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Abstract— We introduce a novel approach based on stochastic
optimization to find the optimal sampling distribution for
the data-driven stability analysis of switched linear systems.
Our goal is to address limitations of existing approaches,
in particular, the fact that these methods suffer from ill-
conditioning of the optimal Lyapunov function, which was
shown in recent work to be a direct consequence of the way the
data is collected by sampling uniformly the state space. In this
work, we formalize the notion of optimal sampling distribution,
using the perspective of stochastic optimization. This allows us
to leverage tools from stochastic optimization to estimate the
optimal sampling distribution, and then use it to collect samples
for data-driven stability analysis of the system. We show in
numerical experiments (on challenging systems of dimension up
to five) that the overall procedure is highly favorable in terms of
data usage compared to existing methods using fixed sampling
distributions. Finally, we introduce a heuristic that combines
data points from previous samples, and show empirically that
this allows an additional substantial reduction in the number
of samples required to achieve the same stability guarantees.

Index Terms— data-driven methods, stochastic optimization,
statistical learning, stability analysis, switched linear systems

I. INTRODUCTION

In recent years, data-driven methods have gained a lot of
attention for the study of cyber-physical systems because of
the increasing number of applications in which no model of
the system is available. At the same time, data has become
more and more accessible due to the outbreak of cheap,
accurate sensors, user feedback and open-source databases.
Finally, statistical learning, the mathematical field of learning
from data, has known many great advances in recent years
both in theory and practice [1]. All this together opened the
door to a new era in control theory where control and system
analysis is made from data harvested from observation of the
system and comes with formal guarantees of correctness; we
refer the reader to [2, Chapter 11] for an introduction and
further references on data-driven verification and control of
cyber-physical systems.

In this paper, we consider a prototypical class of cyber-
physical systems, known as switched linear systems [3].
These systems consist of several linear modes among which
the system can switch over time. They appear naturally in
a wide range of applications [4], or as approximations of
more complex systems. A crucial question in the study of
switched linear systems is their stability analysis [3], which
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turns out to be a very challenging problem in general even
when the model of the system is available [5]. For instance,
approximating the rate of convergence of the system (known
as the Joint Spectral Radius, or JSR) is known to be NP-hard
[5]. Nevertheless, several approximation techniques have
been proposed in the last decades leading to good results
in the model-based setting [5], [6].

However, a model of the system is not always available.
Therefore, several approaches were proposed in recent years
for the data-driven analysis of the JSR of switched linear
systems [7]–[11]. These approaches use advanced tools from
statistical learning, such as scenario optimization [12], to
learn a Lyapunov function for the system to derive bounds
on the JSR and provide probabilistic guarantees on the
correctness of the bound.

However, the classical approaches [7]–[9] strongly suffer
from a bad choice of the distribution used to sample the
data. This was shown in [11]—where additionally an in-
tuitive approach for finding a better sampling distribution
was proposed, demonstrating huge gain in data usage. In
this paper, we leverage these promising preliminary results
in two complementary directions. First, we formalize the
notion of best sampling distribution, using the perspective of
stochastic optimization. Namely, we search for the sampling
distribution that gives in average the best conditioning of
the learned Lyapunov function (shown in [11] to be one of
the main sources of conservatism). Second, we use stochastic
optimization techniques (namely stochastic gradient descent)
to learn this best sampling distribution form data. We show
with numerical experiments that the overall procedure allows
us to certify stability using less samples than other fixed-
distribution data-driven methods [8]. Finally, we introduce a
heuristic that combines data points from previous samples,
empirically demonstrating a substantial reduction in the
number of samples required to achieve the same stability
guarantees, and improving upon the heuristic method of [11]
in all experiments.

Related Works

Data-driven stability analysis of switched linear systems
is studied in [7]–[10]. These approaches suffer from the
curse of dimensionality, strongly amplified by the fact that
the data points are sampled uniformly, as demonstrated in
our recent work [11]. In [11], we introduced the method
of adaptive sampling to alleviate the dependency on the
sampling, showing a reduction of sample complexity of
several orders of magnitude. Yet, the adaptive sampling
methodology in [11] is strongly heuristic. It consists in two
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phases. 1) Sample points uniformly, and learn a Lyapunov
function from these samples. 2) Use this Lyapunov function
to obtain a new sampling distribution; sample from this
distribution and derive the stability guarantees. Although
simple, this strategy showed great potential. However, key
questions such as “what is actually a good sampling dis-
tribution?”, or “can we do better by doing more than two
steps (each time using the sampling distribution obtained
at the previous step)?”. This work aims to address these
questions by (i) formalizing the notion of optimal distribution
for data-driven stability analysis of switched linear systems,
from the lens of stochastic optimization, and (ii) providing
numerical techniques to compute the optimal distribution.
We demonstrate in numerical examples the strong benefits
of the proposed solution over the previous approaches.

Notation: Rn×n
≻0 denotes the set of positive definite n×n

matrices. Given P ∈ Rn×n
≻0 , we denote the quadratic norm

of P as ∥x∥P =
√
xTPx. For N ∈ N, [N ] denotes the set

{1, . . . , N}. We denote the unit sphere in Rn by Sn−1. Given
two datasets of size N , X := {xi}Ni=1 and X ′ := {x′

i}Ni=1, we
denote their element-wise pairing as X∥X ′ := {(xi, x

′
i)}Ni=1.

II. PROBLEM STATEMENT

We consider a discrete-time switched linear system with
m modes:

x(t+ 1) ∈ {Ax(t) : A ∈ A}, (1)

wherein A = {A1, . . . , Am} ⊆ Rn×n is a set of m matrices
in Rn×n. Since A characterizes the system in (1), in the
following, we will often refer to the system simply by A. A
trajectory of A is a function x : N → Rn such that for all
t ∈ N, the condition in (1) holds.

We are interested in the stability of system (1). We remind
that (1) is asymptotically stable if all trajectories of A
converge to the origin. The rate of exponential convergence
is called the Joint Spectral Radius (JSR) of A.

Definition 1: The joint spectral radius of A, denoted by
ρ(A), is the infimum of all r ≥ 0 for which there exists
C ≥ 1 such that every trajectory x of A satisfies that for all
t ∈ N, ∥x(t)∥ ≤ Crt∥x(0)∥.

A. Quadratic Approximation of the JSR

The JSR is notoriously difficult to approximate, even when
the matrices in A are known [5]. One way to obtain an
upper bound on the JSR is by finding a quadratic Lyapunov
function for the system. The contraction rate associated with
this function then provides an upper bound.

Definition 2: Given a positive definite matrix P ∈ Rn×n
≻0 ,

we define the contraction rate of A with respect to P by

ρ(A, P ) = max
x∈Rn\{0}, A∈A

∥Ax∥P
∥x∥P

.

The contraction rate is an upper bound on the JSR (see,
e.g., [5, Proposition 2.8]):

Theorem 1: For any P ∈ Rn×n
≻0 , ρ(A) ≤ ρ(A, P ).

Hence, quadratic Lyapunov functions allow us to bound
the JSR. However, this approach, as other model-based ap-
proaches for approximating the JSR, require the knowledge

of A. This is a limitation in several applications, thereby
justifying the use of data-driven methods.

B. Data-Driven Analysis and Random Data Collection
In the setting considered in this paper (first introduced in

[7]), we collect data by setting the system to an initial state
x and observing the state y after one time step. Repeating
this process N times yields a data set comprising N one-
step trajectories (xi, yi) ∈ Rn × Rn, where yi = Axi for
some A ∈ A, for each i ∈ [N ]. We assume that the mode
selection is a stochastic process, wherein each mode in A
has a nonzero probability of being applied independently at
each sample:1

Assumption 1: There exists α ∈ (0, 1] such that for all
A ∈ A and i ∈ [N ],

P [ yi = Axi | xi, {(xj , yj)}j ̸=i ] ≥ α.

Regarding the choice of the initial state of each sample
(xi, yi), we assume that the initial state xi can be chosen
for each i ∈ [N ]. In particular, we will choose xi randomly
according to some distribution that we can design. In par-
ticular, we will consider the standard Gaussian distribution
(reminded below), possibly after applying a change of basis:2

Definition 3: A random variable X with value in Rn

has standard Gaussian distribution if its probability density
function (pdf) f satisfies for all x ∈ Rn, f(x) ∝ e−

1
2∥x∥

2

.
Remark 1: As we will see in Section III, the fact that the

sampling distribution can be chosen is key in our framework
since our approach to improve data-scalability is to learn an
optimal sampling distribution. This assumption is realistic in
a wide range of applications, namely when one has access
to the system has a (stochastic) input–output black-box.

C. Fixed Sampling Distribution
The data-driven approach in [7] (refined in [8]) provides

probabilistic upper bounds on the JSR from data collected
from a fixed sampling distribution. See also [9], [10] for
similar data-driven approaches using a fixed sampling distri-
bution. We remind here the main result of [8] because this
will be useful for the rest of this paper.

The approach of [7], [8] works as follows. Given a data set
D = {(xi, yi)}Ni=1 consisting of N one-step trajectories, we
formulate the problem of finding a positive definite matrix
P with the smallest data-based contraction rate defined by

ρ̂(D, P ) = max
i∈[N ]

∥yi∥P
∥xi∥P

.

1Note that even though we consider the mode selection to be a stochastic
process for data collection, the probabilistic guarantees we will obtain still
hold for all possible trajectories of the system (even ones for which the mode
selection is not a stochastic process). However, without assumption 1, that
would be not the case as a mode could be never sampled in our dataset
for all datasets of finite size. Similarly, while we consider in the rest of the
paper different kinds of distributions for the initial states to collect the data
and analyse the stability, the stability analysis and the confidence bounds
remain valid for all possible trajectories and all possible initial states.

2Because of the scaling invariance, a data point (xi, yi) carries the same
information as the data point (λxi, λyi) for every λ ̸= 0. This is why
sampling with respect to the standard Gaussian distribution is equivalent in
this problem to sampling with respect to the uniform distribution on the
unit sphere Sn−1 in Rn.
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Hence, we aim to solve the optimization problem

min
P∈P

ρ̂(D, P ). (2)

where P is a closed subset of Rn×n
≻0 (we assume that I ∈ P).

Note that (2) can be solved efficiently, as it is a quasi-convex
optimization problem [8]. The optimal cost of (2) is denoted
by γ⋆(D), and the optimal solution, if it exists, by P⋆(D).
We assume without loss of generality that if P⋆(D) exists,
then it is unique (this can be done by using a tie-breaking
rule [8]). When D is clear from the context, we write γ⋆ and
P⋆ instead of γ⋆(D) and P⋆(D).

Under some mild assumption (Assumption 2) on A, one
can guarantee an upper bound on the JSR of A with high
confidence (Theorem 2).3

Definition 4: A matrix is said to be Barabanov if it is
diagonalizable and all its eigenvalues have the same modulus.

Assumption 2: The matrices in A are not Barabanov.
Theorem 2 ([8]): Let d be the dimension of span(P), and

N ≥ d. Let {xi}Ni=1 ⊆ Rn be sampled i.i.d. following the
standard Gaussian distribution. Let Assumptions 1 and 2
hold. Let β ∈ (0, 1]. Then, with probability 1 − β on the
sampling of D := {(xi, yi)}Ni=1, it holds that4

ρ(A) ≤ ρ(A, P⋆) ≤ γ⋆ · f(β, κ(P⋆), N, d, α, n), (3)

wherein
• κ(P ) =

√
det(P )

λmin(P )n ;
• f(β, k,N, d, α, n) = 1√

1−I−1( k
αΦ−1(β;d−1;N);n−1

2 ; 12 )
;

• I−1(y; a; b) is the inverse incomplete regularized beta
function, i.e., it is the unique x ∈ [0, 1] such that

I(x; a; b) :=

∫ x

0
ta−1(1− t)b−1dt∫ 1

0
ta−1(1− t)b−1dt

= y;

• Φ−1(β; ζ;N) is the unique ϵ ∈ [0, 1] such that

Φ(ϵ; ζ;N) :=

ζ∑
i=0

(
N

i

)
ϵi(1− ϵ)N−i = β.

• α is defined in Assumption 1.
Remark 2: The inflation factor f(β, κ(P⋆), N, d, α, n) is

the source of the additional conservatism of the data-driven
approach, compared to the model-based approach. Unfor-
tunately, this factor increases exponentially with the value
of κ(P⋆). Hence, it is crucial to make the value of κ(P⋆)
as small as possible. This is the purpose of the adaptive
sampling approach, described next.

D. Adaptive Sampling Distribution

The two-step approach was proposed in [11] as an effec-
tive method to reduce the value of κ(P⋆) through adaptive
sampling. The key idea behind this approach is that a change
of basis of the state variable x can change the value of P⋆

3This guarantees the non-degeneracy property to apply the PAC bounds
from Scenario Optimization. See for example [12].

4Note that the first inequality in (3) is always satisfied, while the second
one is guaranteed to hold with probability at least 1− β.

Fig. 1. Sampling with change of basis B.

and thereby the value of κ(P⋆). Hence, our approach aims
to find the change of coordinates for which κ(P⋆) is the
smallest.

More precisely, the change of basis and sampling distribu-
tion works as follows. Given an invertible matrix B ∈ Rn×n

and a data set X = {xi}Ni=1 sampled i.i.d. from the standard
Gaussian distribution, we define the data set in the basis B by
X ′ := {x′

i := Bxi}Ni=1. This transformed data set can then be
fed to the system oracle, providing the data set Y ′ := {y′i}Ni=1

Finally, we can apply the reverse change of basis to obtain
the data set Y := {yi := B−1y′i}Ni=1. This sampling process
is illustrated in Figure 1. We denote the resulting datasets by
D = X∥Y and D′ = X ′∥Y ′. The interest of the change of
basis is that if B is chosen appropriately, then κ(P⋆(D))
can be expected to be close to one. In fact, it is shown
in [8, Proposition 8] that in the model-based setting (i.e.,
when A is known and N → ∞), one can choose B so that
κ(P⋆(D)) = 1 with probability one. However, in the data-
driven context, A is unknown and we want to keep N small
(thus finite). Therefore, [11] proposed a two-step approach,
consisting in first guessing a change of basis B by using
a initial dataset D◦ (of size N◦), and then using this B to
build the dataset D (of size N ), and find γ⋆(D) and P⋆(D).
This results in an approach that requires (empirically) much
less data (N◦ +N ), compared to fixed-sampling distribution
approaches, to provide stability guarantees.

Yet, despite promising empirical results, the construction
of the change of basis B in [11] is essentially intuitive. Also,
the notion of “good” change of basis is not clearly defined.
We address these challenges in Section III below. Then, in
Section IV, we build upon the results in Section III to provide
a heuristic aimed at improving the data usage even further,
as demonstrated empirically on numerical examples.

III. ADAPTIVE SAMPLING THROUGH THE LENS OF
STOCHASTIC OPTIMIZATION

Building on the observations made in the previous section,
we seek a change of basis B for which κ(P⋆(D)) is expected
to be small when D is built as explained in the previous
section. This will lead to the definition of the optimal B as
the solution of a stochastic optimization problem. Building
on this, we will then propose an numerical method to find
the optimal change of basis.

Given B ∈ Rn×n invertible, we denote the distribution of
the datasets D = X∥Y and D′ = X ′∥Y ′, built as explained
in Section II, by DN (B) and D′N (B) respectively.

A. Stochastic Optimization Problem

We formalize the property of being the optimal change
of basis B, which captures the fact that the expected value
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of log(κ(P⋆(D))) will be minimized among all B in some
subset B of invertible n× n matrices5:

min
B∈B

ED∼DN (B)[log(κ(P⋆(D)))]. (4)

We consider the logarithm as it leads in the end to a more
numerically stable method to solve the problem. We now
introduce a closely related problem, which will be used for
optimization:

min
B∈B

ED′∼D′N (B)[log(κ(B
⊤P⋆(D)B))] (5)

It turns out that solving (4) or (5) is equivalent:
Theorem 3: Problems (4) and (5) have the same set of

optimal solutions.
Proof: Observe that

P⋆(X∥Y) = argmin
P

max
xi∈X ,yi∈Y

∥yi∥P
∥xi∥P

= argmin
P

max
x′
i∈X ′,y′

i∈Y′

∥B−1y′i∥P
∥B−1x′

i∥P

= B⊤ argmin
P ′

max
x′
i∈X ′,y′

i∈Y′

∥y′i∥P ′

∥x′
i∥P ′

B

= B⊤P⋆(X ′∥Y ′)B,

where the second equality come from the definition of the
sets X ,X ′,Y,Y ′ and the third equality is obtained by doing
a change of variable P ′ := B−⊤PB−1.

B. Stochastic Gradient Descent

We solve (5) by employing a stochastic gradient algorithm.
Since the distribution involved in the objective function of
(5) depends on the decision variable B, we use a stochastic
gradient algorithm accounting for decision-dependent distri-
bution; see, e.g., [13].

Concretely, the method works as follows: given an esti-
mate of the optimal sampling distribution Bk, we sample a
dataset D′

k according to D′N (Bk) and use this dataset to
compute the gradient direction as

gk := ∇B log(κ(B⊤P⋆(D′
k)B)).

We then update the sampling distribution as B′
k+1 = Bk −

ηkgk, for some predefined step size ηk > 0. If needed, we
project on B′

k+1 on B, giving Bk+1. As a first estimate of
the optimal sampling distribution, we use B0 := I , which
corresponds to no change of basis.

Using the formula of κ(P ), we can derive an explicit
formula for the gradient6:

∇B log(κ(B⊤PB)) = B−T − nPBvv⊤

λmin(B⊤PB)
, (6)

where v := vmin(B
⊤PkB)⊤ is the eigenvector associated to

λmin(B
⊤PkB), the minimum eigenvalue of B⊤PkB. The

5In our experiments, we consider B to be a compact subset of positive
symmetric definite matrice of the from B := {B ∈ Rn×n

≻0 : I ⪯ B =

BT ⪯ αI}, for some α > 1, which guarantees the existence of a solution.
6For some values of P⊤BP (with Lebesgue zero measure) it’s is only

a subdiferential; see Appendix in the extended version on arXiv [14].

proof can be found in the Appendix in the extended version
on arXiv [14].

After T steps of the stochastic gradient descent, we have
our final estimate BT of the optimal sampling distribution.
We use it to sample a dataset DT according to DN (BT ),
and we compute the probabilistic upper bound as γ⋆(DT ) ·
f(β, κ(P⋆(DT )), N, d, α, n). This gives Algorithm 1.

Algorithm 1 Stochastic Optimization Upper Bound
1: Input:

- A black-box switched linear system A.
- T : number of iterations.
- (ηk)T−1

k=0 : step sizes.
- Nbatch: batch size.

2: Set B0 := I
3: for k = 0 to T − 1 do
4: Sample D′

k := {(x′
i, y

′
i)}

Nbatch
i=1 ∼ D′Nbatch(Bk).

5: Using D′
k, solve (2) to compute Pk := P⋆(D′

k)
6: Compute the gradient: gk := ∇B log(κ(B⊤PkB))
7: Update the estimate: B′

k+1 := Bk − ηkgk
8: Project B′

k+1 on B to obtain Bk+1

9: end for
10: Sample DT := {(xi, yi)}Nbatch

i=1 ∼ DNbatch(BT ).
11: Solve (2) to get γ⋆(DT ) and P⋆(DT ).
12: Output: γ⋆(DT ) · f(β, κ(P⋆(DT )), Nbatch, d, α, n)

It turns out that if κ(P⋆(DT )) is expected to be close
to one (which can be estimated from the objective value
of Algorithm 1), then it can be beneficial to use P = {I}
(i.e., fix P = I), because the small increase of γ⋆ (since
P is more restricted) will be compensated by the fact that
f(β, k,N, d, α, n) is smaller when d = 1:

Proposition 1: Let D = {(xi, yi)}Ni=1. It holds that γ⋆ ≤
ρ̂(D, I) ≤ γ⋆κ(P⋆).

Proof: The first inequality is direct from (2). To prove
the second inequality, first assume without loss of generality
that λmin(P⋆) = 1. Denote k = κ(P⋆). Then, observe that
det(P⋆) ≤ k2, which implies that I ⪯ P⋆ ⪯ k2I . Hence, we
get that for each i ∈ [N ],

∥yi∥2 ≤ y⊤i P⋆yi ≤ γ2
⋆x

⊤
i P⋆xi ≤ γ2

⋆k
2∥xi∥.

This shows that ρ̂(D, I) ≤ kγ⋆.
Corollary 1: Let B ∈ Rn×n be invertible. For any ϵ > 1,

it holds with probability 1− δ/ log(ϵ) on D ∼ DN (B) that
ρ̂(D, I) ≤ ϵγ⋆(D), where ED∼DN (B)[log(κ(P⋆(D)))] = δ.

Proof: Apply Markov’s inequality on log( ρ̂(D,I)
γ⋆(D) ) which

is always nonnegative by Proposition 1, and its expectation
is smaller than or equal to δ by Proposition 1.

C. Open Questions on Convergence and Optimality

1) Uniqueness of the solution: Experimentally, (4) and
(5) seem to admit only one local optimum (up to a nonzero
scaling) which is the global optimum. Indeed, one can see on
the Figure 2 that the data-driven JSR converges the toward
model-based one. However, a formal proof of this claim
would be valuable.
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2) Convergence: Furthermore, experimental observations
indicate that stochastic gradient descent seem to converge,
provided the step sizes satisfy the conditions

∑∞
k=0 ηk =

+∞ and limk→+∞ ηk = 0.
Establishing a theorem that guarantees convergence under

specific conditions would be highly desirable. The main chal-
lenge for this lies in the fact that the probability distribution
involved in the expectation depends on the decision variable.
There exist some works that obtain such guarantees but they
require the objective to be strongly convex [13], which is not
our case. We will address these questions in the future.

IV. REUSING PREVIOUS SAMPLES—A HEURISTIC
APPROACH

The stochastic gradient descent algorithm has a key prac-
tical limitation in that each iteration uses only the new
samples without exploiting the previous ones. This can result
in a prohibitively high overall number of samples. This
was already observed in previous work, leading to extended
notions of the SGD, such as multi-pass SGD [15].

In this section, we propose a modification of Algorithm 1
that reuses previous samples, and is ad-hoc to our problem.
Although not theoretically grounded, we show experimen-
tally that this modified algorithm outperforms Algorithm 1
(and multi-pass SGD7) in terms of number of data needed
to provide stability guarantees.8

The two key differences of the modified algorithm are
that (i) all previous and current samples are used in Dk to
compute γ⋆(Dk) and P⋆(Dk), and (ii) instead of moving in
the direction of the gradient of the objective function with
respect to B, we move in the direction of P⋆(Dk)

−1/2, which
corresponds to the minimizer of log(κ(B⊤P⋆(Dk)B). This
approach was obtained as a heuristic, testing different options
for choosing the update direction.

More precisely, our approach is as follows. Starting with
B0 = I , we sample an initial dataset D0 := {(x′

i, y
′
i)}

N0
i=1

according to D′N0(B0). Then, at each step k, given Dk and
Bk, we update B in the direction of P⋆(Dk)

−1/2:

Bk+1 := (1− ηk)Bk + ηkP⋆(Dk)
−1/2.

Next, we draw a new sample {(x′
k, y

′
k)} from D′(Bk+1) and

augment the dataset: Dk+1 := Dk ∪{(x′
k, y

′
k)}. This process

continues until a predefined convergence criterion is satisfied.
In practice, we consider the algorithm converged when the
average difference between successive iterations falls below
a predefined threshold ϵ > 0, or when a maximum number
of iterations is reached. This is implemented in Algorithm 2.

V. EXPERIMENTAL RESULTS

We demonstrate the effectiveness of our methods (Algo-
rithms 1 and 2) on a synthetic example and on a consensus

7The reason for our algorithm to outperform multi-pass SGD can be
that the distribution is decision-dependent, thereby making the gradient
computed from data collected with a different distribution less relevant.

8By heuristic method we mean that the computed change of basis has
no whatsoever guarantee to converge to an optimal change of basis but
nevertheless confidence bound from Theorem 1 still apply as it holds for
any change of basis used.

Algorithm 2 Heuristic Optimization Upper Bound
1: Input:

- A black-box switched linear system A.
- N0: initial sample size.
- N : total sample budget.
- T : number of iterations.
- (ηk)T−1

k=0 ⊆ [0, 1]: step sizes.
- ϵ > 0, K ∈ N: convergence criteria parameters.

2: Initialize B0 := I .
3: Sample D′

0 := {(x′
i, y

′
i)}

N0
i=1 ∼ D′N0(B0).

4: for k = 0 to T − 1 do
5: Solve (2) using D′

k to compute Pk := P⋆(D′
k).

6: Compute the direction as: gk := Bk − P
−1/2
k .

7: Update: Bk+1 := Bk − ηkgk.
8: if

∑k
j=k−K ∥Bj+1 −Bj∥ ≤ ϵ, terminate loop.

9: Sample {(x′
k, y

′
k)} ∼ D′1(Bk+1)

10: Augment the dataset: Dk+1 = Dk ∪ {(x′
k, y

′
k)}.

11: end for
12: Sample DT := {(xi, yi)}N−|DT |

i=1 ∼ DN−|DT |(BT ).
13: Solve (2) to get γ⋆(DT ) and P⋆(DT ).
14: Output: γ⋆(DT ) · f(β, κ(P⋆(DT )), N − |DT |, d, α, n)

problem. We also compare them with 1) the approach with-
out adaptive sampling from [8], and 2) the state-of-the-art
resampling technique from [11].

A. Synthetic Example

We applied the four data-driven approaches on a randomly
generated system of dimension 3 with three modes. To obtain
statistics, we averaged the results over 25 experiences. For
the two-step approach from [11], we used the heuristic from
this paper for dataset splitting and parameters δ1 = 102, δ2 =
1. For Algorithm 1, we used Nbatch = 200, T = ⌊N/Nbatch⌋,
and ηk = 0.3/(k+1). For Algorithm 2, we used T = ⌊N/2⌋,
ηk = 0.3, with convergence criterion parameters ϵ = 10−4

and K = 10. We considered P := {P ∈ Rn×n
≻0 : I ⪯ P ⪯

102I} and for Algorithm 1, B := {B ∈ Rn×n
≻0 : I ⪯ B =

BT ⪯ 102I}.
The results—depicted in Figure 2—clearly showcase the

advantages of the adaptive sampling approach, leading to
significantly better guarantees compared to the basic non-
adaptive sampling method [8]. While Algorithm 1 outper-
forms the non-adaptive method, its performance remains sub-
optimal compared to the other adaptive sampling techniques
([11] and Algorithm 2). However, Algorithm 2, which reuses
all previous samples in a heuristic manner, achieves strong
performance, surpassing the state-of-the-art method [11].

B. Consensus Network

We consider the problem of consensus in a hidden switch-
ing interaction network, illustrated in Figure 4. This problem
can be equivalently formulated as a linear switched system
in dimension n = 5, and determining whether consensus is
achieved translates to analyzing the stability of this switched
linear system [16]. Since the network is hidden and its model
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Fig. 2. Comparison of the upper bounds provided by the various algorithms,
as a function of the total number of samples N , with |A| = 3, α = 1

|A| ,
n = 3, and β = 5%. Results are averaged over 25 experiences on one
randomly generated system A. The shaded area show the mean ±1 standard
deviation.

Fig. 3. Data-driven upper bounds with confidence 1 − β = 95% on the
JSR of the consensus network as a function of the total number of samples
used N .

is unknown, we need to resort to data-driven methods to
verify stability.

For the two-step approach from [11], we used the dataset-
splitting heuristic and parameters δ1 = 103, δ2 = 1. For
Algorithm 1, we used Nbatch = 500, T = ⌊N/Nbatch⌋, and
ηk = 0.3/(k + 1). For Algorithm 2, we used T = ⌊N/2⌋,
ηk = 0.3, ϵ = 10−4 and K = 10. We consider P := {P ∈
Rn×n

≻0 : I ⪯ P ⪯ 103I} and for Algorithm 1, B := {B ∈
Rn×n

≻0 : I ⪯ B = BT ⪯ 103I}.
Figure 3 illustrates the total number of data points required

to certify consensus with a confidence level of 1−β = 95%
using the four data-driven methods. The results highlight the
substantial benefits of adaptive sampling approach over the
basic no-resampling approach, as well as the superiority of
the heuristic method (Algorithm 2) over the two-step ap-
proach. Without resampling, 5400 data points were necessary
to certify stability. By employing the stochastic optimization
approach, this requirement is reduced to 2200 data points.
The two-step approach from [11] further improves this to
1600 data points. However, Algorithm 2 achieves a break-
through, requiring only 600 data points to ensure the system’s
stability with 95% confidence.
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