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Abstract— We investigate the Probably Approximately
Correct (PAC) property of scenario decision algorithms,
which refers to their ability to produce decisions with an
arbitrarily low risk of violating unknown safety constraints,
provided a sufficient number of realizations of these con-
straints are sampled. While several PAC sufficient con-
ditions for such algorithms exist in the literature—such
as the finiteness of the VC dimension of their associated
classifiers, or the existence of a compression scheme—it
remains unclear whether these conditions are also neces-
sary. In this work, we demonstrate through counterexam-
ples that these conditions are not necessary in general.
These findings stand in contrast to binary classification
learning, where analogous conditions are both sufficient
and necessary for a family of classifiers to be PAC. Further-
more, we extend our analysis to stable scenario decision
algorithms, a broad class that includes practical methods
like scenario optimization. Even under this additional as-
sumption, we show that the aforementioned conditions
remain unnecessary. Furthermore, we introduce a novel
quantity, called the dVC dimension, which serves as an
analogue to the VC dimension for scenario decision algo-
rithms. We prove that the finiteness of this dimension is a
PAC necessary condition for scenario decision algorithms.
This allows to (i) guide algorithm users and designers to
recognize algorithms that are not PAC, and (ii) contribute to
a comprehensive characterization of PAC scenario decision
algorithms.

Index Terms— Randomized Algorithms, Scenario De-
sign, Statistical Learning.

I. INTRODUCTION

R ISK-aware decision making is an important problem in
engineering, encompassing many applications of great

importance, such as control, energy planning, healthcare, etc.
One key challenge in this problem is that the distribution of
the uncertainty is usually unknown, so that one has to rely on
observations to make a decision that has a low risk (probability
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of failure). The approach of scenario decision making [1]–[15]
provides an effective way to address this problem by using the
principle of sample-based methods. Concretely, this approach
consists in sampling N realizations of the uncertainty, and
making a decision based on these samples. The process is
called a scenario decision algorithm, mapping finite sets of
samples to decisions. Under some conditions on the problem
and the algorithm, one can guarantee with high probability
that if enough samples are provided to the algorithm, the
returned decision has a low risk. This property is called the
PAC (Probably Approximately Correct) property.

Several PAC sufficient conditions, i.e., conditions on the
problem and the scenario decision algorithm ensuring that
the algorithm is PAC, have been studied in the litera-
ture; see, e.g., [16] for a survey. These conditions can be
grouped into two categories:1 complexity-based conditions and
compression-based conditions. Complexity-based conditions,
such as those in [17]–[19], provide PAC guarantees for sce-
nario decision problems whose decision space has bounded
“complexity” such as bounded VC dimension or Rademacher
complexity [16]. In this work, we focus on complexity-based
PAC conditions that are based on the VC dimension, as in [18].
Compression-based conditions, such as those in [2], [3], [15],
[20], provide PAC guarantees for scenario decision algorithms
whose input can be “compressed”, meaning that a subset of
the samples provides the same decision as the complete set
of samples [16]. Note that the results in [2], [3], [15] require
additional assumptions, such as stability (see Definition 8) and
non-degeneracy ([3, Definition 2.7]).

The objective of this work is to progress in the understand-
ing of what makes a scenario decision algorithm PAC or not.
Our starting point is to ask whether the above PAC sufficient
conditions are also necessary. We show with counterexamples
that this is not the case (Section III). We do this for general
scenario decision algorithms, and for stable ones (with slightly
weaker conclusions); see Table I for a summary. Designing and
analyzing these counterexamples is the first main contribution
of this work. The second main contribution is to provide a
novel quantity, similar to the VC dimension, for scenario de-
cision algorithms, and showing that finiteness of this quantity
is a PAC necessary condition (Section IV). We also show that
this PAC necessary condition is not sufficient.

1Three categories in [16], but we merged “compression-based methods”
and “scenario-based methods” because of their similarities.
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Infinite
VC dim.

No Compr.
Scheme

No Compr.
Map

Finite
dVC dim.

PAC Sec. III-A Sec. III-B Sec. III-B ⇒
Stable PAC Sec. III-A Empty? Sec. III-C ⇒

Not PAC ⇒ [18] ⇒ [21] ⇒ [21] Sec. IV-A

TABLE I
SUMMARY OF OUR RESULTS AND COUNTEREXAMPLES (E.G., SEC. III-A

CONTAINS AN ALGORITHM THAT IS PAC, AND STABLE PAC, AND HAS

INFINITE VC DIMENSION). THE SYMBOL “ ⇒” MEANS THAT THE

CONDITION OF THE ROW IMPLIES THE CONDITION OF THE COLUMN.

A. Connections with the Literature

To the best of our knowledge, this is the first work study-
ing the necessity of PAC conditions for scenario decision
algorithms. The algorithms in [17, Theorem 2.1] and [22,
Example 23.1] are shown to have no compression scheme and
be PAC-like (through VC theory); however, the notion of PAC
used there is different since the algorithm returns a set of
decisions, and PAC is defined with respect to the largest risk
of a decision in the returned set; see also, e.g., [7, Def. 1]. The
algorithm in [7, Appendix A] is shown to have an unbounded
number of support constraints. With a bit of work, it can be
shown to be a valid counterexample for Section III-C. More
broadly, we believe that other examples in the literature could
potentially serve as counterexamples in Section III. However,
to the best of our knowledge, these examples have not been
explicitly demonstrated to meet the required conditions. In
contrast, our counterexamples are rigorously proven to do so.
Furthermore, they have been carefully designed to be as simple
as possible, serving two key purposes: (i) facilitating ease of
analysis, and (ii) acting as prototypical examples of problem
classes that satisfy the requirements; thereby guiding algorithm
designers to identify appropriate PAC sufficient conditions
for their problem. For instance, Section III-C exemplifies a
nonconvex optimization problem with finite VC dimension.

Notation: For n ∈ N, we let [n] = {1, . . . , n}. For a set
A, we let A∗ =

⋃∞
m=0 A

m.

II. RISK-AWARE SCENARIO DECISION MAKING

We introduce the problem of risk-aware scenario decision
making.2 We assume given a set X of decisions and a set
Z ⊆ 2X of constraints on X . Given a decision x ∈ X and a
constraint z ∈ Z, we say that x satisfies z if x ∈ z; otherwise,
we say that x violates z.

Example 1: In the following optimization problem:

min
x∈R2

∥x∥ s.t. a⊤(x− c) ≤ 1 ∀ a ∈ R2, ∥a∥ ≤ 1,

where c ∈ R2 is fixed, the decision space is X = R2, and
the constraint space is Z = {C(a) ⊆ X : a ∈ R2, ∥a∥ ≤ 1},
where C(a) = {x ∈ R2 : a⊤(x− c) ≤ 1}.

Finding a decision that satisfies all constraints z in Z is often
intractable if Z is large or unknown. An approach to circum-
vent this—in the case where Z can be sampled—is to sample
N constraints z1, . . . , zN from Z, and find a decision x that

2The definitions and concepts presented in this section are classical, and
can be found, e.g., in [13], [15], [18], [20].

satisfies the sampled constraints. The sample-based problem
is called the scenario problem, and the associated decision the
scenario decision. Since the scenario problem is a relaxation
of the original problem (aka. the robust problem [6]), one can
generally not hope that the scenario decision satisfies all the
constraints in Z. However, under some conditions (the study
of necessary and sufficient such conditions is the object of this
paper), one can ensure with high probability that the scenario
decision satisfies all constraints in Z except possibly those in
a subset of small measure. We formalize this below:

Definition 1: Given a probability measure P on Z, the
violation probability (aka. risk) of a decision x ∈ X w.r.t. P,
denoted by VP(x), is the probability that x violates a randomly
chosen constraint z ∈ Z, i.e., VP(x) ≜ P[{z ∈ Z : x /∈ z}].

As mentioned above, scenario decision making consists in
sampling N constraints from Z, and finding a decision that
satisfies the sampled constraints. For instance, one can define
the scenario decision as the decision in X that minimizes some
cost function while satisfying the sampled constraints: this is
the setting of scenario optimization [3], [15]. Hence, there is
a mapping from tuples of constraints from Z (the samples) to
decisions in X (the scenario decision):

Definition 2: A scenario decision algorithm is a function
that given a tuple of constraints (z1, . . . , zN ) ∈ Z∗ returns a
decision x ∈ X . Hence, it is a function A : Z∗ → X .

Remark 1: We consider tuples of constraints, instead of sets
of constraints, because in general the order and multiplicity of
the sampled constraints may influence the scenario decision.

Example 2: Continuing Example 1, a scenario decision
algorithm A can be defined as follows: given zi = C(ai)
for i = 1, . . . , N , A(z1, . . . , zN ) is the optimal solution of

min
x∈R2

∥x∥ s.t. a⊤i (x− c) ≤ 1 ∀ i ∈ [N ].

This is an instance of scenario optimization.
The ability of a scenario decision algorithm to return a

decision that has a low risk, provided enough constraints are
sampled, is called the PAC (Probably Approximately Correct)
property. More precisely, for any PAC algorithm, one can
ensure with a predefined probability (called confidence) that
if enough constraints are sampled, the risk of the decision is
below a predefined tolerance:

Definition 3: Consider a scenario decision algorithm A. We
say that A is PAC if for any tolerance ϵ ∈ (0, 1) and any
confidence 1−β ∈ (0, 1), there is a sample size N◦ ∈ N such
that for any probability measure P on Z and any N ≥ N◦, it
holds with probability 1−β that if one samples N constraints
(z1, . . . , zN ) i.i.d. according to P, then the decision returned
by A has risk below ϵ, i.e.,

PN
[{
z ∈ ZN : VP(A(z)) > ϵ

}]
≤ β,

where z is a shorthand notation for (z1, . . . , zN ).
Remark 2: In this work, we focus on scenario algorithms

that return a single decision, as opposed to scenario algorithms
that return a set of decisions, such as those in [17], [22]. There,
the violation probability of a set of decisions is defined as the
largest violation probability among all decisions in the set.
This framework is different from ours, and typically precludes
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the use of compression-based PAC results (defined in the next
section) since set-valued scenario decision algorithms rarely
admit a compression scheme. See also Remark 4.

In this work, we focus on scenario decision algorithms that
are consistent, i.e., that return a decision that satisfies all the
sampled constraints:

Definition 4: A scenario decision algorithm A is consistent
if for all (z1, . . . , zN ) ∈ Z∗, A(z1, . . . , zN ) ∈

⋂N
i=1 zi.

Remark 3: A large class of scenario decision algorithms
considered in the literature are consistent [2], [3], [8], [9], [13],
[15], [23]. See also Example 2. Scenario decision algorithms
that are not consistent include those in [4], [12], [14], [18],
[20]. Nevertheless, since one of the main goals of this paper is
to show that well-known PAC sufficient conditions (see below)
are not necessary, there is no loss of generality in showing it
under the stronger assumption of consistency.

A. PAC Sufficient Conditions
Sufficient conditions for being PAC, available in the liter-

ature, can be grouped into two categories: complexity-based
conditions and compression-based conditions. We present one
central condition for each category:

1) Complexity-Based Condition: This condition, introduced
in [18], relies on the connection between scenario decision
making and binary classification learning. The idea is that
each decision x ∈ X induces a classifier of the constraints z
in Z based on whether x ∈ z, or not. One can then define
the VC dimension of the set of classifiers induced by X
(see Definition 5). It is well known that, in the context of
binary classification learning, any set of classifiers with finite
VC dimension enjoys PAC properties [24, Theorem 6.7]. By
leveraging this result, [18] obtained PAC sufficient conditions
for scenario decision algorithms, as explained below.

For each x ∈ X , we let S(x) = {z ∈ Z : x ∈ z} be the
set of constraints in Z that x satisfies. So, x classifies Z into
two classes: S(x) and Z \ S(x). The range of A, denoted by
R(A), is the set of all classifiers that it can return:

R(A) = {S(A(z)) : z ∈ Z∗}.

We next recall the definition of the VC dimension of a set of
classifiers, first introduced by [25]:

Definition 5: Let C ⊆ 2Z be a set of classifiers. A subset
Z ′ ⊆ Z is shattered by a C if for every classifier T ⊆ Z ′,
there is S ∈ C such that T = S∩Z ′. The VC dimension of C
is the supremum of all integers k for which there is a subset
Z ′ ⊆ Z of cardinality k that is shattered by C.

Theorem 1 ([18, Theorem 3]): Consider a consistent sce-
nario decision algorithm A. Assume that R(A) has finite VC
dimension. Then, A is PAC.

2) Compression-Based Condition: Several compression-
based PAC results have been proposed in the literature [15],
[20], [23]. These results rely on the notion of compression re-
minded below, which may slightly vary across works. We first
introduce the notion of compression used in [15], [23]. The
idea is that a scenario decision algorithm A has compression
size d if for any tuple of constraints (z1, . . . , zN ) ∈ ZN , one
can extract a subtuple of length at most d, from which A gives
the same decision as from (z1, . . . , zN ).

Definition 6: Consider a scenario decision algorithm A.
A compression map of capacity d for A is a function κ :
Z∗ → Z≤d satisfying that for every (z1, . . . , zN ) ∈ Z∗, (i)
κ(z1 . . . , zN ) = (zi1 , . . . , zir ) for some integers 1 ≤ i1 <
. . . < ir ≤ N , and (ii) A(κ(z1, . . . , zN )) = A(z1, . . . , zN ).

A slightly more general notion of compression, called here
compression scheme, was introduced in [21] (see also [24,
§30]) and used in [20] for scenario decision making:3

Definition 7: Consider a scenario decision algorithm A. A
compression scheme of capacity d for A is a pair (κ, ρ),
where κ : Z∗ → Z≤d is called the compression map and
ρ : Z≤d → X the reconstruction map, satisfying that for
every (z1, . . . , zN ) ∈ Z∗, (i) κ(z1 . . . , zN ) = (zi1 , . . . , zir )
for some integers 1 ≤ i1 < . . . < ir ≤ N , and (ii)
ρ(κ(z1, . . . , zN )) = A(z1, . . . , zN ).

Clearly, if A admits a compression map of capacity d, then
it admits a compression scheme of capacity d.

Theorem 2 ([24, Theorem 30.2]): Consider a consistent
scenario decision algorithm A. Assume that A admits a
compression scheme or map. Then, A is PAC.

B. Stable Scenario Decision Algorithms

Stability is an important property of many practical scenario
decision algorithms, such as scenario optimization [2]–[4],
[9], [13], [18], [20]; see also [15], [16], [23], [27] and
Example 2. This property captures the fact that if the returned
decision satisfies some unsampled constraint, then adding this
constraint to the set of sampled constraints does not change
the decision:

Definition 8: A consistent scenario decision algorithm A is
stable if for all (z1, . . . , zN+1) ∈ Z≥1, A(z1, . . . , zN ) ∈ zN+1

implies that A(z1, . . . , zN+1) = A(z1, . . . , zN ).
In the next section, we study the necessity of PAC sufficient

conditions, for both stable and non-stable scenario decision
algorithms.

III. THE VC- AND COMPRESSION-BASED SUFFICIENT
CONDITIONS ARE NOT NECESSARY

The main topic of this paper is to address the key question
of whether the sufficient conditions in Theorems 1 and 2 are
also necessary. It turns out that the answer is negative for
general scenario decision algorithms. Next, we consider the
additional assumption of stability. We show that, even under
this additional assumption, the answer is mostly negative. The
following theorem summarizes these results (see also Table I):

Theorem 3: (i) There exist consistent stable PAC scenario
decision algorithms whose range has infinite VC dimension.
(ii) There exist consistent PAC scenario decision algorithms
that do not admit a compression scheme. (iii) There exist stable
consistent PAC scenario decision algorithms that do not admit
a compression map.

3The definition used in [21], [26] is actually slightly more general than
Definition 7, because—on top of the indices {i1, . . . , ir}—an information
q belonging to a finite information set Q is passed by the compression map
to the reconstruction map. For the sake of simplicity and because our results
directly extend to this extended framework, we focus on the slightly more
restricted, but simpler, framework.
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The question of existence of a stable PAC scenario decision
algorithm without a compression scheme remains open.

We prove Theorem 3 by providing counterexamples in the
next subsections. The counterexamples have been simplified
to the maximum for the ease of analysis, but they capture the
essence of algorithms used in practical problems. The purpose
is to (i) allow algorithm users and designers to recognize which
PAC sufficient condition may be better suited for the analysis
of their algorithm, and (ii) build the foundations for a complete
characterization of PAC scenario decision algorithms.

All scenario decision algorithms in the rest of this section
are consistent. Hence, we will drop this adjective when refer-
ring to them.

A. Stable PAC Scenario Decision Algorithm with Infinite
VC Dimension

To prove (i) in Theorem 3, we provide an example of stable
PAC scenario decision algorithm A : Z∗ → X whose range
has infinite VC dimension. The algorithm is a convex scenario
program (like Example 2). The construction is inspired by [28]
and is illustrated in Figure 1.

The decision space X is the Euclidean unit ball in R2. To
present the constraint set, we need some preliminary construc-
tions. Let D ⊆ X be the open arc corresponding to the upper-
right quarter of the unit circle, i.e., D = {(cos(α), sin(α)) :
0 < α < π

2 }. Let U be the set of all finite subsets of N>0,
and let τ : U → D ∪ {(1, 0)} be a one-to-one function
satisfying τ(u) ∈ D if u ̸= ∅ and τ(∅) = (1, 0).4 Let
G = {(m, i) ∈ N2 : i ≤ m}, and ξ : G → 2U be defined
by ξ(m, i) = {u ⊆ [m] : i ∈ u}, i.e., ξ(m, i) contains all
the subsets of [m] that contain i.5 Finally, let σ : G → 2X

be defined by σ(m, i) = convexhull({(0, 1)} ∪ {τ(u) : u ∈
ξ(m, i)}), i.e., σ(m, i) is the convex hull of the point (0, 1)
and the points τ(u) with u ∈ ξ(m, i). Note that σ is one-
to-one. With these preliminaries, we define the constraint set
by Z = {σ(m, i) : (m, i) ∈ G} ∪ {R × [y, 1] : y ∈ [0, 1]}.
Finally, we define the algorithm A : Z∗ → X as follows: on
input (z1, . . . , zN ) ∈ Z∗, let

A(z1, . . . , zN ) = argmax(x1,x2)∈X ∩
⋂N

i=1 zi
x1.

It is easy to see that A is well defined, i.e., the argmax exists
and is unique.

Proposition 1: The VC dimension of R(A) is infinite.
Proof: Fix k ∈ N and let Z ′ = {σ(k, i) : i ∈ [k]}.

We show that Z ′ is shattered by R(A). For that, fix T ⊆ Z ′,
and we will show that there is z ∈ Z∗ such that S(A(z)) ∩
Z ′ = T . Since σ is one-to-one, there is u ⊆ [k] such that
T = {σ(k, i) : i ∈ u}. By definition of σ, it holds that for
all i ∈ [k], τ(u) ∈ σ(k, i) if and only if σ(k, i) ∈ T . Hence,
to conclude the proof, we need to show that τ(u) = A(z)
for some z ∈ X∗. This is the case for z := R × [τ2(u)), 1]
where τ2(u) is the second component of τ(u). Hence, the VC
dimension of R(A) is at least k. Since k was arbitrary, this
concludes the proof.

4Such a function is given for instance by τ(u) = (cos(α(u)), sin(α(u))),
where α(u) = π

2
n(u)/(1 + n(u)) and n(u) =

∑
i∈u 2i−1.

5E.g., ξ(3, 2) = {{2}, {1, 2}, {2, 3}, {1, 2, 3}}.

{1}
{2}

{3}

{1, 2}

{2, 3}

{3, 1}

{1, 2, 3}

∅

(0, 1)

maximize x1

τ(u◦)

0

1

2

3

4

5

...

X U(2) U(0) U(1)

A(z)

Fig. 1. Left. Illustration of the convex scenario program in Section III-
A. Black dots: τ(u) for u ⊆ [3]. Colored sets: σ(3, i) for i ∈ [3].
Hatched set: the set R × [y, 1] where y = τ2(u◦). Right. Illustration
of the algorithm in Section III-B, with z = (U(2), U(0), U(1)).

The algorithm A is a convex scenario optimization program
in finite dimension (the dimension of X is finite). Hence,
it is stable and PAC by classical results in convex scenario
optimization; see, e.g., [20, Theorem 2].

B. PAC Scenario Decision Algorithm without
Compression Scheme

To prove (ii) in Theorem 3, we provide an example of PAC
scenario decision algorithm A : Z∗ → X that does not admit
a compression scheme.6 See Figure 1 for an illustration.

Let X = N. For each a ∈ N, let U(a) = X \ {a} be the
constraint on X requiring that x ̸= a. Let Z = {U(a) : a ∈
N}. Define the algorithm A : Z∗ → X as follows: on input
(z1, . . . , zN ) ∈ Z∗, where for each i ∈ [N ], zi = U(ai), let
A(z1, . . . , zN ) = 1 +

∑N
i=1 ai.

Proposition 2: A does not admit a compression scheme.
Proof: Let k ∈ N>d and A = {20, 21, . . . , 2k−1}. For

every S ⊆ 2N, define σ(S) =
∑

s∈S s. Note that for any
S1 ⊆ A and S2 ⊆ A, S1 ̸= S2 implies σ(S1) ̸= σ(S2).7

Let T = {U(a) : a ∈ A}. The definition of A implies that
|{A(z) : z ∈ T≤k}| ≥ |{σ(S) : S ⊆ A}| = 2k.

For a proof by contradiction, let us assume that (κ, ρ) is
a compression scheme of capacity d for A. By definition of
a compression scheme, it holds that {A(z) : z ∈ TN} ⊆
{ρ(z) : z ∈ T≤d}. It follows that |{A(z) : z ∈ ZN}| ≤∑d

r=0

(
k
r

)
≤ (k + 1)d. For k large enough, (k + 1)d < 2k.

This is a contradiction, concluding the proof.
We show that A is PAC by showing that its range has VC

dimension 1:
Proposition 3: The VC dimension of R(A) is 1.

Proof (sketch): For any x ∈ X and Z ′ ⊆ Z, S(x) ∩ Z ′

excludes at most one constraint from Z ′: namely, S(x)∩Z ′ =
Z ′ \ {U(x)}. This precludes the existence of a shattered set
of size > 1.

Remark 4: Examples of set-valued scenario decision algo-
rithms without a compression scheme, that enjoy PAC-like
properties, are available in the literature; see, e.g., [17], [22].

6In fact, most PAC scenario optimization programs with sample-dependent
objective function (e.g., [19]) are expected to satisfy this property. Here, we
prove it rigorously for an example that has been crafted for ease of analysis.

7Indeed, Si is the “binary” representation of σ(Si).
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However, the definition of PAC is different (cf. Remark 2), so
that these examples are not valid examples for our problem.

C. Stable PAC Scenario Decision Algorithm without
Compression Map

To prove (iii) in Theorem 3, we provide an example of stable
PAC scenario decision algorithm A : Z∗ → X that does not
admit a compression map. The construction is similar to the
one in Subsection III-B; hence, most of the details are omitted.

Let X = N. For each a ∈ N, let U(a) = X \ {a}. Let
Z = {U(a) : a ∈ N}. Define the algorithm A : Z∗ → X
as follows: on input (z1, . . . , zN ) ∈ Z∗, let A(z1, . . . , zN ) =
min

⋂N
i=1 zi.

Proposition 4: A does not admit a compression map.
Proof (sketch): Assume that κ is a compression map of

capacity d for A. For each i ∈ N>0, let zi = U(i−1). Observe
that A(z1, . . . , zd+1) = d. Let κ(z1, . . . , zd+1) = {i1, . . . , ir}
with r ≤ d. Note that A(zi1 , . . . , zir ) < d, a contradiction.

It is clear that A is stable (as it is a nonconvex optimization
program). A proof similar to the proof of Proposition 3 shows
that R(A) has finite VC dimension. Hence, A is PAC.

IV. VC-INSPIRED PAC NECESSARY CONDITION FOR
SCENARIO DECISION ALGORITHMS

In this section, we propose a new PAC necessary condition
for scenario decision algorithms. This condition is inspired
by the VC dimension and the associated no-free-lunch theo-
rem [24]. More precisely, we introduce a novel quantity, that
can be seen as the “VC dimension of a scenario decision
algorithm”, which we call dVC dimension, and we show that
finiteness of this quantity is a PAC necessary condition. We
also show with a counterexample that this condition is not a
PAC sufficient condition.

Definition 9: Consider a scenario decision algorithm A. A
subset Z ′ ⊆ Z is shattered by A if for every z ∈ (Z ′)∗, it
holds that S(A(z)) ∩ Z ′ = set(z), where set(z1, . . . , zN ) :=
{z1, . . . , zN}. The dVC dimension of A is the supremum of
all integers k for which there is a subset Z ′ ⊆ Z of cardinality
k that is shattered by A.

Finiteness of the dVC dimension is a PAC necessary con-
dition:

Theorem 4: Consider a scenario decision algorithm A. As-
sume that A is PAC. Then, A has finite dVC dimension.

Proof: For a proof by contraposition, we assume that A
has infinite dVC dimension, and we show that A is not PAC.
Therefore, fix ϵ ∈ (0, 1

2 ). We show that for all N ∈ N, there
is P such that PN

[
{z ∈ ZN : VP(A(z)) > ϵ}

]
= 1. To show

that, fix N ∈ N, and let Z ′ ⊆ Z be a finite set shattered by A
with cardinality |Z ′| ≥ 2N . Let P be the discrete probability
measure satisfying P [{z}] = 1/|Z ′| for all z ∈ Z ′. We show
that for all z ∈ (Z ′)N , VP(A(z)) > ϵ. Indeed, fix z ∈ (Z ′)N .
It holds that VP(A(z)) ≥ 1

2 since S(A(z)) ∩ Z ′ = set(z)
(since Z ′ is shattered) and |Z ′ \ set(z)| ≥ |Z ′|/2. Since N
was arbitrary, this shows that A is not PAC.

However, finiteness of the dVC dimension is not a PAC suf-
ficient condition, even for stable scenario decision algorithms.
This is shown in the next subsection.

Remark 5: The notion of dVC dimension and Theorem 4
can be extended straightforwardly to set-valued scenario deci-
sion algorithms. However, note that for a certain class of set-
valued algorithms, namely those that return all decisions that
satisfy the sampled constraints (e.g., [17], [22]), finiteness of
the VC dimension is already a PAC sufficient and necessary
condition (consequence of the fundamental theorem of PAC
learning [24, Theorem 6.7]).

A. Stable non-PAC Scenario Decision Algorithm with
Finite dVC Dimension

We provide an example of stable consistent scenario deci-
sion algorithm A : Z∗ → X that has finite dVC dimension,
but is not PAC.

Let X = 2[0,1]. For each a ∈ [0, 1], let U(a) = {x ∈ X :
a ∈ x}. Let Z = {U(a) : a ∈ [0, 1]}. Define the algorithm A :
Z∗ → X as follows: on input (z1, . . . , zN ) ∈ Z∗, where for
each i ∈ [N ], zi = U(ai), if 0 ∈ {ai}Ni=1, let A(z1, . . . , zN ) =
{ai}Ni=1; otherwise, let A(z1, . . . , zN ) = (0, 1].

Clearly, A is consistent. It is also not difficult to show that
A is stable. We show that A has finite dVC dimension:

Proposition 5: A has dVC dimension at most 2.
Proof: Let Z ′ ⊆ Z be a finite subset with cardinality

at least 3. We show that Z ′ is not shattered by A. Indeed, if
U({0}) /∈ Z ′, then clearly Z ′ is not shattered by A since for
all z ∈ (Z ′)∗, A(z) = (0, 1], so that S(A(z)) ∩ Z ′ = Z ′.
On the other hand, if U({0}) ∈ Z ′, take a ∈ (0, 1], such that
U(a) ∈ Z ′, and let z = (U(a)). Then, A(z) = (0, 1], so that
S(A(z)) ∩ Z ′ ̸= set(z) since |Z ′| > 0. This shows that Z ′ is
not shattered by A, concluding the proof.

Proposition 6: A is not PAC.
Proof: Let ϵ = β = 1

4 . Consider the continuous-discrete
probability measure P′ on [0, 1] defined by P′[{0}] = 1

2 , and
for all a ∈ (0, 1], P′[(0, a]] = a/2. Consider the associated
probability distribution on Z defined by: for all A ⊆ [0, 1],
P[{U(a) : a ∈ A}] = P′[A]. For all N ∈ N>0, the probability
of sampling z ∈ ZN such that U({0}) ∈ set(z) is at least
1
2 : P[{z ∈ ZN : U({0}) ∈ set(z)}] = P′[{a ∈ [0, 1]N : 0 ∈
set(a)] = 1− ( 12 )

N ≥ 1
2 . Whenever U({0}) ∈ set(z), the risk

of A(z) is 1
2 , which is larger than ϵ. Hence, we conclude that

for all N ∈ N>0, P[{z ∈ ZN : VP(A(z)) > ϵ}] ≥ 1
2 . The

latter is larger than β. Thus, A is not PAC.

V. EXAMPLE OF APPLICATION OF OUR RESULTS

Consider the problem of shortest path planning from a
starting location I to a target location T . See Figure 2 for
an illustration. The path has to avoid a random obstacle,
which takes the form of a barrier positioned at some unknown
random angle from the middle point between I and T (see
red lines in Figure 2). There is also a fixed known obstacle
below I and T , namely the gray area in Figure 2. Positions
of the random obstacle can be sampled. We consider two
scenario decision algorithms: A1 that computes the shortest
path between I and T , while avoiding the fixed and sampled
obstacles (see magenta line in Figure 2); and A2 that computes
the shortest parabola between I and T , while avoiding the
fixed and sampled obstacles (see cyan line in Figure 2).
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Fig. 2. Shortest path planning (from I to T ) in the presence of
a randomly positioned obstacle. The red lines represent N sampled
positions of the obstacle. The gray area is a fixed, known obstacle.

It can be shown that the dVC dimension of A1 is infinite.
Hence, this algorithm is not PAC (Theorem 4). On the other
hand, it can be shown that A2 admits a compression map
of capacity 1 (take any obstacle that touches the optimal
parabola). Hence, this algorithm is PAC (Theorem 2).

VI. CONCLUSIONS

While PAC learning has been a longstanding major topic
in Machine Learning, the development of a similar systematic
framework for Optimization and Scenario Decision Making
remains elusive. Various PAC sufficient conditions for scenario
decision algorithms have been proposed, but the necessity
of these conditions remains an open question. This work
addresses this gap by providing counterexamples showing
that these conditions are not necessary. Inspired by practical
algorithms used in real-world applications, these counterex-
amples have been carefully simplified to isolate their essential
features. In addition, we introduce a novel quantity, the dVC
dimension, which serves as an analogue to the VC dimension
for scenario decision algorithms. We prove that the finiteness
of this dimension is a PAC necessary condition for scenario
decision algorithms. Beyond its theoretical significance in
advancing toward a complete characterization of PAC scenario
decision algorithms, this work also offers practical insights
for algorithm users and designers. It enables them to identify
which PAC sufficient conditions are better suited for analyzing
their algorithms—highlighting that some conditions may not
hold while others do—, or to determine that their algorithms
are not PAC by leveraging necessary conditions.

Looking ahead, we aim to address several open questions.
First, we will investigate the existence of compression schemes
for stable PAC scenario decision algorithms. Second, we will
explore new sufficient and necessary PAC conditions, with the
goal of narrowing the gap between the two and moving closer
to a comprehensive characterization of PAC scenario decision
algorithms.
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