+ (D2, d2) (Do P a(A,;d1)

| ——
=nr
In other words, for all systems with same pyuad (A, 1), the
value of 7, (D2, d2) is essentially bounded by 7. In view
of this, our first approximation toward the heuristic is to
minimize the following quantity which is an upper bound
on o:
6/ =Ty f(ﬁ? K(P*(D27 52))7 N27 d7 «, n)

Note that minimizing & is still challenging because 7 is a
random variable whose distribution is hard to analyze due
to the many non-linearities involved in the computation
of v+(D1, 61). Luckily, in Sec. 4, we analyzed this quantity
and we proposed a heuristic bound for its (1 — 8)-quantile:
namely, with probability 1 — 5 on the sampling of Dy,

7:1 S f(/876?/47N1 - da l,Oé,Tl).
In the following, we will use the value 8 = 0.5 for this

bound; in other words, we bound heuristically the median
value of 71. Hence, our goal is to minimize

o = £(0.5,67* Ny —d,1,a,n)
' f(ﬂa ’{(P*(D% 62))7 NQ; d,avn)'

The second factor in the above formula still contains an
unknown quantity, namely k(P4(Da,d2)). To remove this

4 The proof is similar to that of Proposition 8.
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N

Fig. 3. Data-driven upper-bounds with confidence 1 —
B8 = 95% on the JSR of the consensus network with
a= % in function of N the total number of samples
required. We used 6, = 5, d = 1 for the two-step

approach (the green curve) and 6 = 5 to compute

v+(D,d) - f (the red curve)
Fig. 4. Three (unknown) interaction networks for the

consensus problem in Sec. 7.1.

non-determinism, we bound k(P (D2, 02)) with its worst-

case value, namely 6;”71)/ ?. This leaves us with the final
quantity to minimize with respect to Ny:

o(Ny) = £(0.5,677* Ny — d, 1,0, m)
f(8,05 VN — N1, d,a,n).

Summarizing, our heuristic’s optimal value of N7 is com-
puted as Ny* = argminy, cny 6(N1).

7. EXPERIMENTAL RESULTS
7.1 Consensus Network

We consider the problem of consensus in a hidden switched
interaction network depicted in Fig. 4. The problem of
deciding whether consensus is reached or not can be
formulated as a problem of switched linear system stability
analysis (Jadbabaie et al., 2003) and since the network is
hidden, we do not have a model of the system. We will
thus resort to data-driven methods to analyze whether the
system reaches consensus or not.

Fig. 3 shows how many data points are needed to certify
that consensus is reached with confidence 1 — 8 = 95%
by using the data-driven methods discussed in this paper.
We clearly see the advantage of the adaptive sampling over
existing methods without resampling.
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