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Abstract—Hyperbolicity is a cornerstone of nonlinear
dynamical systems theory. Hyperbolic dynamics are char-
acterized by the presence of expanding and contract-
ing directions for the derivative along the trajectories of
the system. Hyperbolic dynamical systems enjoy many
interesting properties like structural stability, ergodicity,
transitivity, etc. In this letter, we describe a hybrid systems
framework to compute invariant sets with a hyperbolic
structure for a given dynamical system. The method relies
on an abstraction (also known as symbolic image or
bisimulation) of the state space of the system, and on
path-complete “Lyapunov-like” techniques to compute the
expanding and contracting directions for the derivative
along the trajectories of the system. The method is illus-
trated on a numerical example: the Ikeda map for which an
invariant set with hyperbolic structure is computed using
the framework.

Index Terms—Hyperbolic dynamics, abstrac-
tion/symbolic image, linear matrix inequalities,
path-complete Lyapunov techniques.

I. INTRODUCTION

DYNAMICAL systems encountered in real-world applica-
tions are generally subject to modeling uncertainties and

parameter variation. The robustness or structural stability of a
dynamical system is the property that the qualitative behavior
of the system will not be affected by a small perturbation of the
model or a small change of parameters. A classical example
of robust property of dynamical systems are their hyperbolic
fixed points (number and location): it is well known from bi-
furcation theory that a fixed point x can appear/disappear, or
become stable/unstable only if the Jacobian matrix Dfx = f ′(x)
at x has an eigenvalue on the unit circle (discrete-time case) or
on the imaginary axis (continuous-time case); in other words,
a bifurcation can only occur at non-hyperbolic fixed points.

The concept of hyperbolicity was introduced in the 1960’s,
by Dmitri Anosov and Stephen Smale, as part of a general
effort to study dynamical systems that are structurally stable
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not only at single fixed points but on more general subsets,
e.g., on their whole domain or on invariant sets. Invariant sets
with hyperbolic structure are characterized by the presence of
expanding and contracting directions for the derivative along
the trajectories of the system. Therefore, they generalize the
notion of hyperbolic fixed point—whose Jacobian matrix is
a linear operator with a stable (contracting) and an unstable
(expanding) eigenspace.

Hyperbolicity, which was first developed for flows and dif-
feomorphisms (i.e., smooth invertible discrete-time systems),
has rapidly become a cornerstone of dynamical systems the-
ory and finds applications in many different areas (e.g., chaos,
ergodic theory, entropy, structurally stability, etc.). For
instance, it can be shown that, under some mild assumptions
(e.g., Axiom A, or no-cycle condition, etc.), the structurally
stable dynamical systems are precisely the ones that are
hyperbolic on some distinguished sets (e.g., limit set, chain-
recurrent set, etc.). We refer the reader to [9], [21] for a
comprehensive survey of results related to hyperbolic flows
and diffeomorphisms. Hyperbolicity has been generalized in
several directions (e.g., with partial hyperbolicity, nonuni-
form hyperbolicity, hyperbolic endomorphisms) allowing one
to analyze a broader class of systems while retaining the main
features of hyperbolic dynamics [2], [4], [11], [17].

In recent years, hyperbolicity has also been successfully
applied in different areas of control theory (e.g., symbolic
control, quantized control, etc.). Indeed, the robustness of
hyperbolic dynamics to system perturbations makes them
particularly suitable for numerical simulation and verifica-
tion; see, e.g., [5]. Moreover, the existence of expanding
and contracting directions for the derivative can be used to
define a partition of the state space that is adapted to the
system (Markov Partition), or to estimate the entropy of the
system [6]. We refer the reader to [15] for a comprehensive
introduction to “hyperbolic control theory”.

Although the behavior of hyperbolic dynamical systems
is now well understood, the question of deciding whether a
dynamical system is hyperbolic or not remains a challeng-
ing task, and to the best of the authors’ knowledge, only a
few results on the formal verification of hyperbolicity with
numerical methods are available in the literature. (See also
Section IV-D for related works.)

In this letter, we draw upon modern optimization and con-
trol techniques to propose a novel approach for the systematic
verification of hyperbolicity of dynamical systems. Our frame-
work combines ideas from symbolic control (aka. bisimulation
or abstraction approach) with algorithmic techniques from
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path-complete Lyapunov theory [14], and dominance [3], [8],
to derive a new set of Linear Matrix Inequalities for the char-
acterization of hyperbolic dynamics. This results in a sound
algorithm for the automatic computation of invariant sets
with hyperbolic structure for nonlinear dynamical systems. In
Section V, we show on a numerical example the efficiency of
our approach.

This letter is organized as follows: in Section II, we intro-
duce the fundamental concepts related to hyperbolic dynamics.
In Section III, we introduce the quadratic cone field crite-
rion as a sufficient condition for a dynamical system to have
an invariant set with hyperbolic structure. In Section IV, we
provide an algorithmic framework for the computation of the
quadratic cone field criterion that relies on an abstraction of
the system and on LMIs. Finally, in Section V, we illustrate
the use of the algorithmic framework on a numerical example.

II. HYPERBOLIC DYNAMICAL SYSTEMS

In this letter, we consider a discrete-time dynamical system

x(t + 1) = f (x(t)), x ∈ M,

where M ⊆ R
d and f : M → M is a continuous map. If D

is a subset of M, f (D) denotes its image {f (x) : x ∈ D}. A
subset D ⊆ M is said to be invariant for f if f (D) = D. If
f : M → M is bijective and both f and f −1 are C1 functions,
then we say that f is a diffeomorphism.

Let us now introduce the notion of hyperbolicity. Therefore,
we let ‖·‖ be any vector norm on R

d. The derivative
(aka. Jacobian matrix) of f at x is denoted by Dfx ∈ R

d×d.
If f is a diffeomorphism, note that, since ( f ◦ f −1)(x) = x, we
have that Df −1

x exists and is equal to (Dff −1(x))
−1. If E ⊆ R

d,
then Dfx(E) denotes its image by Dfx.

Definition 1 [10], [21]: Let f be a diffeomorphism, and
� ⊆ M be an invariant set for f . Then, � is said to have a
hyperbolic structure for f (or f is hyperbolic on �) if (i) for
every x ∈ M, there exists a splitting R

d = Eu
x ⊕ Es

x where Eu
x

and Es
x are linear subspaces; (ii) the splitting is invariant under

the action of the derivative: Dfx(E
u
x ) = Eu

f (x) and Dfx(E
s
x) =

Es
f (x); and (iii) there exist 0 < λ < 1 and C ≥ 1 independent

of x such that, for every n ≥ 0,
• ‖Df n

x v‖ ≤ Cλn‖v‖ for every v ∈ Es
x;

• ‖Df −n
x v‖ ≤ Cλn‖v‖ for every v ∈ Eu

x .
Remark 1: Properties (ii) and (iii) implies that the sub-

spaces Eu
x and Es

x in Definition 1 are unique and depend
continuously on x; see, e.g., [10, Proposition 1.3.7]. This
implies, among other things, that the dimensions of Eu

x and
Es

x are constant on every connected components of �.
As mentioned in the introduction, hyperbolic dynamics

enjoy many interesting properties in terms of structural sta-
bility (aka. robustness to system perturbations). For instance,
it was shown by Hirsch and Pugh [13] that invariant sets with
a hyperbolic structure (for a given diffeomorphism) have the
same structural stability properties as hyperbolic fixed points.
We refer the reader to [21] for a comprehensive survey of
structural stability results related to hyperbolic dynamics.

Remark 2: The notion of hyperbolicity is generally defined
for the more general class of dynamical systems on smooth
Riemannian manifolds [10], [21]. For the sake of simplicity,
we have restricted ourselves to the case of M ⊆ R

d in this

letter. The reader will verify that, by means of atlases and local
coordinate systems (see, e.g., [16]), all the results presented
in this letter can be generalized to dynamical systems defined
on smooth Riemannian manifolds.

Example 1 (The Hyperbolic Toral Automorphism): A clas-
sical example of hyperbolic diffeomorphism is the hyperbolic
toral automorphism (aka. Arnold’s cat map):

f (x) = Ax mod 1, A =
[

2 1
1 1

]
, M = R

2/Z
2.

The eigenvalues of A are equal to λ± := (1±√
5)/2. At every

x ∈ M, the derivative of f n is given by Df n
x = An. The stable

subspace Es
x in Definition 1 is then given by the eigenspace

associated to λ− ≈ −0.618 while the unstable subspace Eu
x

is given by the eigenspace associated to λ+ ≈ 1.618. The
diffeomorphism f is thus hyperbolic on its whole domain.

III. QUADRATIC CONE FIELD CRITERION

In this section, we introduce a sufficient condition for
a dynamical system to be hyperbolic on a given invariant
set. Connections of this criterion with other concepts from
dynamical systems theory, like the Alekseev cone field crite-
rion or the notion of dominance for continuous-time systems
and linear systems, are discussed at the end of this section.

A. Description of the Criterion

The criterion relies on the contraction property of a field
of quadratic cones defined at every point of the invariant set.
Quadratic cones are defined by means of symmetric matri-
ces with fixed inertia. (The inertia of a symmetric matrix S,
denoted by In(S), is the triplet (i−, i0, i+) where i−, i0 and i+
are respectively the number of negative, zero, and positive
eigenvalues of S.) In the sequel, we let p be a fixed integer in
{1, . . . , d − 1}. We will say that S ∈ R

d×d is a p-matrix if S
is symmetric and has inertia (p, 0, d − p).

Definition 2: A field of p-matrices on � ⊆ M is a function
� that associates a p-matrix �x to each x ∈ �. Moreover, we
will assume that the field � is bounded, i.e., there is K > 0
such that |v��xv| ≤ K‖v‖2 for every x ∈ � and every v ∈ R

d.
Definition 3 (Quadratic Cone Field Criterion): Let

f : M → M be a diffeomorphism, and � ⊆ M be invariant
for f . Let � be a field of p-matrices on �. We say that f
satisfies the cone field criterion with respect to � (or that �

is contracting for f ) if there is ε > 0 such that, for every
x ∈ �,

Df �
x �f (x)Dfx − �x � −εI (1)

where I is the d × d identity matrix.
The geometric interpretation of Definition 3 is the following.

If we define Kx as the negative level set of �x:

Kx = {v ∈ R
d : v��xv ≤ 0},

then it is not hard to see that Kx is a cone: that is, v ∈ Kx
implies that αv ∈ Kx for every α ≥ 0. Because it is defined
from a p-matrix, we call Kx a quadratic p-cone. In fact, p is
also equal to the maximal dimension of a linear subspace con-
tained in Kx (e.g., the eigenspace associated to the p negative
eigenvalues of �x). Finally, (1) implies that {Kx}x is forward

Authorized licensed use limited to: Univ Catholique de Louvain/UCL. Downloaded on July 18,2024 at 09:15:32 UTC from IEEE Xplore.  Restrictions apply. 



BERGER AND JUNGERS: FORMAL METHODS FOR COMPUTING HYPERBOLIC INVARIANT SETS FOR NONLINEAR SYSTEMS 237

invariant by Df , i.e., for every x ∈ �, Kx is mapped by Dfx
into Kf (x):

Dfx(Kx) ⊆ Kf (x).

Similarly, if we let Kc
x be the “dual cone” of Kx:

Kc
x = {v ∈ R

d : v��xv ≥ 0} = cl(Rd\Kx),

then Kc
x is a quadratic (d − p)-cone. Moreover, (1) implies

that {Kc
x}x is backward invariant by Df , i.e., Kc

x is mapped by
Df −1

x into the cone Kc
f −1(x)

:

Df −1
x (Kc

x) ⊆ Kc
f −1(x). (2)

The following lemma on the minimal growth rate of the
derivative along trajectories in forward and backward time is
instrumental.

Lemma 1: Let f , � ⊆ M and � be as in Definition 3, and
{Kx}x and {Kc

x}x be as above. Then, there exist C ≥ 1 and
μ > 1 such that, for every x ∈ � and every n ≥ 0,

• ‖Df n
x v‖ ≥ Cμn‖v‖ for every v ∈ Kx;

• ‖Df −n
x v‖ ≥ Cμn‖v‖ for every v ∈ Kc

x.
Proof: First, let v ∈ Kx. Since � is bounded, (1) implies

v�Df �
x �f (x)Dfxv ≤ v��xv − ε‖v‖2

≤ v��xv + εK−1v��xv ≤ γ v��xv

with 1 < γ ≤ 1 + εK−1. Thus, for n ≥ 0,

−K‖Df n
x v‖2 ≤ v�(Df n

x )��f n(x)Df n
x v

≤ γ n−1v�Df �
x �f (x)Dfxv

≤ γ n−1(−ε‖v‖2
x + v��xv) ≤ −εγ n−1‖v‖2.

Now, let v ∈ Kc
x. With a similar reasoning, we find

v�(Df −1
x )��f −1(x)Df −1

x v ≥ γ v��xv

with 1 < γ ≤ (1 − εK−1)−1. Thus, if n ≥ 0,

K‖Df −n
x v‖2 ≥ v�(Df −n

x )��f −n(x)Df −n
x v

≥ γ n−1v�(Df −1
x )��f −1(x)Df −1

x v

≥ γ n−1(ε‖v‖2
x + v��xv) ≥ εγ n−1‖v‖2.

It is now straightforward to conclude the proof.
The developments above lead to the following theorem

stating that the quadratic cone field criterion is a sufficient
condition for hyperbolicity:

Theorem 1: Let f : M → M be a diffeomorphism, and let
� ⊆ M be an invariant set for f . If there exists a field of
p-matrices defined on � that is contracting for f , then � has
a hyperbolic structure for f .

Proof: Let x ∈ �. We show the existence of the subspace
Es

x in Definition 1 (the proof of the existence of the subspace
Eu

x is similar by considering f −1 instead of f ). Define Es
x as

the set of vectors v ∈ R
d such that Df n

x v ∈ Kc
f n(x) for every

n ≥ 0. From (2) and the definition of Es
x, it is clear that Es

x
satisfies (ii) in Definition 1: Dfx(Es

x) = Es
f (x). The main trick

of the proof is to show that Es
x is a q-dimensional subspace

(where q = d − p for simplicity of notation).
To show this, first observe that Es

x is the intersection of
the sets Sn := Df −n

f n(x)(Kc
f n(x)) for n ≥ 0. Now, (2) implies

that S1 ⊇ · · · ⊇ Sn ⊇ · · · Moreover, each Sn includes a
q-dimensional subspace (because it is the linear image of a

quadratic q-cone). This implies that Es
x = ⋂

n Sn includes
a q-dimensional subspace (by compactness of the set of all
q-dimensional linear subspaces of R

d with respect to the
Grassmann metric). We will show in the last part of the proof
that Es

x is actually a q-dimensional linear subspace.
Before this, we show that Es

x satisfies the property (iii) of
Definition 1, i.e., that ‖Df n

x v‖ ≤ C′λn‖v‖ for all v ∈ Es
x and

n ≥ 0. This is direct from the fact that, if v ∈ Es
x and w = Df n

x v,
then w ∈ Kc

f n(x) by definition of Es
x. Hence, by Lemma 1,

‖v‖ = ‖Df −n
x w‖ ≥ Cμn‖w‖. It suffices to take C′ = C−1 and

λ = μ−1.
Finally, we show that Es

x is a q-dimensional subspace.
Therefore, let Vs be a q-dimensional subspace included in Es

x,
and Vu be a p-dimensional subspace included in Kx (which is
a quadratic p-cone). Assume that Es

x �= Vs. Then, there exists
v ∈ Es

x such that v = vs + vu with vs ∈ Vs and vu ∈ Vu\{0}.
Then, Lemma 1 implies that ‖Df n

x (v − vs)‖ = ‖Df n
x vu‖ ≥

Cμn‖vu‖ for all n ≥ 0. A contradiction with the previous
paragraph, and the fact that v − vs ∈ Es

x. This concludes the
proof of the theorem.

B. Connections With the Literature

The quadratic cone field criterion has a strong connection
with the Alekseev cone field criterion introduced by Alekseev
in 1968 [1]. Indeed, the proof of Theorem 1 is grounded in
the result that the Alekseev cone field criterion provides a suf-
ficient condition for a dynamical system to be hyperbolic on
a given invariant set; see, e.g., [19, Th. 2] or [10, Th. 3.10].
However, whereas Alekseev only provides definitions of prop-
erties, with no algorithms for verifying these properties in a
systematic way, our characterization of hyberbolicity, on the
other hand, is meant to be translated into efficient algorithms
via modern optimization techniques.

The use of symmetric matrices and Linear Matrix
Inequalities to express the contraction and expansion of the
derivative along the trajectories of the dynamical system
is inspired from the work on p-dominant continuous-time
systems by Forni and Sepulchre [8]. The novelty of our
approach is to increase the expressiveness by moving from
a uniform quadratic cone to a field of quadratic cones while
providing a computational framework for the computation of
the cone field. This requires the introduction of an abstraction
of the system and tools from path-complete Lyapunov theory,
as explained in Section IV.

Finally, the field of p-matrices �x can be regarded as a
Finsler–Lyapunov function, that is, a “Lyapunov” function act-
ing on the augmented system (x, δx) �→ ( f (x), Dfxδx), by
defining the function V(x, δx) = δx��xδx on �×R

d. Finsler–
Lyapunov functions have been successfully applied for the
contraction (aka. incremental stability, or δ-ISS) analysis of
nonlinear dynamical systems; see, e.g., [7], [18]. The differ-
ence of our approach is that the functions V(x, δx) = δx��xδx
are not necessarily positive-definite (whereas this is a require-
ment for contraction analysis), thereby allowing for directions
in which the system is expanding.

IV. COMPUTATIONAL FRAMEWORK

In this section, we describe an algorithmic framework for
computing a field of p-matrices �x that is contracting for
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Fig. 1. Top: Abstraction of the Ikeda mapping (presented in Section V)
on 	 = [−1.1,3.4] × [−1.5,1.8]. The image of the region M12 (in red) is
represented in dark blue. The different regions that intersect the image
of M12 are represented in light blue. Bottom: Graph representing the
transitions (edges) between the different regions of the abstraction. The
outgoing edges from vertex 12 are highlighted in red.

a given dynamical system. By assuming that the field of
p-matrices is piecewise constant, the computation can be
reduced to the feasibility of a finite set of Linear Matrix
Inequalities. The restriction to a piecewise constant field is
performed by discretizing the state space into a finite set of
regions, as explained in the following subsection.

A. Abstraction of a Dynamical System

In this subsection, f : M → M is a continuous map (not
necessarily diffeomorphic). A finite covering of 	 ⊆ M is
a finite collection M = {M1, . . . , MN} of compact regions
Mi ⊆ M such that 	 ⊆ ⋃

i Mi. (In particular, this implies that
	 is compact.)

Definition 4 (Abstraction, aka. Symbolic Image): An
abstraction of the dynamical system f : M → M on 	 ⊆ M
is an ordered pair (M, E) where M = {M1, . . . , MN} is a
finite covering of 	, and E ⊆ {1, . . . , N}2 is a set of “edges”
satisfying: for every i, j ∈ {1, . . . , N}, f (Mi)∩Mj �= ∅ implies
that (i, j) ∈ E.

If (M, E) is an abstraction, we denote by G = G(M, E)

the directed graph whose set of vertices is equal to {1, . . . ,

N}, and whose edges are defined by E: that is, there is an
edge i → j in G if and only if (i, j) ∈ E. See Fig. 1 for an
illustration.

Definition 5 (Recurrent Vertex): A vertex v of a directed
graph G is called recurrent if there is a nontrivial (i.e.,

Fig. 2. Directed graph. The vertices 1,2,3,5 are recurrent.

containing at least one edge) path from v to v in G. (See
Fig. 2 for an illustration.)

The next proposition allows one to compute an over- (or
outer-) approximation of the maximal invariant set contained
in 	 if one has an abstraction of f on 	 ⊆ M; see,
e.g., [20, Th. 44] for more details. The property in the propo-
sition will also be crucial in the proof of the correctness of
the algorithm (Theorem 4 below).

Proposition 1: Let (M, E) be an abstraction of f on 	 ⊆ M
and let � ⊆ 	 be invariant for f . Then, for every vertex i of
G = G(M, E) such that Mi ∩� �= ∅, there exist two recurrent
vertices j1 and j2 such that there is a path from j1 to i in G
and there is a path from i to j2 in G.

Proof: Let x ∈ Mi ∩ � �= ∅. Then, f n(x) ∈ � for every
n ≥ 0. This implies that there exists a forward infinite path in
G starting from i. Since the number of vertices in G is finite,
there is at least one vertex that is visited twice along the path.
This vertex is recurrent. Similarly, because f (�) = �, for
every n ≥ 0 there is an xn ∈ � such that f n(xn) = x. Hence,
there exists a backward infinite path in G ending at i, and for
the same reasons as above, this backward path must contain a
recurrent vertex.

B. Computation of the Quadratic Cones

In this subsection, f : M → M is a diffeomorphism and
� ⊆ M is a compact invariant set for f . We let (M, E) be
an abstraction of f on �. We assume that Mi ∩ � �= ∅ for
each Mi ∈ M (otherwise it suffices to remove the regions with
Mi ∩ � = ∅). We will explain how to compute a contracting
field of p-matrices that is “adapted” to this abstraction.

Definition 6 (Path-Complete Contracting Set of
p-Matrices): Let f and (M, E) be as above. Let
{S1, . . . , SN} ⊆ R

d×d, with N = |M|, be a set of
p-matrices. We say that {Si}i is path-complete contract-
ing with respect to f and (M, E) if, for every (i, j) ∈ E and
every x ∈ Mi ∩ f −1(Mj),

Df �
x SjDfx − Si ≺ 0. (3)

Theorem 2: Let f , � ⊆ M and (M, E) be as above, and
suppose there exists a set of p-matrices {Si}i ⊆ R

d×d that is
path-complete contracting with respect to f and (M, E). Then,
f is hyperbolic on �.

Proof: We define a field of p-matrices � on � as follows: for
each x ∈ �, define �x = Si(x) where i(x) is the smallest integer
i ∈ {1, . . . , |M|} such that x ∈ Mi. Because Dfx is continuous
in x, Mi ∩ f −1(Mj) is compact and the set {Si}i is finite, we
have that (i) � is bounded, and (ii) the right-hand term of (3)
can be replaced by −εI for ε > 0 small enough. This shows
that � satisfies the hypothesis of Theorem 1, concluding the
proof of the theorem.
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Condition (3) cannot be directly handled by a computer
because it involves an infinite number of LMIs. To overcome
this limitation, we assume that for every edge (i, j) ∈ E, we
have an approximation Āi,j of Dfx on Mi ∩ f −1(Mj).

Definition 7 (δ-Approximation of Df ): Let f and (M, E) be
as above. For every edge (i, j) ∈ E, let Āi,j be a d × d matrix.
For δ > 0, we say that the family of matrices {Āi,j}, indexed
by (i, j) ∈ E, is a δ-approximation of Df if, for every (i, j) ∈ E
and every x ∈ Mi ∩ f −1(Mj),

‖Dfx − Āi,j‖2 ≤ δ min{‖Āi,j‖−1
2 , 1}.

where ‖·‖2 denotes the matrix spectral norm.
Now, let (M, E) and {Āi,j}(i,j)∈E be as in Definition 7, and

consider the following feasibility problem:

find Si ∈ R
d×d symmetric, ε ∈ R

subject to Ā�
i,jSjĀi,j − Si � −εI, (i, j) ∈ E,

−I � Si � I, 1 ≤ i ≤ N,

ε > 2δ + δ2. (4)

The following theorem makes the link between Theorem 2
and the feasibility of (4). (Remember that In(S) denotes the
inertia of S.)

Theorem 3: Let δ > 0, and assume that {Āi,j}(i,j)∈E is
a δ-approximation of Df . If (4) admits a feasible solution
({Si}i, ε) with In(Si) = (p, 0, d − p) for every 1 ≤ i ≤ N,
then {Si}i is path-complete contracting with respect to f and
(M, E); and thus f is hyperbolic on �.

Proof: Let x ∈ Mi ∩ f −1(Mj), and denote A = Āi,j for sim-
plicity of notation. By Definition 7, we have that Dfx = A+


where ‖
‖2 ≤ δ min{‖A‖−1
2 , 1}. Hence,

Df �
x SjDfx − Si = A�SjA + 
�SjA

+ A�Sj
 + 
�Sj
 − Si

� −εI + 
�SjA + A�Sj
 + 
�Sj


� −εI + 2‖
‖2 ‖A‖2I + ‖
‖2
2I

� −εI + 2δI + δ2I.

Thus, {Si}i satisfies (3).
Theorem 4 below states that the output of (4) can be used

to decide the existence of a path-complete contracting set of
matrices with respect to (M, E), although no constraints on
the inertia of the matrices {Si}i are formulated in (4). This is in
fact the main asset of the computational framework as it allows
one to use standard SDP solvers to compute a path-complete
contracting set of matrices.

Theorem 4: If (4) admits a feasible solution ({Si}i, ε) with
In(Si) = (p, 0, d − p) for every 1 ≤ i ≤ N, then every fea-
sible solution ({S′

i}i, ε
′) satisfies In(S′

i) = (p, 0, d − p) for all
1 ≤ i ≤ N.

Proof: The proof relies on the following result, sometimes
referred to as the Main Inertia Theorem, due to Hill [12] and
Taussky [22] (we do not provide a proof here).

Lemma 2 (Main Inertia Theorem): Let A ∈ R
d×d. There

exists a symmetric matrix S ∈ R
d×d satisfying A�SA − S ≺ 0

if and only if A has no eigenvalues with |λ| = 1. Moreover,
in this case, S has inertia (r, 0, d − r), where r is the number
of eigenvalues of A with |λ| > 1.

Using Lemma 2, we will show this key property: “In(Si)

at the recurrent vertices i is uniquely determined by G =

G(M, E) and {Āi,j}.” This will imply that if (4) admits a
solution with In(Si) = (p, 0, d − p) for every 1 ≤ i ≤ N,
then any other feasible solution ({S′

i}i, ε
′) will satisfy In(S′

i) =
(p, 0, d − p) at the recurrent vertices i.

To show the above key property, let ({Si}i, ε) be a feasible
solution of (4). Let i ∈ {1, . . . , N} be a recurrent vertex, and
fix a path P : i = i0 → i1 → . . . → ik = i from i to i
in G. Define AP = Āik−1,ik · · · Āi1,i2 Āi0,i1 and observe that the
first set of constraints in (4) implies that A�

P SiAP − Si ≺ 0.
Hence, by Theorem 2, we get that the inertia of Si is uniquely
determined by the eigenvalues of AP.

To complete the proof, it remains to show that In(S′
i) =

(p, 0, d − p) also holds at the non-recurrent vertices. Using
Proposition 1, we would be done if we can show that: (a) “if
there is a path from i to j in G(M, E) and In(S′

j) = (p, 0, d−p),
then S′

i has at least p negative eigenvalues”; and (b) in the
other direction: “if there is a path from j to i in G(M, E)

and In(S′
j) = (p, 0, d − p), then S′

i has at least d − p positive
eigenvalues.” For a proof of (a) and (b), we refer the reader
to [3, Proposition 4].

C. Discussion of the Algorithm

Putting together the results of Sections IV-A and IV-B, we
discuss the completeness and computational complexity of the
algorithm.

1) Termination of the Algorithm: The two parameters that
appear in the algorithm are the way the abstraction of 	 ⊆ M
is built, and the choice of the Df -approximations Āi,j. The
first parameter will have an impact on how accurate the outer-
approximation of the maximal invariant set � in 	 will be; and
both parameters will influence the feasibility of (4). Moreover,
the existence of a path-complete contracting set of p-matrices
has been presented only as a sufficient criterion for hyperbolic-
ity (Theorem 2), so that nothing guarantees that the algorithm
will terminate in finite time.

However, it can be shown that the “path-complete con-
tracting set of p-matrices” criterion is asymptotically non-
conservative, meaning that, provided the accuracy of the
abstraction of � is good enough (this can be achieved, e.g.,
by reducing the size of the regions), there will always exist
a path-complete contracting set of p-matrices if f is hyper-
bolic on �. (The proof is left for a further paper; we refer the
interested reader to [10] for related results on the sufficiency
and necessity of the Alekseev cone criterion.)

This implies that the algorithm is semi-complete. This means
that, if f is hyperbolic on its maximal invariant set � contained
in 	 ⊆ M, then by computing fine enough abstractions of 	,
the algorithm will always be able to prove that f is hyperbolic
on an outer-approximation of �.

2) Computational Complexity: The complexity of the algo-
rithm is mainly driven by the complexity of computing
abstractions of the invariant set �. For a given size of the
regions, this grows in the worst case as a power of the dimen-
sion of the system; this is the curse of dimensionality of the
abstraction approach. On the other hand, once the abstraction
is computed, it suffices to run a SDP solver to find whether
there is or not a path-complete contracting set of matrices
adapted to this abstraction. The SDP problem will involve
N = |M| matrix variables of dimension d×d and m = |E|+2N
constraints; typically, m ∈ O(N).
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Fig. 3. Abstractions based on “square” discretizations of 	 with
horizontal stepsize hx and vertical stepsize hy . The regions in red over-
approximate the maximal invariant set � contained in 	. The finer the
discretization, the closer is the over-approximation to �. (Using square
discretizations is not the best choice in general; however the purpose
of this section is merely to show that the field of p-matrices can be
computed using Theorem 4.)

D. Related Works

The hyperbolicity verification problem has been addressed
by George Osipenko in [20]; this is the only other work on
the algorithmic hyperbolicity verification we are aware of.
Osipenko’s approach relies on constructing abstractions of the
augmented system (x, δx) �→ ( f (x), Dfxδx). This requires to
discretize the state space M and the “tangent space” R

d (more
precisely, the projective space PR

d−1) of the system. The
Morse spectrum of the system can then be over-approximated
by bounding the minimal and maximal growth rate of the
derivative along cycles in the graph of the abstraction. A cer-
tificate of hyperbolicity of the system is then obtained if the
over-approximation of the Morse spectrum keeps away from
zero.

This approach also suffers from the curse of dimensional-
ity since it requires to construct abstractions of a space with
dimension 2d − 1. It is difficult to have a further compari-
son between the two methods because this will highly depend
on the size of the abstraction of �, which can be smaller
than O(ηd), where η is the size of the regions Mi and d the
dimension of the system, if � is low-dimensional.

V. NUMERICAL EXAMPLE

In this section, we illustrate the use of the computa-
tional framework described above on a numerical example.
Therefore, we consider the modified Ikeda mapping:

f (x, y) = (r + a(x cos τ − y sin τ), b(x sin τ + y cos τ))

with τ = C1 − C3/(1 + x2 + y2), r = 2, C1 = 0.4, C3 = 6,
a = 0.9, b = −0.9. The modified Ikeda mapping is known to
have an invariant set in 	 = [−1.1, 3.4] × [−1.5, 1.8] with a
hyperbolic structure; see [20].

We have considered abstractions of the maximal invari-
ant set � contained in 	 as represented in Fig. 3. In
order to obtain an abstraction that δ-approximates Df with
δ = 0.08, we have used hx = 0.0023 and hy = 0.0017.
This leads to an abstraction with 2454 vertices and 9390
edges. For this abstraction, (4) is feasible and all feasible solu-
tions ({Si}i, ε) satisfy In(Si) = (1, 0, 1) for every i. Hence,
f is hyperbolic on its maximal invariant set � contained
in 	.
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