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Abstract—In this letter, we study the problem of
stabilizing continuous-time switched linear systems via
mode-dependent quantized state feedback. We derive a
closed-form expression for the minimal information data
rate from the coder to the controller necessary to achieve
stabilization of the system. In particular, it is shown that the
evaluation of the minimal data rate for stabilization reduces
to the computation of the Lyapunov exponent of some lifted
switched linear system, obtained from the original one by
using tools from multilinear algebra, and thus can benefit
from well-established algorithms for the computation of the
Lyapunov exponent. In a second time, drawing upon this
expression, we describe a practical coder–controller that
stabilizes the system, and whose data rate can be as close
as desired to the optimal data rate.

Index Terms—Networked control systems, switched
systems, quantized systems.

I. INTRODUCTION

QUANTIZED control has been an important area of
research in recent years. Many modern control systems

(such as cyber-physical systems, IoT, etc.) involve spatially
distributed components that communicate through a shared,
digital communication network. Due to the digital nature of
the network, all data must be quantized before transmission,
resulting in quantization error that can have large negative
effects on the performance of the control loop. Furthermore,
in applications, the capacity of the network is often lim-
ited by cost, power, physical and/or security constraints.
Consequently, a major challenge in the design of such net-
worked systems is to determine the minimal communication
data rate needed to achieve a given control objective. This
fundamental question has attracted a lot of attention from the
control community in the past decades, with great theoretical
and practical advances; as surveyed in [3], [9], [19].

In this letter, we are interested in quantized control
of continuous-time Switched Linear Systems (SLSs). These
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systems are described by a finite set of linear modes among
which the system can switch in time. As paradigmatic exam-
ples of hybrid and cyber-physical systems, they appear natu-
rally in many engineering applications, or as abstractions of
more complicated systems [4], [5], [14].

A popular setting in quantized control of switched and
hybrid systems is the so-called mode-dependent quantized
feedback [8], [11], [16], [18]. This setting assumes that
the current mode of the system is always known by the
coder–controller; see also Figure 1. (By contrast, “mode-
independent” or “sampled-mode” quantized feedback requires
that mode information is also quantized [6], [17].) Mode-
dependent quantized feedback is motivated, for instance,
by control problems involving networked switched systems
with exogenous switching mechanism, or deterministically
switched systems whose switching signal is not known at
time of the coder–controller’s and infrastructure’s design (see
also [2]), or to derive fundamental bounds on the data rate
necessary for other quantized control settings. The mode-
dependent quantized feedback setting has been studied mainly
in the context of Markov Jump Linear Systems (discrete-
time control-affine SLSs whose sequence of modes is dic-
tated by a Markov chain). Constructive data rate bounds for
their Mean Square Stabilization have been proposed, e.g.,
in [8], [16], [18], and an expression for the minimal data rate
for Mean Square Stabilization, thought not computable in
general, is derived in [11].

In this letter, we study mode-dependent quantized feedback
control of continuous-time control-affine SLSs, and the control
objective that is considered is their stabilization under arbi-
trary switching (see Figure 1). Our contribution is twofold.
First, we provide a closed-form expression for the minimal
data rate for stabilization of these systems. The minimal data
rate is expressed as the Lyapunov exponent of some “lifted”
system that represents the action of the original system on ele-
ments of volume (captured by algebraic constructions called
exterior algebras). The computation of the minimal data rate
can thereby benefit from well-established algorithms for the
computation of the Lyapunov exponent [14]. Secondly, draw-
ing on this expression, we describe a practical coder–controller
that stabilizes the system and works whenever the channel data
rate fits that bound. In summary, this letter combines several
algebraic tools in control (exterior algebras, Lyapunov expo-
nent) and shows that these concepts are key to the analysis
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Fig. 1. Control of switched linear systems over digital communication
networks with mode-dependent quantized feedback control loop.

of control-affine SLSs subject to data rate constraints. They
allow for both an explicit theoretical characterization, and
the practical computation, of optimal quantizing–controlling
strategies.

Outline: The problem of interest is formulated precisely in
Section II. In Section III, the closed-from expression for the
minimal data rate for stabilization of SLSs, and a practical
coder–controller that stabilizes the system, with a data rate as
close as desired to the optimal bound, are presented. Finally,
in Section IV, we demonstrate the applicability of our results
on a numerical example.

Notation: For vectors, ‖·‖ denotes the Euclidean 2-norm,
and for matrices it denotes the associated matrix norm (i.e.,
‖M‖ = largest singular value of M). B(ξ, r) is the closed ball
centered at ξ ∈ R

d with radius r ≥ 0. �·� (�·	) denotes the ceil
(floor) operator. If f : A → B, and A′ ⊆ A, then f |A′ denotes
the restriction of f to the domain A′.

II. PRELIMINARIES

A. Switched Linear Systems

Consider a continuous-time Switched Linear System (SLS)
with affine control input:

ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t), x(0) ∈ K, t ≥ 0, (1)

where σ(t) ∈ � := {1, . . . , N} and u(t) ∈ R
c, Ai ∈ R

d×d

and Bi ∈ R
d×c for all i ∈ �, and K ⊆ R

d is a compact
set with 0 ∈ int(K). The function σ : R≥0 → � is called
the switching signal (or s.s. for short) and is assumed to be
piecewise constant and right-continuous. For ξ ∈ R

d and s ≥
0, we denote by xσ,u(·, s, ξ) the solution of (1) with s.s. σ ,
control input u : R≥0 → R

c, and satisfying x(s) = ξ .1

We denote by xσ (·, s, ξ) = xσ,0(·, s, ξ) the solution of the
open-loop system (1) with s.s. σ and x(s) = ξ . For t ≥ s ≥ 0,
the state transition matrix [13] from s to t of the open-loop
system with s.s. σ is defined by

�σ (t, s) = eAσ(tk)(t−tk) · · · eAσ(t1)(t2−t1)eAσ(s)(t1−s), (2)

where t1 < . . . < tk are the switching times of σ on [s, t).
Note that xσ (t, s, ξ) = �σ (t, s)ξ for all ξ ∈ R

d.
We assume that the system is feedback stabilizable.
Definition 1: System (1) is said to be feedback stabilizable

if there is a function ϕ : Rd × � → R
c and constants D ≥ 0

and μ > 0 such that for every ξ ∈ R
d and s.s. σ , the feedback

control input defined by u(t) = ϕ(x(t), σ (t)) satisfies

‖xσ,u(t, 0, ξ)‖ ≤ D‖ξ‖ e−μt ∀ t ≥ 0. (3)

1The linearity of the system implies that xσ,u(t, s, ξ) + xσ,v(t, s, η) =
xσ,u+v(t, s, ξ + η). As a non-autonomous dynamical system, it also satisfies
the cocycle property: xσ,u(t, r, ξ) = xσ,u(t, s, xσ,u(s, r, ξ)).

B. Feedback Stabilization With Quantization and Data
Rate Constraints

We investigate the problem of feedback stabilization of
SLSs through digital networks with limited data rate. The sit-
uation is depicted in Figure 1. At specific transmission times,
0 ≤ T0 < T1 < T2 < · · · , a coder measures the state of the
system, and is connected to a controller via a digital chan-
nel that can carry one discrete-valued symbol, selected from a
finite coding alphabet Ek, at each time Tk. A symbol sent at Tk
is received by the controller at the latest at time Tk+1. Thus,
at any time t ∈ [Tk+1, Tk+2), the controller has the symbols
e(T0), . . . , e(Tk) available and it generates an input u(t) whose
goal is to stabilize the system.

Let (Tk)k∈N and (Ek)k∈N be the transmission times and the
coding alphabets of the coder–controller. In general, those may
depend on the switching signal; however, to not overload the
notation, we will drop the dependence on the switching signal
in the notation below. The symbol sent by the coder at time
Tk is defined by

e(Tk) = γk(x(T0), . . . , x(Tk), σ |[0,Tk)), (4)

where γk : (Rd)k × �[0,Tk) → Ek is the coder function at
time Tk, and x(·) is the state of the system. The symbol e(Tk)

will be received by the controller at most at Tk+1. At any
time t ∈ [Tk+1, Tk+2), the controller has thus the symbols
e(T0), . . . , e(Tk) available and it generates the input

u(t) = ζt(e(T0), . . . , e(Tk), σ |[0,t)), (5)

where ζt : E0×· · ·×Ek×�[0,t) → R
c is the controller function

at time t. Let γ = (γk)k∈N and ζ = (ζt)t≥0. The pair (γ, ζ ) is
called a coder–controller.

Definition 2: The coder–controller (γ, ζ ) is said to stabi-
lize (1) if the control input u(·) given by (4)–(5) satisfies

(a) Exponential Convergence: there are C ≥ 0 and
λ > 0 such that for every ξ ∈ K and every s.s. σ ,
‖xσ,u(t, 0, ξ)‖ ≤ Ce−λt for all t ≥ 0.

(b) Lyapunov Stability: for every ε > 0, there is δ > 0
such that for every ξ ∈ B(0, δ) and every s.s. σ ,
‖xσ,u(t, 0, ξ)‖ ≤ ε for all t ≥ 0.

At each time Tk, the symbol e(Tk) is transmitted via the
communication network during the period [Tk, Tk+1). Using
binary representation of the symbols, the minimal data rate
(in bits/s) required for the network is thus given by

R(γ, ζ ) = sup
σ

sup
k∈N

�log2|Ek|�
Tk+1 − Tk

where the first supremum is over all s.s. σ (remember that
(Tk)k∈N and (Ek)k∈N depend on σ ).

Definition 3: The minimal data rate for stabilization of (1)
is defined by2

Rstab(A�, B�, K) = inf
(γ,ζ )

R(γ, ζ )

where the infimum is over all coders–controllers (γ, ζ ) that
stabilize the system.

2In formulas, it is convenient to identify system (1) by the triple
(A�, B�, K) where A� = {Ai}i∈� and B� = {Bi}i∈� .
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III. MINIMAL DATA RATE FOR STABILIZATION OF SLSS

For control-affine LTI systems ẋ(t) = Ax(t) + Bu(t), where
(A, B) is stabilizable, it is well known that the minimal data
rate for stabilization satisfies

Rstab(A, B, K) = log2(e)
∑

Re(λi)>0

Re(λi), (6)

where λ1, . . . , λd are the eigenvalues of A. Moreover, for
any data rate R > Rstab(A, B, K), there is a practical coder–
controller with data rate R that stabilizes the system.

In this section, we present a closed-form expression, sim-
ilar to (6), for the minimal data rate for stabilization of
SLSs. Moreover, drawing on this expression, we describe the
implementation of a practical coder–controller that stabilizes
the system and whose data rate can be arbitrarily close to
Rstab(A�, B�, K). The closed-form expression relies on the
concepts of Lyapunov exponent [14] and of exterior powers of
matrices [1]. For the sake of completeness, we remind below
the definitions and properties of these concepts, relevant for
this letter; see Sections III-A and III-B.

The results of this section are inspired from [2], where a
closed-form expression, based on the Joint Spectral Radius,3

for the minimal data rate required for state observation of
discrete-time switched linear systems is presented.

A. Lyapunov Exponent

The Lyapunov exponent of the open-loop SLS (1), denoted
by λ̂(A�), is the smallest exponent α such that all trajectories
of (1) in open-loop grow asymptotically slower that e(α+ε)t for
all ε > 0. Formally,

λ̂(A�) = inf {α ∈ R : sup
t≥0

e−αt‖xσ (t, 0, ξ)‖ < ∞

∀ ξ ∈ R
d and s.s. σ }.

The Lyapunov exponent satisfies the following properties:
Proposition 1: Consider the open-loop SLS (1).
(i) For any α > λ̂(A�), there is C ≥ 0 such that for every

s.s. σ and t ≥ s ≥ 0, ‖�σ (t, s)‖ ≤ Ceα(t−s).
(ii) There is a switching signal σ such that

lim supt→∞ e−λ̂(A�)t‖�σ (t)‖ > 0.
Proof: The proof follows from [10, eq. (2)]. Due to space

limitation, the details are omitted.
Note that for LTI systems ẋ(t) = Ax(t), λ̂(A) is equal to the

largest real part of the eigenvalues of A. It follows that λ̂(A�)

is at least equal to the largest real part of the eigenvalues of
Ai for any i ∈ � (use the s.s. σ(·) ≡ i).

B. Exterior Powers of Matrices

Exterior algebras are algebraic constructions used to study
the notions of areas, volumes, and their higher-dimensional
analogues, in general vector spaces. In particular, exterior pow-
ers of linear operators are used to represent the action of linear
operators on such elements of areas, volumes, etc. They can
be defined in a coordinate-free fashion; see [1, Sec. 3.2.2].
However, in this letter, due to space limitation, we will restrict
our attention to the exterior powers of matrices, which are

3The Joint Spectral Radius is a measure of stability of discrete-time SLSs.

themselves matrices and thus allow for a coordinate-based def-
inition. To do this, let I = 2{1,...,d} be the set of all subsets,
including ∅,4 of {1, . . . , d}. Let A ∈ R

d×d.
The full-order exterior power of A, denoted by A∧, is the

2d × 2d matrix whose entries are indexed by the elements of
I, and is defined for any I, J ∈ I by

A∧
I,J =

{
0 if |I| �= |J|
det

(
[Aij]i∈I, j∈J

)
otherwise.

The 1st-order exterior power of A, denoted by A�, is the
2d × 2d matrix whose entries are indexed by the elements of
I, and is defined for any I, J ∈ I by

A�
I,J =

{
0 if |I| �= |J|
∑

k∈I det
(

[Ã(k)
ij ]i∈I, j∈J

)
otherwise,

where Ã(k) is the d × d identity matrix with its kth column
replaced by the kth column of A. (See also Section IV for a
numerical example.)

The following proposition, whose proof can be found
in [1, Sec. 3.2.3], summarizes all the properties of exterior
powers of matrices that we will need in this letter.

Proposition 2: Let A ∈ R
d×d.

(i) (exp(A))∧ = exp(A�).
(ii) ‖A∧‖ = ∏d

i=1 max {ρ̄i, 1} where ρ̄1, . . . , ρ̄d are the
singular values of A.

(iii) The eigenvalues of A� are given by
∑

i∈I λi, I ∈ I,
where λ1, . . . , λd are the eigenvalues of A.

Property (i) in Proposition 2 implies that (�σ (·, ·))∧ is the
state transition matrix of the open-loop SLS (1) with set of
matrices {Ai}i∈� replaced by {A�

i }i∈� .

C. Main Result

We are now able to present the main result of this letter,
which combines the concepts of Lyapunov exponent and of
exterior power into an efficiently computable formula for the
minimal data rate for stabilization of SLSs.

Theorem 1: Assume that (1) is feedback stabilizable. The
minimal data rate for stabilization of (1) satisfies

Rstab(A�, B�, K) = log2(e) λ̂((A�)�), (7)

where (A�)� = {A�
i }i∈� . Moreover, for any data rate R >

Rstab(A�, B�, K), there is a practical coder–controller with
data rate R that stabilizes the system.

Note that by Proposition 2-(iii) and the comment below
Proposition 1, (7) coincides with (6) when the SLS has only
one mode. It also follows that the right-hand side term of (7)
is always nonnegative since 0 is an eigenvalue of A�

i for
any i ∈ �.

The proof that Rstab(A�, B�, K) ≥ log2(e) λ̂((A�)�) is
presented in Appendix A. The rest of the proof of Theorem 1
will follow from Section III-D where a practical coder–
controller that stabilizes the system and works at any data
rate R > log2(e) λ̂((A�)�) is described.

4The following conventions will be useful when dealing with empty sets:
an empty product of real numbers is equal to 1; an empty product of matrices
is equal to the identity matrix; the determinant of an empty matrix is equal
to 1; an empty sum is equal to 0.
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Theorem 1 shows that the evaluation of Rstab(A�, B�) can
be reduced to the computation of the Lyapunov exponent of
A�

� , and thus can benefit from the numerous algorithms that
have been proposed in the literature in the last decades to
estimate the Lyapunov exponent of continuous-time SLSs; see
[14] and references therein. The computation of the 1st-order
exterior power of a matrix is straightforward from its defi-
nition, and thus A�

� can be computed in a systematic way.
However, it should be noted that the dimension of the matri-
ces in A�

� increases exponentially with the dimension of the
system, and so will the complexity of approximating λ̂(A�

�)

(this is the curse of dimensionality). In this regard, let us men-
tion that a simple algorithm-independent way to substantially
speed up the approximation of λ̂(A�

�), although not sufficient
to beat the curse of dimensionality, is to use the fact that the
matrices in A�

� are block diagonal, so that the computation of
the Lyapunov exponent can be decoupled among the differ-
ent diagonal blocks. Furthermore, there are cases for which
the computation of λ̂(A�) is straightforward. For instance, if
A� is a set of normal (or upper-, or lower-triangular) matri-
ces, then the Lyapunov exponent is equal to the largest real
part of the eigenvalues of the matrices Ai [14, Th. 2.41],
[4, Proposition 2.2]. By combining these observations with the
properties of the exterior powers of matrices (Proposition 2),
we obtain very efficient ways to compute the minimal data
rate for stabilization of SLSs with such sets of matrices; see
also [2, Corollary 3.3] for similar results for the computation
of the worst-case topological entropy of discrete-time SLSs.

D. Practical Coder–Controller

We describe the implementation of a practical coder–
controller that stabilizes the system and operates at any data
rate R > log2(e) λ̂((A�)�).

The following two lemmas are instrumental:
Lemma 1: Let M ∈ R

d×d and α > 0. Let H = MB(0, 1).
There is an m-points quantizer Q(·) : Rd → Q ⊆ R

d satisfying
(i) ‖ξ − Q(ξ)‖ ≤ α for all ξ ∈ H, (ii) Q(ξ) = 0 if ‖ξ‖ ≤
α/d1/2, and (iii)

m = |Q| ≤
d∏

j=1

(
2

�
d1/2ρ̄i

2α

�
+ 1

)
=: m̂α(M) (8)

where ρ̄1, . . . , ρ̄d are the singular values of M, and �·� denotes
the rounding (to the nearest integer) operator.

Proof: See Appendix B.
Lemma 2: Consider system (1), and let α > 0 and R >

log2(e) λ̂((A�)�). There is T∗ ≥ 0 such that for every s.s. σ ,
and every s ≥ 0 and t ≥ s + T∗, it holds that m̂α(�σ (t, s)) ≤
2�R(t−s)	, where m̂α(·) is as in (8).

Proof: See Appendix C.
The coder–controller is defined as follows. (The reader may

find useful to refer to Figure 2, where the different quantities
appearing in the definitions are represented.)

1) Parameters: Fix α ∈ (0, 1). Let ϕ(·, ·),5 D ≥ 0 and μ >

0 be as in Definition 1. Let T∗ ≥ 0 be such that De−μT∗ ≤ α.
Also, fix r0 ≥ 0 such that K ⊆ B(0, r0). Finally, fix R >

5Without loss of generality, we may assume that ϕ(0, i) = 0 for all i ∈ �.
This will be useful for the Lyapunov stability (see Appendix D).

Fig. 2. The different quantities involved in the implementation of the
coder–controller. The black points represent the quantized points, i.e.,
the set Qk associated to Qk (·), scaled by rk and shifted by ξk+1.

Fig. 3. Coder implementation. treal denotes the current real time.
†The input u(·) is determined by the controller (see Figure 4) based on
the information sent by the coder, thus u(·) is also computable by the
coder, and so is ξk ; see also Remark 1. The knowledge of x(Tk ) comes
from the fact that the coder may observe the current state of the system.

Fig. 4. Controller implementation. treal denotes the current real time.
‡The controller can compute �σ (Tk−1, Tk−2) (see also Remark 1) and
thus it is able to compute Qk−1(·), and so obtain θk−1 from e(Tk−1).

log2(e) λ̂((A�)�), which will be the data rate of the coder–
controller. For ease of notation, we also let rk = αkr0.

2) Coder and Controller Implementations: For the set of
parameters defined above, the associated coder and controller
are implemented by the algorithms in Figures 3 and 4.
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Fig. 5. Top: Evolution of x(t) and u(t) for a sample execution of the
coder–controller with data rate R = 3 log2(e). The black curve below
the plot represents the switching signal. The orange and red diamonds
represent the value of ηk at the transmission times Tk . Bottom: Evolution
of ‖x(t)‖ for sample executions of the coder–controller with data rates
R ∈ {1.5, 2, 3, 4} log2(e).

The implementations deserves the following explanations.
First, from their definition, the values of Tk, �k, and ξk, are the
same for the coder and the controller, for all k ∈ N. Secondly,
note that by Lemma 2, the while loop of the coder and con-
troller always exits in finite time, and moreover, there is an
upper bound T∗ on Tk − Tk−1, independent of σ and k (this
will be useful in the proof of the correctness of the coder–
controller). Finally, by Lemma 1 and the definition of �k,
Qk(·) is an m-points quantizer with m ≤ 2�R�k	. Hence, the
symbol e(Tk) can be transmitted, with data rate R, over the
period [Tk, Tk+1) since Tk+1 ≥ Tk + �k.

Remark 1: Regarding the implementation, the coder and the
controller know the switching times so that they can compute
�σ (·, Tk), by (2). They can also compute ξk, xσ,u(·, Tk, ηk)

and (�), by integrating auxiliary systems. In practice, these
computations need not be carried out for every treal (neither
with infinite accuracy). For instance, we may fix a sampling
period τs > 0, and carry out the computations only at times
tj = jτs, where τs is small enough to ensure that the “τs-
sample-and-hold” (and noisy) version of u(·) in Definition 1
also stabilizes the system. The coder–controller can thus be
implemented on a classical computer. Due to space limitation,
the details are left for an extended version of this letter.

3) Correctness of the Coder–Controller: We have already
shown (see Section III-D2) that the coder–controller is able
to transmit the symbols with data rate R. The proof that
the coder–controller stabilizes the system in the sense of
Definition 2 is presented in Appendix D.

IV. NUMERICAL EXPERIMENTS

Consider the continuous-time SLS with A1 =
[

0.1 2.0
0.5 0.1

]
,

A2 =
[−0.5 0.5

2.0 0.0

]
, B1 =

[
1
1

]
, B2 =

[
0
1

]
. This system

is stabilizable via the mode-dependent linear feedback law

u(t) = Kσ(t)x(t), with K1 = [ −1.261 −1.261 ] and K2 =
[ −2.5 −0.823 ].

The 1-st-order exterior powers of A1, A2 are given by

A�
1 =

⎡

⎢⎢⎣

1
0.1 2.0
0.5 0.1

0.2

⎤

⎥⎥⎦, A�
2 =

⎡

⎢⎢⎣

1
−0.5 0.5
2.0 0.0

−0.5

⎤

⎥⎥⎦

(where the indexes I, J ∈ I are ordered lexicographically.)
We have used the results of [12], combined with [15], to esti-
mate the Lyapunov exponent of A�

� . This provided the interval
λ̂(A�

�) ∈ (1.21, 1.22). It follows that for any R ≥ 1.22 log2(e),
the coder–controller of Section III-D, with data rate R, stabi-
lizes the system. A sample execution of the coder–controller
applied on this system with data rate R = 3 log2(e) is rep-
resented in Figure 5-(top). A comparison of the stabilization
rate of convergence for different values of the data rate of
the coder–controller is presented in Figure 5-(bottom). As
expected, we observe that the norm of x(t) decreases more
rapidly when the data rate is higher.

APPENDIX A
PROOF THAT Rstab(A� , B� , K ) ≥ log2(e) λ̂((A� )�)

Fix a s.s. σ and T > 0. Let UT be the set of input func-
tions u(·) defined on [0, T) by the coder–controller. Since, for
a given s.s., the input u(·) depends only on the past received
symbols, and because of the data rate constraint, the size of
UT is upper bounded by 2�RT	 where R is the data rate of
the coder–controller. For each u ∈ UT , let �u be the set
of points ξ ∈ K with the following property: if the system
starts from ξ , then the control input defined by the coder–
controller, i.e., by (4)–(5), is equal to u on [0, T). Clearly,
K = ⋃

u∈UT
�u. Without loss of generality, we may assume

that �u is Lebesgue measurable for all u ∈ UT . Finally, by
linearity and by the stabilization property, for each u ∈ UT , it
holds that if ξ, η ∈ �u, then ‖xσ (T, ξ − η)‖ ≤ 2Ce−λT where
C, λ are as in Definition 2-(a).

Now, for any I ⊆ {1, . . . , d} (I �= ∅), let VI ⊆ R
d be the

subspace spanned by {ei}i∈I where ei is the ith vector of the
canonical basis of Rd. For any set � ⊆ R

d, let volI(�) be the
|I|-dimensional Lebesgue volume of � ∩ VI .

Now, fix I, J ⊆ {1, . . . , d}, |I| = |J| > 0, and let
M ∈ R

|I|×|I| be the matrix obtained from �σ (T, 0) by keeping
only the rows with index in I and the columns with index in J.
For each u ∈ UT , let �J,u = �u ∩VJ . From the first paragraph,
it holds that volI(�σ (T, 0)�J,u) ≤ (2Ce−λT)|I|. On the other
hand, it holds that volI(�σ (T, 0)�J,u) = |det(M)| volJ(�u) =
|[(�σ (T, 0))∧]I,J| volJ(�u), where the second equality comes
from the definition of the full-order exterior power. Thus,
letting φ = |[(�σ (T, 0))∧]I,J|, it holds that φ volJ(K) ≤∑

u∈UT
φ volJ(�u) ≤ 2�RT	(2Ce−λT)|I|. T is arbitrary, volJ(K)

is nonzero and independent of T , and C, λ are indepen-
dent of σ . This implies that 2−RT |[(�σ (T, 0))∧]I,J | → 0 as
T → ∞ for all s.s. σ . Since I, J are arbitrary, this implies that
2−RT‖(�σ (T, 0))∧‖ → 0 as T → 0 for all s.s. σ . Now, by
Proposition 1-(ii) and the comment below Proposition 2, we
deduce that R ≥ log2(e)λ̂((A�)�).
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APPENDIX B
PROOF OF LEMMA 1

Let USV∗ be an SVD of M. Let β = 2α/d1/2, and for each
j ∈ {1, . . . , d}, define Sj = {−�ρ̄j/β�, . . . , �ρ̄j/β�}. It holds
that |Sj| = 2�ρ̄j/β�+1. Now, define Q = U(βS1 × . . .×βSd),
and let Q(ξ) be defined as the closest point in Q to ξ . Then,
Q(·) satisfies (i)–(iii); due to space limitation, the details are
left to the reader.

APPENDIX C
PROOF OF LEMMA 2

First, we derive an upper bound on m̂α(M) in terms of the
norm of its full-order exterior power M∧. Let β = d1/2/(2α).
Note that for any r ∈ R, it holds that �r� ≤ r + 1

2 . Hence,
m̂α(M) ≤ ∏d

i=1(2β + 2) max {ρ̄i, 1} ≤ (2β + 2)d‖M∧‖, where
the second inequality follows from Proposition 2-(ii).

Let λ1, λ2 ∈ R be such that λ̂((A�)�) < λ1 < λ2 <

R/ log2(e). Then, by Proposition 1-(i) and the comment below
Proposition 2, there is C ≥ 0 such that ‖(�σ (t, s))∧‖ ≤
Ceλ1(t−s) for all s.s. σ and t ≥ s ≥ 0. Thus, there is T∗ ≥ 0
such that m̂α(�σ (t, s)) ≤ (2β + 2)d‖(�σ (t, s))∧‖ ≤ 1

2 eλ2(t−s)

for all s.s. σ and s ≥ 0, t ≥ s + T∗. The proof is complete by
observing that 1

2 eλ2(t−s) ≤ 2�R(t−s)	.

APPENDIX D
PROOF THAT THE CODER–CONTROLLER STABILIZES

THE SYSTEM

We show that the coder–controller defined in Section III-D2
stabilizes the system in the sense of Definition 2. We pro-
ceed in steps. First, we show that for every k ∈ N, it holds
that ‖x(Tk) − ηk‖ ≤ rk. This is obviously true for k = 0.
Now, assume that it is true for some k ∈ N, and observe
that, by definition of δk+1 and by linearity of the system,
δk+1 = xσ (Tk+1, Tk, x(Tk) − ηk) = �σ (Tk+1, Tk)(x(Tk) − ηk).
Thus, by the induction hypothesis, it holds that δk+1 ∈
�σ (Tk+1, Tk)B(0, rk). Hence, by definition of Qk+1(·) and
θk+1, we have that ‖θk+1 − δk+1/rk‖ ≤ α. By definition of
ηk+1, it follows that ‖x(Tk+1) − ηk+1‖ ≤ αrk = rk+1. By
induction, we conclude that this is satisfied for all k ∈ N.

Secondly, we show that there is an upper bound on θk,
independent of σ and k ∈ N, and conclude that ξk → 0
exponentially. The first claim comes from the observation
that ‖�σ (Tk, Tk−1)‖ ≤ eLT∗

, where L = maxi∈� ‖Ai‖ and
T∗ is the upper bound on Tk − Tk−1 discussed in §III-D2.
Thus, we have that ‖θk‖ ≤ eLT∗ + α for all k ∈ N. For
the second claim, observe that ξk+1 = xσ,u(Tk+1, Tk, ηk) =
xσ (Tk+1, Tk, rk−1θk) + xσ,u(Tk+1, Tk, ξk). Thus,

‖ξk+1‖ ≤ rk−1eLT∗‖θk‖ + De−μ(Tk+1−Tk)‖ξk‖
≤ Cαk + α‖ξk‖, C = r0eLT∗

(eLT∗ + α)/α,

(we used that De−μ(Tk+1−Tk) ≤ De−μT∗ ≤ α since Tk+1−Tk ≥
�k ≥ T∗; see Sections III-D1 and III-D2). From the above, it
follows that ξk → 0 exponentially as k → ∞.

Finally, using the above results, we show that x(t) → 0
exponentially. Indeed, from the definition of ηk, we have
‖x(Tk) − ξk‖ ≤ ‖x(Tk) − ηk‖ + ‖ηk − ξk‖ ≤ rk + rk−1‖θk‖,
which shows that ‖x(Tk) − ξk‖ → 0 exponentially. Then, for

t ∈ [Tk, Tk+1), we have from x(t) = xσ (t, Tk, x(Tk) − ξk) +
xσ,u(t, Tk, ξk), that

‖x(t)‖ ≤ eL(t−Tk)‖x(Tk) − ξk‖ + De−μ(t−Tk)‖ξk‖
≤ eLT∗‖x(Tk) − ξk‖ + D‖ξk‖,

and thus, x(t) → 0 exponentially as t → ∞.
Summarizing, we have shown that the control input u(·)

generated by the coder–controller satisfies the exponential con-
vergence property (Definition 2). The proof that the origin is
Lyapunov stable with this input is along the same lines as the
proof of [7, Th. 1], and thus, omitted here. This concludes the
proof that the coder–controller defined in §III-D2 stabilizes
the system.
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