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Abstract— In this paper, we study the problem of stabilizing
switched linear systems when only limited information about
the state and the mode of the system is available, which occurs
in many applications involving networked switched systems
(such as cyber-physical systems, IoT, etc.). First, we show that
switched linear systems with arbitrary switching, i.e., with no
constraint on the switching signal, are in general not stabilizable
with a finite data rate. Then, drawing on this result, we restrict
our attention to systems satisfying a fairly mild slow-switching
assumption, in the sense that the switching signal has an average
dwell time bounded away from zero. We show that under this
assumption, switched linear systems that are stabilizable in the
classical sense remain stabilizable with a finite data rate. A
practical coder–controller that stabilizes the system is presented
and its applicability is demonstrated on numerical examples.

I. INTRODUCTION

This paper studies two important and challenging features
of modern control systems: data-rate constraints and switch-
ing. Many modern control systems (such as IoT, networked
systems, etc.) involve spatially distributed components that
communicate through a shared, digital communication net-
work, that can carry only a finite amount of information per
unit of time. This limitation on the information flow can
have large negative effects on the performance of the control
loop. This has motivated a considerable amount of research
to study control problems subject to data-rate constraints, as
surveyed in [5], [11], [21]. On the other hand, many systems
encountered in practice involve switching between different
operation modes; e.g., due to the interaction of physical
processes and digital devices (as in cyber-physical systems),
external influences (e.g., human in the loop), discontinuous
dynamics (e.g., physical processes with impact), the nature of
the controller (e.g., logic-dynamic controllers), etc. Control
problems involving switching have also attracted a lot of
attention from the control community in recent years; see,
e.g., the surveys [7], [13], [16], and the references therein.

This paper focuses on the problem of limited data-rate
stabilization of continuous-time Switched Linear Systems
(SLSs). These are systems described by a finite set of linear
modes, among which the system can switch in time (see
Figure 1 for a representation). As paradigmatic examples of
hybrid and cyber-physical systems, SLSs naturally appear in
many engineering applications, or as abstractions of more
complex dynamical systems [6], [9], [14].
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Fig. 1. Control of switched linear systems over limited, digital communi-
cation networks.

Although control of switched systems and control with
data-rate constraints have been two active areas of research
for some time now, the study of control problems involving
switching and data-rate constraints simultaneously seems to
have not received much attention so far. (Some work has been
devoted to the stabilization of Markov jump linear systems
with data-rate constraints [10], [12], [18], [20]. However, the
information structure considered in these references implies
that the mode of the system is always known to the controller,
so that the problems of switching and state estimation with
limited information can be treated separately.) Combining
these two aspects in a unified framework is however essential
if we want to address control problems encountered in a
wide range of applications involving networked switched
systems, which generally imply that the controller has limited
information on both the state and the mode of the system.

When both state observation and switching signal obser-
vation are subject to data-rate constraints, the problems of
state estimation and switching are intrinsically coupled. For
instance, state encoding strategies must take into account
the fact that unobserved switching may occur during the
sampling interval. In particular, we will see that switched
systems with unconstrained switching signal have in general
an infinite stabilization entropy, meaning that they are not
stabilizable with any finite data rate. On the other hand, it is
a standard technique in stability and stabilizability analysis
of switched systems to impose slow-switching conditions—
generally described by a dwell time and/or an average dwell
time (ADT) [4], [7]—on the switching signal to reduce its
expressiveness. Recently, these techniques were used in the
context of limited data-rate control of SLSs [8], [17], [19].

Our work draws upon these references, especially [8], for
the formulation of the problem of interest, namely the sta-
bilization of SLSs under data-rate constraints and subject to
slow-switching assumptions. However, we consider different
objectives regarding the design of a control strategy with
finite data rate: while in [8], [17], [19], the ADT is used as
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a design parameter to ensure stabilization of the system with
data-rate constraints, our goal here is to study the limited
data-rate stabilization of SLSs with arbitrary ADT.

The contribution of this paper is twofold. First, we show
that SLSs with no constraint on the switching signal, are in
general not stabilizable with a finite data rate. We present
an example of a SLS that is feedback stabilizable for any
switching signal in the absence of data-rate constraints, but
cannot be stabilized with a finite data rate. This motivates
the introduction of slow-switching assumptions in order to
make the problem of limited data-rate stabilization of SLSs
tractable, as otherwise the coder cannot transmit information
fast enough to the controller to achieve stabilization.

Secondly, we show that under a fairly mild slow-switching
assumption on the switching signal, SLSs that are stabilizable
in the classical sense remain stabilizable with a finite data
rate. More precisely, we show that any stabilizable (without
data-rate constraints) SLS with ADT bounded away from
zero can be stabilized by a coder–controller with finite data
rate. We present a sufficient upper bound on the data rate
depending on the system and the ADT, and we describe
the implementation of a coder–controller that stabilizes the
system. We stress out that in our analysis (unlike [8], [17],
[19]) the ADT is fixed, so that the controller has no influence
on the value of the ADT.

The paper is organized as follows. The problem of interest,
including the definition of SLSs, the basic assumptions on
the system and the concept of coder–controller, is formulated
in Section II. Our main results are stated in Section III. Then,
in Section IV, we describe the implementation of a coder–
controller that stabilizes the system. Finally, in Section V, we
illustrate the usage of the coder–controller with a numerical
example.

Notation. For vectors, ‖·‖ denotes the Euclidean 2-norm,
and for matrices it denotes the associated matrix norm (i.e.,
‖M‖ = largest singular value of M ). B(ξ, r) is the closed
ball centered at ξ ∈ Rd with radius r ≥ 0. If f : A → B,
and A′ ⊆ A, then f |A′ denotes the restriction of f to the
domain A′. A function g : R≥0 → R≥0 is of class-K if it is
strictly increasing, continuous and g(0) = 0.

II. PROBLEM FORMULATION

A. Switched linear systems

Consider a continuous-time Switched Linear System (SLS)
with affine control input:

ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t), x(0) ∈ K, t ≥ 0, (1)

where σ(t) ∈ Σ := {1, . . . , N} and u(t) ∈ Rc, Ai ∈ Rd×d
and Bi ∈ Rd×c for all i ∈ Σ, and K ⊆ Rd is a compact
set with 0 ∈ int(K). The function σ : R≥0 → Σ is called
the switching signal (or s.s. for short) and is assumed to be
piecewise constant and right-continuous.

The discontinuity points of σ are called the “switching
times” or simply “switches”. For t ≥ s ≥ 0, we let Nσ(t, s)
be the number of switches of σ in the interval [s, t).

As we will see in Subsection III-B, SLSs under arbitrary
switching are in general not tractable for the problem of

stabilization with limited data rate. Therefore, in our analysis,
we make the assumption that the system is not switching too
fast, in the following sense:

Assumption 1: There is τa > 0, called the Average Dwell
Time (ADT), and a constant N0 ≥ 0 such that

Nσ(t, s) ≤ N0 +
t− s
τa

∀ t ≥ s ≥ 0.

The parameter N0 is fixed but not known by the controller
a priori.

The concept of ADT, introduced in [4], has become a stan-
dard assumption in the study of stability and stabilizability
of switched and hybrid systems [7], [14]. It has also received
attention in the context of control of switched systems with
limited information [8], [17], [19], [20].

Our goal is to stabilize (1) under data-rate constraints.
Clearly, a necessary condition is that the system is stabiliz-
able in the absence of data-rate constraints. Hence, we make
the following assumption on the stabilizability of (1):

Assumption 2: There is a feedback law ϕ : Rd×Σ→ Rc,
positively homogeneous in the 1st argument and piecewise
continuous, and constants D ≥ 0 and µ1, µ2 > 0 such that
(i) µ1/τa < µ2, and (ii) for every s.s. σ, the solution of the
closed-loop system ẋ(t) = Aσ(t)x(t) + Bσ(t)ϕ(x(t), σ(t))
satisfies

‖x(t)‖ ≤ D‖x(0)‖ eµ1Nσ(t,0)−µ2t ∀ t ≥ 0. (2)

We assume that the feedback law ϕ(·, ·) and the parameters
D,µ1, µ2 are fixed and known by the controller.

Assumption 2 implies that the closed-loop system (1) with
feedback control input u(t) = ϕ(x(t), σ(t)) is asymptot-
ically stable, for every s.s. satisfying Assumption 1. The
existence of a feedback control law satisfying (2) can be
ensured for instance if the system admits a multiple Control
Lyapunov Function (CLF) [7], [9]. An interesting situation,
on which we will come back in Subsection III-C, is when the
system admits a common CLF; in this case, (2) is satisfiable
with µ1 = 0, so that Assumption 2 holds for any τa > 0.

B. Coder–controller

We investigate the problem of stabilizing system (1) when
direct observation of the system is not possible. Information
about the mode and the state of the system will thus be
delivered by a coder connected to a controller via a digital
channel that can carry only a finite amount of information per
unit of time. The situation is depicted in Figure 1. At periodic
sampling times Tk := kτs, k = 0, 1, 2, 3, . . . , the coder
observes the current state and mode of the system, and sends
one discrete-valued symbol e(Tk), selected from a finite
coding alphabet Ek, to the controller. Neglecting transmission
errors and delay, at time Tk the controller has the symbols
e(0), . . . , e(k) available and it generates a control input u(·)
for the coming epoch [Tk, Tk+1).

More precisely, let τs > 0 be a sampling period and
(Ek)k∈N a sequence of coding alphabets. The symbol sent
by the coder at time Tk := kτs is defined by

e(Tk) = γk(x(T0), . . . , x(Tk);σ(T0), . . . , σ(Tk)), (3)
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where γk : (Rd)k × Σk → Ek is the coder function at time
Tk and x(·) is the state of the system. Assuming the channel
is noiseless and without delay, at time Tk the controller has
the symbols e(T0), . . . , e(Tk) available and it generates the
input function u(·) defined on the interval [Tk, Tk+1) by:

u(·)|[Tk,Tk+1) = ζk(e(T0), . . . , e(Tk)), (4)

where ζk : E0 × . . . × Ek → (Rc)[Tk,Tk+1) is the controller
function at time Tk, and it is assumed that u(·)|[Tk,Tk+1) is
integrable (i.e., L1). Let γ = (γk)k∈N and ζ = (ζk)k∈N. The
pair (γ, ζ) is called a coder–controller.

At each time Tk, the symbol e(Tk) is transmitted via a
limited communication channel. Using binary representation
of the symbols, the averaged communication data rate (or
data rate for short) [in bits per unit of time] of the coder–
controller is given by

R(γ, ζ) = lim sup
k→∞

1

kτs

∑k−1

j=0
log2 |Ej |.

In modern applications involving networked systems, the
communication capacity of the network is generally impor-
tant. However, there are usually many resources competing
for the same bandwidth (as for instance in IoT applications).
Therefore, it is essential to have coding–controlling strategies
with an averaged communication data rate as small as possi-
ble. The question of determining the smallest data rate that
is needed to achieve a given control task is also intriguing
from the theoretical point of view.

III. MAIN RESULTS

A. Finite data-rate stabilization

The control objective studied in this paper is the stabiliza-
tion of system (1), defined in Subsection II-A, under data-rate
constraints. More precisely, we want to show the existence
of a coder–controller, as described in Subsection II-B, with
finite data rate, that stabilizes the system:

Theorem 1: Consider system (1) and let Assumptions 1–2
hold. There is a coder–controller (γ, ζ) with R(γ, ζ) < ∞
that satisfies the following properties:1 there is λ > 0 and a
class-K function g(·) such that every trajectory x(·) of (1)
with control input u(·) defined by (3)–(4) satisfies

‖x(t)‖ ≤ g(‖x(0)‖) e−λt ∀ t ≥ 0.

We will provide a constructive proof of Theorem 1. More
precisely, in Section IV, we describe the implementation of
a finite data-rate coder–controller achieving stabilization. A
precise upper bound on the data rate will be derived in due
course of the description of the coder–controller; see (7) in
Section IV. As for the decay rate λ, it will be obtained in
the proof that the proposed coder–controller stabilizes the
system; see Subsection IV-D in the extended version of this
work [1]. The function g(·), however, will not be explicitly
characterized but its existence will be demonstrated. As a
class-K function, g(·) satisfies g(r) → 0 when r → 0.

1A coder–controller that satisfies these properties will be said to
stabilize the system.

However, as it will be clear from the proof of its existence,
g(r) is not Lipschitz continuous at r = 0. This lack
of regularity is not due to potential sub-optimality of the
proposed coder–controller, or to the switching nature of the
system, but is intrinsic to any finite-data-rate stabilization
scheme for linear systems (including LTI systems); see for
instance [3, Proposition 2.2].

B. Necessity of the average dwell time

In this subsection, we would like to stress out the impor-
tance of Assumption 1 in Theorem 1. Therefore, we show
with a simple example that SLSs under arbitrary switching
(i.e., with ADT equal to zero) are in general not stabilizable
with a finite data rate:

Example 1: Consider system (1) with d = 1, Σ = {1, 2},
and matrices A1 = A2 = 0, B1 = −1 and B2 = 1. This
system is somehow the most basic affine-controlled SLS, and
it clearly satisfies Assumption 2 with µ1 = 0: for instance,
take ϕ(x(t), σ(t)) = −Bσ(t)x(t).

Proposition 2: System (1), with AΣ and BΣ as in Exam-
ple 1 and under arbitrary switching, is not stabilizable by a
coder–controller with finite data rate.

Proof: Assume the contrary and let (γ, ζ) be a coder–
controller that stabilizes the system. For some T > 0 fixed,
let UT be the set of all distinct input functions u(·) that can
be generated by the coder–controller, i.e., by (3)–(4), on the
interval [0, T ). Since R(γ, ζ) < ∞, it follows that UT is
finite, and by (4), UT contains only L1 functions.

Now, for each n ∈ N>0, let σn(·) be the s.s. that oscillates
between mode 1 and mode 2 with frequency 2/n: that is,
σn(t) = 1 if t ∈ [0, 1/n) + 2N/n, and σn(t) = 2 if t ∈
[1/n, 2/n)+2N/n. Then, by using an adaptation of the proof
of the Riemann–Lebesgue lemma [15, Corollary 14.5], one
can show that for any L1 function f : [0, T ) → R, it holds
that

∫ T
0
Bσn(t)f(t) dt→ 0 when n→∞. Since UT is finite,

this implies that for any ε > 0, there is n ∈ N>0 such that
|
∫ T

0
Bσn(t)u(t) dt| < ε for all u ∈ UT .

Thus, for every u ∈ UT , |x(T )| > |x(0)|−ε where x(·) is
a trajectory of (1) with s.s. σn and with input u. Since T and
ε are arbitrary and K contains at least one point x(0) 6= 0
(since it has nonempty interior), this is a contradiction with
the hypothesis that (γ, ζ) stabilizes the system.

Summarizing, the above example shows that for the prob-
lem of limited data-rate stabilization of SLSs to be tractable,
the switching signal cannot switch too rapidly (or at least
not too rapidly during a too long period), as otherwise the
uncertainty on the mode of the system, and especially on
Bσ , between two transmission times (Tk, Tk+1) will be so
large that the the system cannot be stabilized with a finite set
of inputs. This motivates the introduction of Assumption 1
which reduces the set of admissible switching signals by
restricting the number of switches in bounded intervals.

C. Comparison with other works

Our work is strongly connected with [8], [17], [19], where
the problem of limited data-rate stabilization of SLSs with
constraints on the ADT is also considered. The objectives
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regarding the design of a control strategy with finite data
rate are however different. In [8], [17], [19], the sampling
frequency and the data rate of the coder–controller are fixed,
and the objective is to obtain a sufficient lower bound on the
ADT of the switching signal to ensure stabilization of the
system. In our work, however, we seek to obtain a coder–
controller, with suitable sampling frequency and data rate,
that stabilizes the system for any ADT such that Assump-
tion 2 holds. In particular, if Assumption 2 holds for every
τa > 0, then for any given value of the ADT, we describe
a coder–controller that stabilizes the system. By contrast, in
[8], [17], [19], even if the system admits a common CLF
(which implies that Assumption 2 holds for every τa > 0;
see Subsection II-A), the lower bound on the ADT does not
converge to zero, even if the sampling frequency and the data
rate tend to infinity. The conservativeness of the lower bound
on the ADT proposed in [8], [17], [19] is mainly due to the
fact that its derivation is based on the decrease of a multiple
Lyapunov-like function for the sampled system. In particular,
the definition of this multiple Lyapunov-like function implies
that each change of mode causes a nonzero “jump” in the
value of the function; this results in nonzero lower bounds
on the ADT, even if the system admits a common quadratic
CLF; see, e.g., [8, Eq. (38)]. By contrast, our approach
relies on the convergence of a reference trajectory (by using
Assumption 2 and a suitable sampling frequency) and the
guarantee that the true state of the system does not stray
too far from the reference trajectory (thanks to a suitable
data rate); see Section IV below. Last but not least, another
difference of our framework with [8], [17], [19] is that we
do not impose any condition on the absolute dwell time of
the system.

IV. DESCRIPTION OF THE CODER–CONTROLLER

In this section, we describe the implementation of a coder–
controller that stabilizes system (1) under Assumptions 1–2.
The section is organized as follows. First, we discuss the
selection of the parameters of the coder–controller, which
depend on the system and the quantities appearing in As-
sumptions 1–2. Then, we present the implementations of the
coder and the controller. Finally, we show that the proposed
coder–controller satisfies the assertions of Theorem 1.

A. Parameters definition

Let ν = 1
2 maxi∈Σ λmax(Ai +A>i ), and let

∆1 = max
i,j∈Σ

‖Ai −Aj‖, ∆2 = max
i,j∈Σ

‖Bi −Bj‖.

Also, define

L = max { ‖ϕ(ξ, i)‖ : i ∈ Σ, ξ ∈ Rd, ‖ξ‖ = 1}.

Pick τs > 0, α > 0 and n ∈ N such that

De−µ2nτs + eνnτsα+ ε(n, τs) < e−µ1nτs/τa (5)

where ε(n, τs) = eνnτsτs
nτs
τa
D(∆1 + ∆2L).2

2A strategy for choosing τs, α, n could be: first, choose Ts = nτs large
enough so that De(µ1/τa−µ2)Ts < 1. Then, for this Ts, choose α, n such
that eνTsα and ε(n, Ts/n) are small enough for (5) to be satisfied.

We will need the following lemma:
Lemma 3: Let α > 0. There is an m-point quantizer Q :

Rd → Q ⊆ B(0, 1) satisfying (i) ‖ξ−Q(ξ)‖ ≤ α if ‖ξ‖ ≤ 1,
(ii) Q(ξ) = 0 if ‖ξ‖ ≤ α/d1/2, and (iii)

m = |Q| ≤ m̂α :=

(
2

s
d1/2

2α

{
+ 1

)d
. (6)

where J·K is the rounding (to the nearest integer) operator.
Proof: See the extended version of this paper [1].

We will show that there is a coder–controller (γ, ζ), with
sampling period τs, that stabilizes the system and operates
at data rate

R(γ, ζ) =
1

τs

[
1

n
log2 m̂α +

1

n
log2(n+ 1) + log2 |Σ|

]
(7)

where m̂α is as in (6).

B. Coder implementation

Let τs, α and n be as above, and let Q(·) be the quantizer
associated to α as in Lemma 3. Also fix r0 > 0 such that
K ⊆ B(0, r0).3 The implementation of the coder is described
in Figure 2.

The implementation deserves the following explanations.
At every time knτs, k ∈ N>0, the coder computes the value
of N sw

k which is defined as the smallest integer in {0, . . . , n}
such that βk, defined by

βk = eµ1N
sw
k ψ + ᾱ+ eµ1N

sw
k N sw

k ε̄ (8)

where ψ = De−µ2nτs , ᾱ = eνnτsα, ε̄ = eνnτsτsD(∆1 +
∆2L), satisfies ‖x(knτs)‖ ≤ βkrk−1. We will see in Sub-
section IV-D that such an N sw

k always exists. Using this βk,
the coder updates the value of rk according to rk = βkrk−1.
If k = 0, simply use N sw

0 = 0 and r0.
Using the above quantities, at time knτs, k ∈ N, the coder

sends a symbol that encodes the following information: (i)
an approximation ηk of the current state x(knτs) scaled by
1/rk, using the quantizer Q(·), (ii) the current mode of the
system, σ(knτs), and (iii) the value of N sw

k . Since ηk can
take at most m̂α different values, σ(knτs) at most |Σ| values,
and N sw

k at most n+1 different values, it holds that a coding
alphabet Ekn of size log2 m̂α + log2(n + 1) + log2|Σ| is
sufficient to encode the symbol e(knτs). After this, at times
(kn+j)τs, j ∈ {1, . . . , n−1}, the coder observes the current
mode of the system and sends a symbol that encodes this
mode. For this, a coding alphabet Ekn+j of size log2|Σ| is
sufficient. Hence, it follows that the averaged communication
data rate of the coder is equal to (7).

C. Controller implementation

Let τs, α and n be as in Subsection IV-A, and Q(·) and
r0 > 0 be as in Subsection IV-B. The implementation of the
controller is described in Figure 3. See also Figure 4, where
the different quantities appearing in the implementation of
the controller are represented.

3The assumption that the initial state of the system lays in a compact
set known from the coder–controller is made for convenience and simplicity
of the description of the coder–controller. This assumption can be removed
by using a “zooming-out” procedure as in [8].
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Initialization: Let N sw
0 = 0, and let r0 be as in Subsec-

tion IV-B.
Loop: at time knτs for k = 0, 1, 2, . . .

• Observe x(knτs) and σ(knτs).
• If k > 0: Let N sw

k be the smallest integer in {0, . . . , n}
such that βk defined by (8) with this N sw

k satisfies
‖x(knτs)‖ ≤ βkrk−1. Let rk = βkrk−1.

• Let ηk = Q(x(knτs)/rk).
• Send a symbol e(knτs) to the controller that encodes the

triple (ηk, σ(knτs), N
sw
k ).

• Loop: at time (kn+ j)τs for j = 1, 2, . . . , n− 1

– Observe σ((kn+ j)τs).
– Send a symbol e((kn + j)τs) to the controller that

encodes σ((kn+ j)τs).

Fig. 2. Coder implementation.

Initialization: Let N sw
0 = 0, and let r0 be as in Subsec-

tion IV-B.
Loop: at time knτs for k = 0, 1, 2, . . .

• Receive symbol e(knτs) and decode (ηk, σ(knτs), N
sw
k ).

• If k > 0: let βk be defined as in (8) with N sw
k obtained

from the symbol, and let rk = βkrk−1.
• Let ξkn = rkηk.
• For t ∈ [knτs, (kn+ 1)τs): apply the input

u(t) = ϕ(x̂kn(t), σ(knτs))

where x̂kn(·) is the solution of the auxiliary system (9)
with the boundary condition x̂kn(knτs) = ξkn and with
i = σ(knτs).

• Loop: at time (kn+ j)τs for j = 1, 2, . . . , n− 1.
– Receive symbol e((kn + j)τs) and decode σ((kn +
j)τs).

– Let ξkn+j = x̂kn+j−1((kn+ j)τs).
– For t ∈ [(kn+ j)τs, (kn+ j + 1)τs): apply the input

u(t) = ϕ(x̂kn+j(t), σ((kn+ j)τs))

where x̂kn+j(·) is the solution of the auxiliary system
(9) with the boundary condition x̂kn+j(knτs) = ξkn+j

and with i = σ((kn+ j)τs).

Fig. 3. Controller implementation.

The implementation deserves the following explanations.
At each time knτs, k ∈ N, the controller receives the symbol
e(knτs) that encodes ηk, σ(knτs) and N sw

k . Based on this, it
is able to compute βk and rk, and thus to compute ξkn which
is an approximation of the current state x(knτs). Then, on
the interval [knτs, (kn + 1)τs), the controller simulates the
following auxiliary system:

˙̂x(t) = Aix̂(t) +Biϕ(x̂(t), i), (9)

with the boundary condition x̂(knτs) = ξkn and with i =
σ(knτs). Using the simulated trajectory, denoted by x̂kn(·),
the controller applies on the system the control input defined
by u(t) = ϕ(x̂kn(t), i).

The same procedure is repeated for each j ∈ {1, . . . , n−

r0
β0r0

t0 τs nτs

x(t)

x̂0(t)

x̂1(t)
x̂2(t) x̂3(t)

u(t) = ϕ(x̂kn+j(t), σ̂(t))

σ(t)

σ̂(t)

Fig. 4. The different quantities involved in the implementation of the
controller. For this example, the coder–controller is applied on the system
ẋ(t) = Bσ(t)u(t), where B1 = −1 and B2 = 1, and with ϕ(x, 1) = x
and ϕ(x, 2) = −x/2. The switching signal σ(·) is represented in black,
and the signal σ̂(·) obtained from the sampled measurements σ((kn+j)τs)
(decoded from the symbols e((kn+ j)τs)) is represented in green.

1}: ξkn+j is defined as x̂kn+j−1((kn+ j)τs). Then, on the
interval [(kn+ j)τs, (kn+ j+1)τs), the controller simulates
the auxiliary system (9) with the boundary condition x̂((kn+
j)τs) = ξkn+j and with i = σ((kn+j)τs), decoded from the
symbol e((kn+j)τs); and it applies on the system the control
input defined by u(t) = ϕ(x̂kn+j(t), i) where x̂kn+j(·) is the
simulated trajectory.

D. Proof of the correctness of the coder–controller

See the extended version of this paper [1].

V. NUMERICAL EXPERIMENTS

Consider the SLS (1) with matrices A1 =

[
0.1 −1.0
1.5 0.1

]
,

A2 =

[
−0.5 2.0
−1.5 0.0

]
, B1 =

[
1
1

]
, B2 =

[
0
1

]
. This system is

stabilizable, in the sense of Assumption 2, via the feedback
law u(t) = Kσ(t)x(t) with K1 = [ −0.43− 0.43 ] and K2 =
[ −0.38− 0.52 ], and with D = 1, µ1 = 0 and µ2 = 0.15.

First, we have simulated the system with ADT τa = 1.0 s.
We have used the values τs = 0.008, α = 0.05 and n = 100
for the parameters of the coder–controller, which satisfy (5).
With these values of the parameters, the average data rate of
the coder–controller is of 145 bits/s. A sample execution of
the coder–controller, applied on the system with this ADT,
is represented in Figure 5-(top). We observe that the state of
the system converges to zero, as predicted.

Then, we have simulated the system with a smaller ADT,
namely τa = 0.25 s. We have used the values τs = 0.002,
α = 0.05 and n = 400 for the parameters of the coder–
controller, which satisfy (5). The average data rate of the
coder–controller is of 523 bits/s. A sample execution of the
coder–controller, applied on the system with this ADT, is
represented in Figure 5-(bottom). Again, we observe that the
sampled trajectory converges to zero, as predicted.

VI. CONCLUSIONS

In this paper, we have first shown that continuous-time
switched linear systems with arbitrary switching have in
general an infinite stabilization entropy, meaning that they
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Fig. 5. Evolution of x(t) and u(t) for a sample execution of the coder–
controller applied on the system presented in Section V, with different values
for the ADT. The black curve below the plot represents the switching signal.
The orange and red curves represent the trajectories x̂(t) simulated by the
controller (see (9)) to define the input u(t).

cannot be stabilized with any finite data rate. This motivated
the introduction of a fairly mild slow-switching assumption
on the system. This assumption requires that the switch-
ing signal has an average dwell time bounded away from
zero. Under this assumption, switching linear systems that
are stabilizable in the absence of data-rate constraints are
stabilizable by a coder–controller with finite data rate. We
have described the implementation of such a coder–controller
and demonstrated its applicability on a numerical example.
In future works, the question of potential improvement of
the data rate of the coder–controller will be investigated. As
a few examples, one could introduce the use of Lyapunov
functions, as in [8], [17], [19]; refine the analysis of the
propagation of reachable sets during sampling intervals, by
using tools from multilinear algebra, as in [2]; consider
additional assumptions on the system.
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