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Abstract— This paper tackles the feedback stabilization of
switched linear systems under arbitrary switching. We propose
a data-driven approach which allows to compute a stabilizing
static feedback using only a finite set of observations of
trajectories without any knowledge of the dynamics. We assume
that the switching signal is not observed, and as a consequence,
we aim at solving a uniform stabilization problem in which
the feedback is stabilizing for all possible switching sequences.
In order to generalize the solution obtained from trajectories
to the actual system, probabilistic guarantees are derived
via geometric analysis in the spirit of scenario optimization.
The performance of this approach is demonstrated on a few
numerical examples.

I. INTRODUCTION

Switched systems are typical hybrid dynamical systems
which consist of a number of dynamics modes and a switch-
ing rule selecting the current mode. The jump from one
mode to another often causes complicated hybrid behav-
iors resulting in significant challenges in stability analysis
and control design, see [1], [2]. This paper focuses on
the stabilization of switched linear systems. This problem
has been an active area of research for many years, see,
e.g., [3] and the references therein. In [4], [5], the (time)
varying nature of dynamics is considered as uncertainty and
uniform state feedback stabilization laws are proposed for
all possible switching sequences. When both the control and
the switching signal are accessible, exponential stabilization
can be achieved for instance by using a piecewise quadratic
control Lyapunov function [6]. In the presence of state and
input constraints, stabilization of switched linear systems
is also addressed under the framework of model predictive
control [7]. However, these stabilization methods all require
a model of the underlying switching system.

While there exist hybrid system identification techniques
[8], identification of state-space models of switching systems
is in general cumbersome and computationally demanding.
More specially, identifying a switched linear system is NP-
hard [9]. In recent years, data-driven analysis and control
under the framework of black-box systems has received a
lot of attention, see, e.g., [10]–[13]. For instance, probabilis-
tic stability guarantees are provided in [11] for black-box
switched linear systems, based merely on a finite number
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of observations of trajectories. Let us also mention that,
although data-driven techniques for controlling linear sys-
tems already exist (see, e.g., [14]), they are not suitable for
switched systems.

In this paper, we address the problem of stabilization
of switched linear systems without any information on the
model or the switching signal. As the switching is not within
control, we need to design uniform stabilizing feedback for
all the cases, similar to [4], [5]. More precisely, we compute a
feedback controller and a common Lyapunov function for all
the switching modes of the closed-loop system using a finite
set of trajectories. The Lyapunov inequality leads to a finite
set of bilinear matrix inequalities (BMI) and the stabilization
problem becomes a BMI problem.

However, even though the data-based feedback controller
stabilizes the trajectories obtained from the observations, it
may not stabilize the actual system. In order to formally
describe the properties of the controller, we derive probabilis-
tic stability guarantees in the spirit of scenario optimization
[15]–[17]. In this context, one trajectory can be considered as
a scenario and the stabilization problem formulated based on
a set of trajectories is a sampled problem. As our problem is
non-convex, the convex chance-constrained theorems in [15]
are not applicable. While chance-constrained theorems for
nonlinear optimization problems also exist in [16]–[18], their
probabilistic bounds rely on the knowledge of the essential
set (which is basically the set of irremovable constraints).
Identifying this set can be very expensive for general
nonlinear problems, in particular for nonlinear semidefinite
problems. Hence, the techniques in [16]–[18] are not suit-
able for our case which involves a large number of BMI
constraints. Instead, in this paper, probabilistic guarantees on
the computed controller are derived relying on the notion of
covering number and packing number (see, e.g., Chapter 27
of [19]) and geometric analysis of the underlying problem.
Similar probabilistic guarantees are also developed in [11],
[20], [21] for autonomous systems. Note, however, that these
guarantees require the optimality of the obtained solution,
while our technique works with any feasible solution of the
underlying optimization problem.

The rest of the paper is organized as follows. This section
ends with the notation, followed by the next section on the
review of preliminary results on stability of switched linear
systems and the formulation of the stabilization problem.
Section III presents the proposed data-driven stabilization
approach with an alternating minimization algorithm and
probabilistic stability analysis. In Section IV, we discuss
some computational and practical issues of the proposed
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approach. Numerical results are provided in Section V.
Notation. The non-negative integer set is denoted by

Z+. For a square matrix Q, Q � (�) 0 means that Q
is symmetric and positive definite (semi-definite). S and
B are the unit sphere and the unit (closed) ball in Rn
respectively. µ(·) denotes the uniform spherical measure on
S with µ(S) = 1. For any matrix P � 0, we denote by
λmax(P ) and λmin(P ) the largest and smallest eigenvalues
of P respectively. Finally, given x ∈ S and θ ∈ [0, π/2], we
let Cap(x, θ) := {v ∈ S : |x>v| ≥ cos(θ)} be the symmetric
spherical cap with direction x and angle θ.

II. PRELIMINARIES AND PROBLEM STATEMENT

We consider the following switched linear system

x(t+ 1) = Aσ(t)x(t) +Bu(t), t ∈ Z+, (1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the
input and σ(t) : Z+ → M := {1, 2, · · · ,M} is a time-
dependent switching signal that indicates the current active
mode of the system among M possible modes in A :=
{A1, A2, · · · , AM}. In this paper, we consider the case in
which the switching signal is changing arbitrarily and cannot
be observed, i.e., the information on the switching signal
is not available. Note that the input matrix B is constant.
Our goal is to find a stabilizing state feedback K ∈ Rm×n
under arbitrary switching, i.e., the closed-loop system below
is stable:

x(t+ 1) = (Aσ(t) +BK)x(t), t ∈ Z+. (2)

For notational convenience, let AK := {A1 + BK,A2 +
BK, · · · , AM +BK} for a given K ∈ Rm×n. The stability
of System (2) under arbitrary switching can be described by
the joint spectral radius (JSR) of the matrix set AK defined
by [22]

ρ(AK) := lim
k→∞

max
σσσ(k)∈Mk

‖ĀAAσσσ(k)(K)‖1/k (3)

where σσσ(k) := {σ(0), σ(1), · · · , σ(k− 1)} and ĀAAσσσ(k)(K) =
(Aσ(k−1) + BK) · · · (Aσ(1) + BK)(Aσ(0) + BK). System
(2) is asymptotically stable when ρ(AK) < 1. Hence, state
feedback stabilization of System (1) amounts to finding a
K ∈ Rm×n such that ρ(AK) < 1. However, the compu-
tation of the JSR of a set of matrices is known to be a
difficult problem except for some special cases, let alone its
optimization in the context of control design. For this reason,
we use tractable sufficient conditions for upper bounds on
the JSR, see [22]. The following proposition provides a
sufficient condition that can be computed via semidefinite
programming [23].

Proposition 1 ([22, Prop. 2.8]): Consider the closed-loop
matrices AK for some state feedback K ∈ Rm×n. If there
exist γ ≥ 0 and P � 0 such that A>PA � γ2P , ∀A ∈ AK ,
then ρ(AK) ≤ γ.

From this proposition, we formulate the following non-
linear semidefinite optimization problem for stabilization of

switched linear systems:

min
γ≥0,P,K

γ (4a)

s.t. (A+BK)>P (A+BK) � γ2P, ∀A ∈ A (4b)
P � 0. (4c)

Using the Schur complement [23] with Q = P−1 and Y =
KQ, the nonlinear constraints in (4) can be converted into
linear matrix inequalities (LMI):

min
γ≥0,Q,Y

γ (5a)

s.t.
(

γ2Q QA> + Y >B>

AQ+BY Q

)
� 0, ∀A ∈ A (5b)

Q � 0. (5c)

Such a transformation is widely used in stability analysis
and control design, see, e.g., [24]. When the matrices A are
known, Problem (5) can be efficiently solved via semidefinite
programming and bisection on γ.

In this paper, we attempt to solve the stabilization problem
of black-box switched linear systems (where the matrices
A are unknown) in a data-driven fashion. To this end, we
reformulate Problem (4) as a problem with infinite number
of constraints below:

γ∗ := min
γ≥0,P,K

γ (6a)

s.t. (Ax+BKx)>P (Ax+BKx) ≤ γ2x>Px,
∀A ∈ A, ∀x ∈ S (6b)

P � 0. (6c)

This problem is equivalent to Problem (4) thanks to the
homogeneity of the closed-loop system in (2). As we will
show later, the formulation in (6) allows us to develop model-
free control design. Note that the transformation in (5) is no
longer possible for Problem (6). The following assumption
is needed.

Assumption 1: The state x(t) can be fully observed for
all t ∈ Z+, the input matrix B is time-invariant and known,
and the number of modes (or an upper bound) is available.

The assumption that B is time-invariant is not restrictive
in many applications, for instance, when the switching only
occurs in some parameters of the dynamics. Such an assump-
tion is often made in the literature, see, e.g., [4].

III. MAIN RESULTS

This section presents our model-free feedback stabilization
method for black-box switched linear systems. We first for-
mulate a sample-based stabilization problem, which consists
of a set of bilinear matrix inequalities (BMI). Then, to solve
this problem, we present an algorithm that generates feasible
iterates. Finally, probabilistic guarantees on the obtained
solution are provided via geometric analysis.

4401

Authorized licensed use limited to: Univ Catholique de Louvain/UCL. Downloaded on July 18,2024 at 09:09:05 UTC from IEEE Xplore.  Restrictions apply. 



A. Sampled stabilization problem

For the model-free design, we sample a finite set of initial
states and switching modes. More precisely, we randomly
and uniformly generate N initial states on S and N modes
inM, which are denoted by ωN := {(xi, σi) ∈ S×M : i =
1, 2, · · · , N}. From this random sampling, we observe the
trajectories of the open-loop system of System (1) with u = 0
and obtain the data set {(xi, Aσixi) : i = 1, 2, · · · , N},
where Aσi

xi is the successor of the initial state xi. Note
that the switching signal is not to be observed.

For the given data set ωN (and {(xi, Aσi
xi)}Ni=1), we

define the following sampled problem:

min
γ≥0,P�0,K

γ (7a)

s.t. (Aσx+BKx)>P (Aσx+BKx) ≤ γ2x>Px,
∀ (x, σ) ∈ ωN (7b)

Using the Schur complement [23] and the homogeneity
property (see the extended version in [25]), this problem can
be equivalently written as the following BMI problem

min
γ≥0,P�I,K

γ (8a)

s.t.
(

γ2x>Px (Aσx+BKx)>P
P (Aσx+BKx) P

)
� 0,

∀ (x, σ) ∈ ωN (8b)

The advantage of this reformulation is that the nonlinear
constraints in Problem (7) are decoupled into bilinear con-
straints, which allows to use an alternating algorithm as
shown below.

B. An alternating algorithm

While quite a few algorithms and software packages are
available for solving Problems (7) or (8), see, e.g., [26] and
the references therein, we use an alternating minimization
algorithm between P and K for its simple implementation.
Thanks to the variable γ, feasibility is guaranteed at each
iteration. Given a fixed P , we define:

min
γ≥0,K

γ (9a)

s.t.
(

γ2x>Px (Aσx+BKx)>P
P (Aσx+BKx) P

)
� 0,

∀ (x, σ) ∈ ωN (9b)

When P is fixed in (8), the BMI constraints become LMI
constraints and Problem (9) can be solved using convex
optimization solvers [23]. Given a fixed K, we also define:

min
γ≥0,P�I

γ (10a)

s.t. (Aσx+BKx)>P (Aσx+BKx) ≤ γ2x>Px
∀ (x, σ) ∈ ωN (10b)

This problem can be solved by bisection on γ with the
solution of (9) being the initial guess. The overall procedure
is summarized in Algorithm 1. Note that this alternating
algorithm always terminates though it does not necessarily
converge to a (local) optimum of Problem (8).

Algorithm 1 Alternating minimization for stabilization
Input: {(xi, Aσi

xi)}, B and some tolerance εtol > 0
Output: γ(ωN ), P (ωN ), and K(ωN )

Initialization: Let k ← 0 and Pk ← In; Obtain Kk and
γk from (9) with P = Pk;

1: Obtain Pk+1 from (10) with K = Kk;
2: Obtain Kk+1 and γk+1 from (9) with P = Pk+1;
3: if ‖γk+1 − γk‖ < εtol then
4: γ(ωN )← γk+1, P (ωN )← Pk+1, K(ωN )← Kk+1;
5: Terminate;
6: else
7: Let k ← k + 1 and go to Step 1.
8: end if

C. Probabilistic stability guarantees

We now derive formal stability guarantees on the solution
obtained from Algorithm 1. Some definitions are needed. For
any θ ∈ [0, π/2], we let δ(θ) be the measure of the symmetric
spherical cap with angle θ: i.e., δ(θ) = µ(Cap(x, θ)) for
any x ∈ S. The function δ is strictly increasing with θ, and
thus we can define its inverse, denoted by δ−1. In fact, it
holds (see, e.g., [11]) that δ(θ) = I(sin2(θ); n−12 , 12 ), where
I(x; a, b) is the regularized incomplete beta function defined
as

I(x; a, b) :=

∫ x
0
ta−1(1− t)b−1dt∫ 1

0
ta−1(1− t)b−1dt

; (11)

see also Figure 1 for an illustration.
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Fig. 1. Measure µ of the symmetric spherical cap Cap(x, θ) in Rn for
different values of n.

Let us also recall the notions of covering and packing
numbers, see Chapter 27 of [19] for details. We adapt the
classic definitions to the unit sphere.

Definition 1: Given ε ∈ (0, 1), a set Z ⊂ S is called an ε-
covering of S if, for any x ∈ S, there exists z ∈ Z such that
|z>x| ≥ cos(θ) where θ = δ−1(ε). The covering number
Nc(ε) is the minimal cardinality of an ε-covering of S.

Definition 2: Given ε ∈ (0, 1), a set Z ⊂ S is called an ε-
packing of S if, for any two z, v ∈ Z, |z>v| < cos(θ) where
θ = δ−1(ε). The packing number Np(ε) is the maximal
cardinality of an ε-packing of S.

With these definitions, the following lemma is obtained.
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Lemma 2: For any ε ∈ (0, 1),

Nc(ε) ≤ Np(ε) ≤
1

δ( 1
2δ
−1(ε))

. (12)

Proof: The first inequality follows from the fact that any
ε-packing with maximal cardinality is also an ε-covering. To
prove the second inequality, let Z be the ε-packing with the
maximal cardinality. Let θ = δ−1(ε). From the definition
of an ε-packing, the spherical caps {Cap(z, θ/2)}z∈Z are
disjoint. Hence,

∑
z∈Z µ(Cap(z, θ/2)) ≤ 1, which leads to

the second inequality.
Remark 1: The definitions above are similar to those in

[27], except that we consider symmetric spherical caps, to
take into account the symmetry of the problem.

We then adapt the definition of ε-covering to the joint set
S×M below.

Definition 3: Given ε ∈ (0, 1), a set ω ⊂ S×M is called
an ε-covering of S ×M if, for any (x, σ) ∈ S ×M, there
exists z ∈ S such that (z, σ) ∈ ω and |z>x| ≥ cos(θ) where
θ = δ−1(ε).

The following lemma shows probabilistic properties of the
sample ωN , which are needed for deriving formal guarantees
on the controller.

Lemma 3: Given N ∈ Z+, let ωN be independent and
identically distributed (i.i.d) with respect to the uniform
distribution P over S×M. Then, given any ε ∈ (0, 1), with
probability no smaller than 1−B(ε;N), ωN is a ε-covering
of S×M, where

B(ε;N) :=

M

(
1−

δ
(
1
2δ
−1(ε)

)
M

)N
δ( 1

4δ
−1(ε))

. (13)

Proof: Consider a maximal ε′-packing Z of S with
ε′ = δ( 1

2δ
−1(ε)) and let θ = δ−1(ε′) = 1

2δ
−1(ε). From the

proof of Lemma 2, {Cap(z, θ)}z∈Z covers S. Suppose ωN
is sampled randomly according to the uniform distribution,
then the probability that each set in {Cap(z, θ)}z∈Z contains
M points with M different modes is no smaller than 1 −
Np(ε′)M(1− ε′

M )N ≥ 1−B(ε;N). When this happens, for
any (x, σ) ∈ S ×M, there exists a pair (z, σ) ∈ ωN such
that |x>z| ≥ cos(2θ). This completes the proof.

The relation between ρ(AK(ωN )) and γ(ωN ) can be
derived via geometric analysis, as shown below. Recall that
ρ(AK(ωN )) is the JSR of the closed-loop system with u =
K(ωN )x.

Lemma 4: Given N ∈ Z+ and ωN ⊂ S × M, let
γ(ωN ), P (ωN ), and K(ωN ) be obtained from Algorithm 1.
Suppose ωN is an ε-covering of S×M. Then,

ρ(AK(ωN )) ≤
γ(ωN )

1− κ(P (ωN ))(1− cos(δ−1(ε)))
(14)

where κ(P (ωN )) is the condition number of P (ωN ), and
with the convention that if κ(P (ωN ))(1− cos(δ−1(ε))) ≥ 1,
then the right-hand side of (14) is infinite.

Proof: We only give a sketch of the proof due to the
page limit and the detailed proof can be found in [25].

For notational convenience, we drop the argument in
P (ωN ) and K(ωN ) in the proof. Consider the Cholesky
decomposition of P = L>L, let

ω̃N :=
{( Lz

‖Lz‖
, σ
)

: (z, σ) ∈ ωN
}
⊂ S×M. (15)

Step 1: We first show that if ωN is an ε-covering of S×M,
then ω̃N is an ε̃-covering of S ×M for some ε̃ > 0, that
is, for any (x̃, σ) ∈ S × M, we want to show that there
exists (z̃, σ) ∈ ω̃N such that |z̃>x̃| ≥ cos(θ̃) where θ̃ =
δ−1(ε̃). Note that any x̃ ∈ S can be uniquely expressed as
x̃ = Lx/‖Lx‖ for some x ∈ S. Let x̃ = Lx/‖Lx‖ ∈ S.
Sine ωN is an ε-covering of S × M, from the definition,
there exists (z, σ) ∈ ωN such that |x>z| ≥ cos(θ) where
θ = δ−1(ε), which implies that ‖x− z‖ ≤

√
2− 2 cos(θ) or

‖x+z‖ ≤
√

2− 2 cos(θ). Now, let us look at the value |x̃>z̃|
where z̃ = Lz/‖Lz‖ ∈ ω̃N . Without loss of generality, we
consider the case that ‖x− z‖ ≤

√
2− 2 cos(θ). Hence, via

some manipulations, we get that [25, Lemma 4]

|(Lx)>Lz|
‖Lx‖‖Lz‖

≥ 1− κ(P )(1− cos(θ)). (16)

Hence, ω̃N is a ε̃-covering of S ×M with ε̃ = δ(θ̃) and
cos(θ̃) = 1− κ(P )(1− cos(θ)).

Step 2: Now, let us define:

ω̃σN := {x : (x, σ) ∈ ω̃N}, ∀σ ∈M. (17)

Via geometric analysis, we get the following result [25,
Lemma 4]:

cos(θ̃)

γ(ωN )
ÃσB ⊆ B,∀σ ∈M (18)

where Ãσ := LAσL
−1 + LBKL−1. As a consequence, we

obtain that, ∀σ ∈M,

(Aσ +BK)>P (Aσ +BK) �
(
γ(ωN )

cos(θ̃)

)2

P. (19)

Finally, by combining (19) with Proposition 1, we get that
γ(ωN )

cos(θ̃)
is an upper bound on ρ(AK), concluding the proof

of the lemma.
Putting all the pieces together, we arrive at our main

theorem.
Theorem 5: Given N ∈ Z+, let ωN be i.i.d with re-

spect to the uniform distribution P over S ×M. Suppose
γ(ωN ), P (ωN ), and K(ωN ) are obtained from Algorithm
1. Then, for any ε ∈ (0, 1), with probability no smaller
than 1 − B(ε;N), the JSR of the closed-loop system (2)
with K = K(ωN ) is bounded from above by γ(ωN )/(1 −
κ(P (ωN ))(1−cos(δ−1(ε)))), where B(ε;N) is given in (13).

Proof: From Lemma 3, with probability no smaller than
1−B(ε;N), ωN is a ε-covering of S×M. Combining this
with Lemma 4, we obtain the statement.

Remark 2: The results above bear some similarities with
the probabilistic stability guarantees in [11], [20], [21] which
are concerned with autonomous systems, the major differ-
ence is that the bound in this paper is applicable for any
feasible solution while [11], [20], [21] rely on the optimality
of the solution.
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IV. COMPUTATIONAL AND PRACTICAL ASPECTS

In this section, we discuss some computational and prac-
tical issues of our approach.

A. Input-state data and normalization
In some situations, the received data is a set of input-

state data, i.e., {(xi, ui, x+i ) : i = 1, 2, · · · , N} where x+i =
Aσi

xi+Bui and ui is the ith input. As B is known, we can
convert this data set into {(xi, x+i −Bui) : i = 1, 2, · · · , N}.
We can then apply our approach on this converted data
set. Furthermore, the states may not lie on the unit sphere.
While the solution of the sampled problem in (7) does not
change from a theoretical point of view, we can use the
scaled data {(xi/‖xi‖, (x+i −Bui)/‖xi‖) : i = 1, 2. · · · , N}
to improve numerical stability. If the samples follow an
isotropic Gaussian distribution centered at zero (with the
covariance matrix being a scalar variance multiplied by the
identity matrix) and are generated independently, the scaled
points are uniformly distributed on the unit sphere and hence
our probabilistic guarantees in Theorem 5 are still valid.

B. Sum of squares optimization
Quadratic stabilization of switched systems can be very

restrictive. To reduce conservatism, we can use sum of
squares (SOS) techniques, which have already been used in
[28] to improve the bound on the JSR. In the framework
of data-driven stability analysis, the application of SOS
optimization has already been proved useful for the case of
autonomous systems in [20]. Here, we want to show that SOS
techniques are also applicable for the stabilization problem.

Let us first recall some definitions in SOS optimization
[28]. Given x ∈ Rn and d ∈ Z+, let x[d] denote the d-lift
of x which consists of all possible monomials of degree d,
indexed by all the possible exponents α of degree d

x[d]α =
√
α!xα (20)

where α = (α1, · · · , αn) with
∑n
i=1 αi = d and α! denotes

the multinomial coefficient

α! :=
d!

α1! · · ·αn!
. (21)

The d-lift of a matrix A ∈ Rn×n is defined as: A[d] : xd →
(Ax)[d]. The following proposition provides a tighter bound
for the JSR.

Proposition 6 ([22], Thm. 2.13): Consider the closed-loop
matrices AK for some state feedback K ∈ Rm×n. For any
d ∈ Z+(d ≥ 1), if there exist γ ≥ 0 and P � 0 such that,
∀A ∈ AK, x ∈ S,

((Ax)[d])>P (Ax)[d] ≤ γ2d(x[d])>Px[d], (22)

where P ∈ RD×D with D =
(
n+d−1

d

)
, then ρ(AK) ≤ γ.

In the model-free case, we formulate the following sam-
pled problem using the given data set ωN :

min
γ≥0,P�0,K

γ (23a)

s.t. ((Aσx+BKx)[d])>P (Aσx+BKx)[d]

≤ γ2(x[d])>Px[d], ∀ (x, σ) ∈ ωN (23b)

This becomes a polynomial optimization problem and is
much more computationally demanding than Problem (8).
For cases with moderate sizes, some methods and software
toolboxes for solving such a problem are available [29]–[31].
To reduce the complexity, we can also use an alternating min-
imization scheme between P and K as shown in Algorithm
1 for the quadratic case. Similarly, once a feasible solution
is obtained, we can also derive probabilistic guarantees by
combing the results in Section III-C and [20].

V. NUMERICAL EXPERIMENTS

Consider a switched linear system with 3 modes:

A1 =

(
1.2 0.9
−0.1 0.8

)
, A2 =

(
1.8 3.2
−0.5 −0.16

)
,

A3 =

(
−0.7 −1.2
0.6 1.4

)
, B =

(
1
1

)
.

First, let N = 1000 and set the confidence level to B(ε;N) =
0.01. The corresponding value of ε is 0.0209, computed via
bisection using (13). With this setting, the upper bound in
(14) is valid with probability larger than 99%. For conve-
nience, let

γ(ωN ) :=
γ(ωN )

1− κ(P (ωN ))(1− cos(δ−1(ε)))
.

We then generate ωN according to the uniform distribution
on S ×M and apply Algorithm 1 with the tolerance being
εtol = 0.1. The obtained solution is:

γ(ωN ) = 0.8365, K(ωN ) =
(
−0.2886 −0.7086

)
,

P (ωN ) =

(
4.3990 6.7572
6.7572 14.4331

)
.

The bound in (14) is γ(ωN ) = 0.8701. To empirically verify
the solution, we randomly generate a few trajectories of the
closed-loop system with K(ωN ), see Figure 2.

-2 -1 0 1 2
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-0.5

0

0.5

1

1.5

Fig. 2. Random trajectories of the closed-loop system: the blue circles are
the initial states.

We then apply the proposed approach to higher dimen-
sional examples. Again, the confidence level is set to 0.01,
i.e., B(ε;N) = 0.01. We choose different values of N and
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compute the corresponding ε that satisfies B(ε;N) = 0.01.
The input matrix B is set to be 111n. The dynamics matrices
A are generated randomly for different sizes. Note that these
random examples may not be stabilizable by a static linear
feedback. Hence, in the simulation, we only compute the
upper bound γ(ωN ) and compare it to the true solution γ∗

defined in Problem (6). The results are shown in Figure 3.
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0.5

1

1.5
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2.5
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3.5

n = 3, M = 4

n = 4, M = 4

n = 4, M = 6

Fig. 3. Convergence of the sample-based solution to the true solution for
systems of different dimensions and modes.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes a data-driven approach for stabiliza-
tion of black-box switched linear systems in which the dy-
namics matrices and the switching signal are unknown. The
stabilization problem is formulated as a BMI problem using
a finite number of trajectories. We then use an alternating
minimization algorithm to solve this problem. While this
data-based solution may not be a stabilizer for the actual
system, probabilistic stability guarantees are provided using
geometric analysis and the notions of covering number and
packing number. In the future, we plan to extend this ap-
proach to nonlinear stabilizing feedback and output feedback
stabilization.
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