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Abstract— We study the problem of synthesizing polyhedral
Lyapunov functions for hybrid linear systems. Such functions
are defined as convex piecewise linear functions, with a fi-
nite number of pieces. We first prove that deciding whether
there exists an m-piece polyhedral Lyapunov function for a
given hybrid linear system is NP-hard. We then present a
counterexample-guided algorithm for solving this problem. The
algorithm alternates between choosing a candidate polyhedral
function based on a finite set of counterexamples and verifying
whether the candidate satisfies the Lyapunov conditions. If the
verification fails, we find a new counterexample that is added to
our set. We prove that if the algorithm terminates, it discovers
a valid Lyapunov function or concludes that no such Lyapunov
function exists. However, our initial algorithm can be non-
terminating. We modify our algorithm to provide a terminating
version based on the so-called cutting-plane argument from
nonsmooth optimization. We demonstrate our algorithm on
numerical examples.

I. INTRODUCTION

Stability analysis of dynamical systems is of great im-
portance in control theory, since many controllers seek to
stabilize a system to a reference state or trajectory [1], [2].
Lyapunov methods are commonly used to prove stability of
dynamical systems using a positive-definite function, called
a Lyapunov function, whose value strictly decreases along all
trajectories of the systems, except at the equilibrium point.

In this paper, we focus on the stability analysis of hybrid
linear systems. These are systems with multiple modes, each
with a different continuous-time linear dynamics and state-
dependent switching between the modes. These systems ap-
pear naturally in a wide range of applications, or as abstrac-
tions of more complex dynamical systems [3]. To study the
stability of these systems, we rely on polyhedral functions,
which are convex piecewise linear functions. This class of
functions is interesting for Lyapunov analysis because the
expressiveness of the function can be easily modulated by
adjusting the number of linear pieces. Furthermore, for a
large class of hybrid systems (including switched linear
systems), if the system is stable, then a polyhedral Lyapunov
function is guaranteed to exist for the system [4].

In this paper, we first establish that the problem of deciding
whether there exists a polyhedral Lyapunov function with
given number of linear pieces for a given hybrid linear
system is NP-hard. Despite the important body of work on
polyhedral Lyapunov functions, the study of the algorithmic
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complexity of the underlying problem when the number of
linear pieces is fixed seems to be elusive. We fill this gap,
thereby providing an insight on the complexity of algorithms
meant to solve the problem with guarantees.

Next, we introduce a counterexample-guided algorithm
to compute polyhedral Lyapunov functions for hybrid lin-
ear systems. Our approach alternates between choosing a
candidate Lyapunov function based on a finite set of coun-
terexamples and verifying whether the candidate satisfies the
Lyapunov conditions. If the verification fails, we find a new
counterexample that is added to our set. In effect, this new
counterexample removes the current candidate (and many
others) from further consideration. The learning–verification
process is repeated until either a valid Lyapunov function is
found or no such function is shown to exist for the system.
The key challenges in this approach are twofold. First, there
are multiple ways of removing candidates using a counterex-
ample while keeping the set of remaining candidates convex.
Our approach uses a tree-based search algorithm to explore
these possibilities. Second, the algorithm as presented thus
far would be non-terminating. We modify our approach
to guarantee termination using the cutting-plane argument,
wherein a careful choice of the candidate and the pruning
of branches of the tree based on the inner radius of the
feasible set of candidates are used to ensure termination
and get upper bounds on the complexity of the algorithm.
The output of the modified algorithm is either a polyhedral
Lyapunov function for the system, or the conclusion that no
“ϵ-robust” function exists for the system, where ϵ > 0 is
an input to the algorithm. In effect, we conclude that if a
polyhedral Lyapunov function were to exist for the system,
then perturbing its coefficients by more than ϵ in the L2-norm
will cause the function not to be a Lyapunov function.
Comparison with the literature. Blondel et al. provide a
comprehensive introduction to the computational complex-
ity of numerous decision problems related to control and
stability of dynamical systems [5]. The problem of deciding
stability of switched linear systems (a subclass of hybrid
linear systems) is shown to be undecidable. The complexity
of deciding whether a dynamical system admits a polyhedral
Lyapunov function with a given number of linear pieces
seems to not have been addressed so far. The same problem
without the bound on the number of pieces is closely related
to the problem of stability verification using general convex
Lyapunov functions (see, e.g., [4]).

The problem of synthesizing Lyapunov functions for
dynamical systems has received a lot of attention in the
literature [1], [4]. Different classes of functions have been
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considered for that purpose, resulting in various trade-offs
between expressiveness and computational burden. Polyno-
mial functions have proved useful for stability analysis [6],
but they can be too conservative for some hybrid systems,
as shown in Example 1. Piecewise polynomial Lyapunov
functions allow to reduce the conservatism [7], at the cost
of introducing hyperparameters and/or increasing the com-
plexity. The computation of polyhedral Lyapunov functions
has also received attention, for instance, using optimization-
based [8]–[10] and set-theoretic methods [11], [12]. One
drawback of these approaches is that they generally lack
guarantees of convergence (to a valid Lyapunov function), or
guarantees of termination and complexity, or involve many
hyperparameters. By contrast, the only parameters in our
approach are the number of linear pieces and the accuracy ϵ,
and the algorithm always terminates and finds a polyhedral
Lyapunov function, or ensures that no ϵ-robust such function
exists for the system.

The idea of learning Lyapunov functions from data and
verifying the result has been explored by many researchers,
starting with [13], whose approach relies on random sam-
pling of states, learning a candidate Lyapunov function from
the samples and verifying the result. Our approach falls
more precisely into the category of Counterexample-Guided
Inductive Synthesis (CeGIS) techniques, which consist in
iteratively adding counterexamples from the verification step.
These techniques have been used in a wide range of control
problems [14]–[20]. Particularly related to our work, [20]
searches for neural-network Lyapunov functions with ReLU
activation functions, using MILP for the verification; and [8]
searches for polyhedral Lyapunov functions, using Linear
Programming for the verification and updating the domain of
the linear pieces from the counterexamples. However, both
approaches lack guarantees of convergence and complexity.
In a recent work [21], we also studied counterexample-
guided approaches to compute polyhedral Lyapunov func-
tions without a bound on the number of linear pieces.

Prabhakar and Soto present a CeGIS approach for veri-
fying stability of polyhedral hybrid systems with piecewise
constant differential inclusions by using counterexamples to
drive a partitioning of the state-space [22]. The partitioning
is used to compute a weighted graph whose cycles provide
evidence of stability if the product of weights for each cycle
is less than one. Failing this, we conclude potentially unstable
behavior. Prabhakar and Soto’s approach is distinct from our
approach in two important ways: (a) it does not seek to
compute a Lyapunov function but instead focuses on building
a finite graph abstracting the behavior of the system and (b)
they handle polyhedral inclusions, which are a different type
of dynamics from those considered here.
Organization. Section II introduces the problem of inter-
est and preliminary concepts related to Lyapunov analysis
and polyhedral functions. In Section III, we describe the
algorithm and its properties. Finally, in Section IV, we
demonstrate the applicability on numerical examples.
Notation. N denotes the set of nonnegative integers. We let
N∗ = N \ {0} and Rd

∗ = Rd \ {0}. For n ∈ N, we let

[n] = {1, . . . , n}.

II. PRELIMINARIES AND PROBLEM DESCRIPTION

A. Hybrid linear systems

Hybrid linear systems consist of a finite set of modes Q,
such that for each mode q ∈ Q, there is a closed polyhedral
cone Hq ⊆ Rd called the domain, and a flow matrix Aq ∈
Rd×d. Let F : Rd ⇒ Rd be the set-valued function defined
by F(x) = {Aqx : q ∈ Q, x ∈ Hq}. For the purpose of our
analysis, F describes completely the dynamics of the system.
Therefore, in the following, we will refer to the system as
system F . A function ξ : R≥0 → Rd is a trajectory of system
F if ξ is absolutely continuous and satisfies the differential
inclusion ξ′(t) ∈ F(ξ(t)) for almost all t ∈ R≥0 [23].

Remark 1: Note that the hybrid system considered above
is a particular instance of hybrid linear systems, since there
is no update of the continuous state at mode switches [3].
Extensions of our work to a more general class of hybrid
systems will be considered in the future work.

B. Polyhedral Lyapunov functions

A polyhedral function V : Rd → R can be described as the
pointwise maximum of a finite set of linear functions, i.e.,
V (x) = maxi∈[m] c

⊤
i x where m ∈ N>0 and {ci}mi=1 ⊆ Rd.

To be a Lyapunov function for system F , a piecewise
smooth function V : Rd → R must (i) be positive every-
where except at the origin, and (ii) strictly decrease along
all trajectories of the system not starting at the origin [1]. In
the case of polyhedral functions, a sufficient condition for
being a Lyapunov function and thereby ensuring stability of
the system, is as follows [24, Proposition 3]:

Proposition 1: A polyhedral function V with linear pieces
{ci}mi=1 is a Lyapunov function for system F if
(C1) for all x ∈ Rd

∗, there is i ∈ [m] such that c⊤i x > 0;
(C2) for all x ∈ Rd

∗, v ∈ F(x) and i ∈ [m] with c⊤i x =
V (x), it holds that c⊤i v < 0.

In other words, a set a vectors {ci}mi=1 represents a
polyhedral Lyapunov function for system F if

(∀x ∈ Rd
∗) (∀ i ∈ [m]) either (∃ j ∈ [m]) c⊤i x < c⊤j x

or [ c⊤i x > 0 and (∀ v ∈ F(x)) c⊤i v < 0 ].
(1)

The condition in (1) is difficult to enforce because (i) it
involves an infinite set of constraints, and (ii) each constraint
involves a disjunction of m clauses1. In the next section,
we describe a tree-based counterexample-guided algorithm
to tackle this problem. The idea is to (i) consider only a
finite set of constraints, obtained from the counterexamples,
and (ii) decompose the disjunction by introducing a branch
in the tree for each clause.

We define the m-LYAP-FUN-EXISTS problem as that of
checking the existence of a polyhedral function satisfying
(1), given a hybrid linear system F and a number of pieces
m ≥ 2.

1m − 1 clauses come from the “∃ j” and one clause comes from the
condition between brackets “[. . .]”.
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Fig. 1. Hybrid linear system described in Example 1. The vector field
is represented by gray arrows and a sample trajectory starting from x =
[1.5, 0]⊤ is represented in purple.

Theorem 2: The m-LYAP-FUN-EXISTS problem is NP-
hard, even for m = 2.

Proof: See the extended version [25].
To conclude this section, let us introduce an example of

hybrid linear systems that we will use throughout the paper
to illustrate the approach.

Example 1 (Running illustrative example): Consider the
hybrid linear system with 4 modes, i.e., Q = [4], domains
corresponding to the 4 quadrants of the 2D plane, namely,
H1 = R≥0×R≥0, H2 = R≥0×R≤0, H3 = R≤0×R≤0 and
H4 = R≤0 × R≥0, and flow matrices:

A1 =

[
1
2 1
−1 −3

2

]
, A2 = A4 =

[
−1 1
−1 1

]
,

A3 =

[
1 1
−1 −1

]
+

[
0.01 0
0 0.01

]
.

This system can be seen as a piecewise linear damped
oscillator. The vector field and a trajectory starting from
x = [1.5, 0]⊤ are represented in Fig. 1. The system does not
admit a polynomial Lyapunov function (a proof is provided
in the extended version [25]). Nevertheless, as we will
see throughout the paper, we can compute a polyhedral
Lyapunov function for the system, thereby ensuring that it is
asymptotically stable.

III. COUNTEREXAMPLE-GUIDED SEARCH

We present a tree-based counterexample-guided algorithm
to find a polyhedral function satisfying (1). Our approach
maintains a tree, wherein each node is associated with a set
of constraints. At each step, the algorithm picks a leaf of the
tree and expands it as follows:

1) Learning: Solve a linear program to obtain a candidate
polyhedral Lyapunov function compatible with the as-
sociated set of constraints Y .

2) Verification: The candidate solution is then fed to a
verifier that checks whether it satisfies (1). If this fails,
the verifier provides a pair (x, i) ∈ Rd

∗ × [m], called a
counterexample, for which (1) is not satisfied.

3) Expansion: If a counterexample is found, the algorithm
creates m child nodes in the tree. Each child node is

associated with a set of constraints obtained by adding
to Y one of the clauses in (1) for the counterexample
(x, i) (see below for details).

The sets of constraints associated to each node are sets of
triples of the form (x, i, j) ∈ Rd

∗ × [m]× [m] wherein (x, i)
are obtained from the counterexamples, and j is an index
indicating which clause of (1) must be enforced at (x, i).
More precisely, if i ̸= j, we enforce the clause

c⊤i x < c⊤j x, (2)

and if i = j, we enforce the clause

c⊤i x > 0 and (∀ v ∈ F(x)) c⊤i v < 0. (3)

Our approach systematically explores this tree and stops
when one leaf of the tree yields a valid Lyapunov function.
Under some modifications of the basic scheme above, we
prove that the depth of this tree is bounded. This yields
an upper bound on the running-time complexity of the
algorithm.

The section is organized as follows: first, we describe the
learning phase, then the verification phase, and finally the
expansion phase which yields the overall recursive process.

A. Learning Phase

Given a set of constraints Y ⊆ Rd
∗ × [m] × [m], we aim

to find vectors (ci)
m
i=1 ⊆ Rd compatible with Y according

to conditions (2)–(3). Therefore, we solve the following
feasibility problem:

find ci ∈ [−1, 1]d, i ∈ [m] (4a)

s.t.
{

(2) if i ̸= j
(3) if i = j

, ∀ (x, i, j) ∈ Y, . (4b)

When Y is finite, (4) is a Linear Program and thus can be
solved efficiently [26], [27]. We denote by S(Y ) the set of
feasible solutions of (5). A set of vectors (ci)mi=1 ⊆ Rd is thus
a candidate solution compatible with Y iff (ci)

m
i=1 ∈ S(Y ).

Note that S(Y ) is a convex set.

B. Verification Phase

We verify whether a candidate solution (ci)
m
i=1 computed

in the learning phase provides a valid Lyapunov function for
system F , by checking whether it satisfies (C1) and (C2)
in Proposition 1. If this is not the case, we generates a pair
(x, i) ∈ Rd × [m], called a counterexample, at which (1) is
not satisfied.

First, we verify that (C1) holds for the candidate solution
by searching for x ∈ Rd

∗ such that V (x) ≤ 0. Without loss
of generality, we can set x to be on the boundary of [−1, 1]d.
Therefore, we solve 2d Linear Programs, for each facet F
of [−1, 1]d:

find x ∈ Rd (5a)

s.t. c⊤i x ≤ 0, ∀ i ∈ [m], (5b)
x ∈ F. (5c)

If for all facet F , (5) is infeasible, then (C1) holds. However,
if there is a facet F for which (5) has a feasible solution x,
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Fig. 2. Left: A point x ∈ Rd
∗ (in red) at which V (x) ≤ 0. Right: A

point x ∈ Rd
∗ (in red) at which (C2) in Proposition 1 is not satisfied for the

system described in Example 1.

then it holds that x ̸= 0 and V (x) ≤ 0. We find index i ∈ [m]
with c⊤i x = V (x), yielding a counterexample (x, i).

If (C1) is shown to hold, we next verify that (C2) holds
too. Therefore, we solve m|Q| LPs, for each i ∈ [m] and
q ∈ Q,

find x ∈ Rd (6a)

s.t. c⊤i x = 1 ≥ c⊤j x, ∀ j ∈ [m], (6b)

x ∈ Hq, (6c)

c⊤i Aqx ≥ 0. (6d)

If for all i, q, (6) is infeasible, then (C2) holds. However, if
there are i, q for which (6) has a feasible solution x, then
it holds that x ̸= 0, c⊤i x = V (x) and c⊤i v ≥ 0 wherein
v = Aqx ∈ F(x), so that (x, i) is a counterexample.

Example 2 (Running illustrative example): Consider the
4-piece polyhedral function V whose 1-sublevel set is rep-
resented in Fig. 2-left (in yellow). The point x = [−1, 0]⊤
(in red) provides a direction in which αx is in the 1-sublevel
set of V for all α ≥ 0. This implies that V (x) ≤ 0, so that
x is a feasible solution to (5).

Now, consider the system of Example 1 and the 10-piece
polyhedral function V whose 1-sublevel set is represented
in Fig. 2-right (in yellow). For q = 4, (6) has a feasible
solution x = [0, 1.2]⊤ (red dot). The flow direction of the
system from x is represented in Fig. 2-right (red line). We
see that the flow direction points towards the exterior of the
1-sublevel set of V .

C. Expansion and Overall Algorithm

The algorithm organizes the set of constraints as a tree
with the following properties: (a) each node u is associated
with a set of constraints Y (u) and thus with a convex set
of candidates S(u) := S(Y (u)); (b) the root of the tree
is associated with Y (root) = ∅; and (c) each node u has
m children, u1, . . . , um, with associated sets of constraints
Y (uj) = Y (u) ⊎ {(x, i, j)}, wherein (x, i) is the coun-
terexample found during the verification of the candidate at
node u. Each leaf of the tree is marked as UNEXPLORED or
INFEASIBLE.

Each iteration of our algorithm is as follows:

Algorithm 1: Find Polyhedral Lyapunov Function.
Data: system F , number of pieces m.
Result: (ci)mi=1: polyhedral Lyapunov function

coefficients.
1 Initial tree is set to a root with Y (root) = ∅.
2 while Tree has UNEXPLORED leaves do
3 Choose UNEXPLORED leaf u.
4 if S(u) is empty then mark u as INFEASIBLE.
5 else
6 Choose (ci)

m
i=1 ∈ S(u)

7 Verify (ci)
m
i=1 using (5) and (6).

8 if (ci)mi=1 is Lyapunov then return (ci)
m
i=1

9 else
10 Let (x, i) be the counterexample.
11 Add m children u1, . . . , um to u.
12 for j = 1, . . . ,m do
13 Y (uj)← Y (u) ∪ {(x, i, j)}.
14 Mark uj as UNEXPLORED.

15 Return “No Lyapunov Found”

1) Choose an UNEXPLORED leaf u.
2) Find a candidate (ci)

m
i=1 ∈ S(u).

3) Verify the candidate using (5) and (6).
4) If we find a counterexample (x, i), we add m children,

u1, . . . , um, to u wherein uj is UNEXPLORED and has
set of constraints Y (uj) = Y (u) ⊎ {(x, i, j)}.

Alg. 1 shows the pseudo-code. We will now establish some
properties of Alg. 1. Let (ci)mi=1 be a candidate chosen for
some leaf u (Line 6) and (x, i) be a counterexample that was
found for this candidate (Line 10). Consider S(uj) for some
child uj of u (Line 13).

Proposition 3: S(uj) ⊆ S(u) and (ci)
m
i=1 ̸∈ S(uj).

Proof: The first part is straightforward since Y (uj) =
Y (u)⊎ (x, i, j) ⊇ Y (u). To show that (ci)mi=1 /∈ S(uj), note
that by definition of (x, i), it holds that c⊤i x = V (x). Hence,
for all j ∈ [m] \ {i}, (2) is not satisfied. Furthermore, (x, i)
satisfies

c⊤i x ≤ 0 ∨ (∃v ∈ F(x)) c⊤i v ≥ 0.

Thus, (3) is not satisfied. We thus conclude that S(uj) cannot
contain the candidate (ci)

m
i=1.

Let us assume that the underlying system F has a polyhe-
dral Lyapunov function, given by (c∗i )

m
i=1, satisfying (1) and

without loss of generality assume {c∗i }mi=1 ⊆ [−1, 1]d.
Proposition 4: At every step of any execution of Alg. 1,

there is an unexplored leaf v such that (c∗i )
m
i=1 ∈ S(v).

Proof: See the extended version [25].
As a corollary, we get the soundness of the algorithm:
Corollary 5: If Alg. 1 returns vectors (ci)

m
i=1, then the

polyhedral function associated to (ci)
m
i=1 is a Lyapunov

function for system F . However, if Alg. 1 returns “No
Lyapunov Found”, then system F does not admit an m-piece
polyhedral Lyapunov function satisfying (1).
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Fig. 3. 4-piece polyhedral Lyapunov function V for the system in
Example 1. The blue dots are the states involved in the constraints leading to
this polyhedral function. A sample trajectory starting from x = [1.25, 0]⊤

is represented in purple. Note the small “offset” (see zoomed-in inset): the
domains of the linear pieces of V do not coincide with the domains of the
hybrid system; this is necessary for condition (C2) in Proposition 1 to be
satisfied at the boundary of these domains.

Proof: If Alg. 1 returns (ci)
m
i=1, it means that (ci)mi=1

has passed the verification phase (Line 8), thereby ensuring
that it provides a Lyapunov function for system F . If
Alg. 1 terminates without finding a Lyapunov function, it
means that all leaves are marked INFEASIBLE. By applying
Proposition 4, we note that no Lyapunov function could have
existed in the first place.

Example 3 (Running illustrative example): Consider the
system of Example 1. A 4-piece polyhedral Lyapunov func-
tion for this system was computed using Alg. 1. Its 1-sublevel
set is represented in Fig. 3 (in yellow). The states involved
in the constraints Y ∈ Rd

∗ × [m] × [m] of the node that
provided this function are represented by blue dots. We have
also represented a trajectory of the system starting from
x = [1.25, 0]⊤ (in purple). We observe that the trajectory
does not leave the 1-sublevel set, as expected.

Note that there is no guarantee that Alg. 1 will terminate.
To ensure termination, we modify the algorithm by leverag-
ing a central result in convex nonsmooth optimization, known
as the cutting-plane argument.

Therefore, assume that at Line 6 of Alg. 1, the candidate
(ci)

m
i=1 is chosen as the center of the Maximum Volume

Ellipsoid (MVE) inscribed in S(u). The MVE center of a
polyhedron can be computed efficiently using Semidefinite
Programming [27, Proposition 4.9.1]. Remember that the
rationale of adding constraints from the counterexample
(Line 13) is to exclude the candidate from further consid-
eration at all descendant nodes. The choice of the candidate
as the MVE center makes the exclusion stronger by guaran-
teeing a minimum rate of decrease of the volume of S(u)
when going from one node to any of its children. This follows
from the cutting-plane argument:

Lemma 6 (Cutting-plane argument [28]): Let S ⊆ Rr be
a bounded convex set. Let x be the MVE center of S. Let T
be a convex set not containing x. It holds that vol(S ∩T ) ≤
(1− 1

r )vol(S).
Based on the above, consider the following modification

of the algorithm. Fixed ϵ > 0 and consider Alg. 1, except
that in the learning phase, if S(u) does not contain a ball
of radius ϵ, then u is declared INFEASIBLE; otherwise, we
choose the candidate (ci)

m
i=1 as the MVE center of S(Y ).

See Alg. 2 for a pseudo-code of the modified learning phase.
It holds that the modified algorithm terminates in finite time.

Algorithm 2: Modify Alg. 1 Line 6 for termination.

1 if S(u) does not contain a ball of radius ϵ then
mark u as INFEASIBLE;

2 Choose (ci)
m
i=1 as the MVE center of S(u).

Theorem 7 (Termination and soundness): Alg. 2 always
terminates. Moreover, if Alg. 2 returns vectors (ci)

m
i=1, then

the polyhedral function associated to (ci)
m
i=1 is a Lyapunov

function for system F . If Alg. 2 returns “No Lyapunov
Found”, then system F does not admit an ϵ-robust polyhedral
Lyapunov function, that is, a polyhedral function for which
any (L2) ϵ-perturbation of the linear pieces satisfies (1).

Proof: See the extended version [25].

D. Complexity analysis

The dominant factor in the complexity of Alg. 2 is the
depth D of the tree explored during the execution of the
algorithm. From the proof of Theorem 7, it holds that

D ≤ r log(ϵ)

log(1− 1
r )

, (7)

where r = md. Alg. 2 explores at most mD+1 nodes before
termination. We deduce the following complexity bound:

Theorem 8: The complexity of Alg. 2 is

O(mm2d2 log(1/ϵ)) FLOPs.

Proof: Using the bound − log(1− 1
r ) ≥

1
r , we get that

D ≤ r2 log(ϵ). The proof then follows from (7).
The complexity of Alg. 2 is exponential in d and m.

The exponential dependence on d is to be expected from
Theorem 2 which shows that m-LYAP-FUN-EXISTS is NP-
hard, even with m = 2.

IV. NUMERICAL EXAMPLE

Consider the hybrid linear system with two modes, i.e.,
Q = [2], domains H1 = R× R≥0 and H2 = R× R≤0, and
flow matrices:

A1 =

[ −1
2 1
−1 −1

2

]
, A2 =

[ −3
4 1
−1 −3

4

]
.

Fig. 4 shows the vector field and a sample trajectory of the
system. Although a trivial quadratic Lyapunov function (e.g.,
x 7→ ∥x∥2) exists for this system, finding a polyhedral one
is challenging because many pieces are required to capture
the rotational dynamics of the system.

Using the process described in Section III, we computed a
8-piece polyhedral Lyapunov function for the system. As an
approximation of the MVE center, we used the Chebyshev
center (center of the largest enclosed Euclidean ball), which
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Fig. 4. Vector field (gray arrows), sample trajectory (purple line) and 8-
piece polyhedral Lyapunov function (yellow) for the system described in
Section IV. The blue dots are the states involved in the constraints leading
to this polyhedral function.

can be computed using Linear Programming (more efficient
and reliable than Semidefinite Programming). Although the
theoretical guarantees on the termination of the process using
the Chebyshev center are weaker than the ones with the MVE
center (see Theorem 8), this provides a powerful heuristic in
practice (see, e.g., [28, §4.4] and the references therein). The
computation takes about 60 seconds.2 The 1-sublevel set of
the polyhedral Lyapunov function is represented in Fig. 4-
right (in yellow).

V. CONCLUSIONS

In conclusion, we provide a NP-hardness result for finding
fixed-complexity polyhedral Lyapunov function for hybrid
linear systems. Furthermore, we describe a counterexample-
driven approach based on switching between learning and
verification followed by a tree of possible refutations. Our
approach is modified to yield termination but at the cost
of completeness. Our future work will focus on an efficient
implementation of the procedure described in this paper
and extensions to barrier and control Lyapunov function
synthesis.
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