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Abstract
In this paper, we study the problem of estimating the state 
of a switched linear system (SLS), when the observation of 
the system is subject to communication constraints. We 
introduce the concept of worst-case topological entropy of 
such systems, and we show that this quantity is equal to the 
minimal data rate (number of bits per second) required for 
the state estimation of the system under arbitrary switching. 
Furthermore, we provide a closed-form expression for the 
worst-case topological entropy of switched linear systems, 
showing that its evaluation reduces to the computation of 
the joint spectral radius (JSR) of some lifted switched linear 
system obtained from the original one by using tools from 
multilinear algebra, and thus can benefit from well-established 
algorithms for the stability analysis of switched linear sys-
tems. Finally, drawing on this expression, we describe a 
practical coder–decoder that estimates the state of the 
 system and operates at a data rate arbitrarily close to the 
worst-case topological entropy.

1. INTRODUCTION
Modern control systems (such as IoT, cyber-physical sys-
tems, etc.) often involve spatially distributed components 
that communicate through a shared, digital communication 
network. Due to the digital nature of the network, all data 
must be quantized before transmission, resulting in quan-
tization error that can affect the performance of the observ-
ing/controlling scheme. Furthermore, in applications, 
the capacity of the network is often limited by cost, power, 
physical, and/or security constraints. Consequently, a major 
challenge in the design of such networked systems is to 
determine the minimal communication data rate required 
to achieve a given control task. This fundamental question 
has motivated a lot of research efforts from the control com-
munity in recent years, with great theoretical and practical 
advances; as surveyed in the works of Hespanha et al.8 and 
Matveev and Savkin17.

Inspired by Shannon’s work on the link between infor-
mation entropy and minimal data rate for reliable commu-
nication, it was soon realized that the question of data rate 
requirements for networked systems has strong connections 
with the notion of topological entropy of these systems; see, 
for example, Matveev16 and Pogromsky and Savkin.19 This 
quantity, introduced in the late 1960s and now ubiquitous in 
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systems theory, accounts for the growth rate of the smallest 
number of functions necessary to approximate the trajecto-
ries of the system with arbitrary finite accuracy on bounded 
time intervals (with respect to the length of the interval). It 
can also be seen as a measure of the rate at which informa-
tion about the initial condition is generated by the system as 
time evolves.19 It is known for instance that for some classes 
of dynamical systems (such as time-invariant systems with 
forward invariant initial set), the topological entropy coin-
cides with the minimal data rate for state estimation.16

In this paper, we study discrete-time switched linear sys-
tems (SLSs). We are interested in determining the minimal 
data rate at which a coder needs to send information to a 
decoder to be able to estimate the state of the system with 
exponentially decreasing error (see also Figure 1 for an illus-
tration). SLSs are systems described by a finite set of linear 
modes among which the system can switch over time. As 
a paradigmatic class of cyber-physical systems, SLSs have 
attracted much attention from the control community in 
recent years. These systems turn out to be extremely challeng-
ing in terms of control and analysis, even for basic questions 
such as stability or stabilizability.9 In particular, in contrast 
to LTI systems for which comprehensive eigenvalue- based 
expressions for the topological entropy and the minimal 
data rate for state estimation are available, none of these 
quantities are well understood for SLSs. Several theoretical 
and practical advances have nevertheless been achieved; 
for instance, upper bounds and lower bounds on the topo-
logical entropy of SLSs, when the sequence of modes is fixed a 
priori, are derived in the work of Yang et al.,22 and sufficient 
data rate bounds for feedback stabilization of SLSs, when 
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Figure 1. State estimation with limited data rate.
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In this case, it is desirable that only the plant and the observer 
need to be reconfigured, whereas the communication infra-
structure remains unchanged. To meet these requirements, 
the communication channel will need to satisfy constraints 
driven by the worst-case topological entropy. Other examples 
of applications involving the control of SLSs with data-rate 
constraints are discussed in the conclusion.

Notation. N is the set of nonnegative integers {0, 1, 2, …}. 
For vectors, ⋅ denotes the Euclidean norm, and for matri-
ces, it denotes the spectral norm. B(ξ, r) is the Euclidean 
closed ball in Rd centered at ξ ∈ Rd, with radius r ≥ 0. ⎡⋅⎤, ⎣⋅⎦ are 
the ceil and floor functions respectively. We focus on dynam-
ical systems in discrete time; therefore, if [T1, T2] (resp.  
[T1, T2) ) refers to an interval of times (in particular, T1, T2 ∈ N), 
then it is understood to contain only the integers from T1 to 
T2 (resp. T2 − 1) inclusive.

2. PRELIMINARIES
2.1. Topological entropy
Consider a discrete-time switched system

  (1)

where σ(t) ∈ Σ := {1, …, N} and fi : Rd → Rd for all i ∈ Σ. The 
function σ : N → Σ is called the switching signala of the system 
and specifies which mode, that is, which transition map fi, is 
used by the switched system at each time. We denote by xσ(t, ξ)  
the solution, at time t, of Equation (1) with switching signal 
σ and initial state ξ ∈ Rd. Let K ⊆ Rd be a compact set with 
nonempty interior, called the initial set. We will write ( fσ, K) 
to denote system (1) with switching signal σ and initial set K; 
that is, xσ(⋅, ξ) is a trajectory of ( fσ, K) if and only if ξ ∈ K.

We introduce here the definition of topological entropy 
(firstly introduced by Bowen,5 and extended to the case of 
nonautonomous systems by Kolyada and Snoha12). The 
definition relies on the notion of minimal sets of functions 
necessary to approximate the trajectories of the system with 
arbitrary finite accuracy on bounded intervals.

More precisely, let σ be a switching signal for system (1). 
For ε > 0 and T ∈ N, we say that E ⊆ K is an (ε, T)-spanning set 
for ( fσ, K) if for every ξ ∈ K, there is η ∈ E such that xσ(t, ξ) − xσ(t, 
η) ≤ ε for all t ∈ [0, T]. This means that for every trajectory 
xσ(⋅, ξ) of ( fσ, K), there is a trajectory of fσ starting in E ⊆ K that 
is ε-close to xσ(⋅, ξ) for all t ∈ [0, T]. See Figure 2 for an illustra-
tion. We let sspan(ε, T; fσ, K) be the smallest cardinality of an 
(ε, T)-spanning set for ( fσ, K).

Definition 1. The topological entropy of system (1) with 
switching signal σ and initial set K is defined as

  (2)

(The limit on the left is well defined because sspan(ε, T; fσ, K) is 
nonincreasing in ε.)

a In our framework (worst-case scenario analysis), the switching signal is 
an external input on which the user has no control, and the objective is to 
deduce properties of the system that will be valid for all switching signals.

the switching signal is unobserved by the decoder, are estab-
lished in the work of Liberzon.14

In this paper, we study the questions of topological 
entropy and minimal data rate for state estimation of SLSs in 
a worst-case scenario approach; that is, we aim to determine 
sharp upper bounds on the topological entropy and find 
coders–decoders that can estimate the state of the system, 
for every switching sequence. The worst-case scenario is a 
popular approach in the study of switched systems, as it pro-
vides formal guarantees that the system satisfies the specifi-
cations in every situation. Our contribution is twofold. First, 
we introduce and study the concept of worst-case topological 
entropy of SLSs, defined as the maximal topological entropy 
that can be reached by the system among all sequences of 
modes (aka. switching signals). We present a closed-form 
expression for the worst-case topological entropy of SLSs. 
More precisely, we show that it can be expressed as the joint 
spectral radius (JSR, a ubiquitous measure of stability of 
SLSs) of a “lifted” SLS representing the action of the original 
system on elements of volume (obtained by leveraging tools 
from multilinear algebra). The main asset of this expression 
is that it can be computed numerically via well-established 
algorithms for the computation of the joint spectral radius. 
Consequently, it allows for a systematic analysis of the worst-
case topological entropy of SLSs.

The second contribution is to provide a practical coder–
decoder that estimates the state of the SLS with exponen-
tially decreasing estimation error, and operates at a data 
rate arbitrarily close to the worst-case topological entropy 
of the system. In particular, compared to other bounds on 
the topological entropy of SLSs available in the literature (for 
which no practical coders–decoders have been proposed), 
this demonstrates the practical relevance of the worst-case 
topological entropy for the problem of state estimation of 
SLSs under data-rate constraints.

The paper is organized as follows. In Section 2, we intro-
duce the notions of topological entropy and SLSs. In Section 3,  
we present the closed-from expression for the worst-case 
topological entropy of SLSs and discuss the computability 
aspects. In Section 4, we present a practical coder–decoder 
for the state estimation of SLSs, operating at data rate as 
close as desired to the worst-case topological entropy of the 
system. Finally, in Section 5, we demonstrate the applicabil-
ity of our results on numerical examples.

In our analysis, it is assumed that the switching signal 
is known by the coder–decoder during the state estima-
tion process. This framework is motivated by the fact that 
the switching signal is not always known at the time of 
the coder– decoder’s design, but is available to the coder–
decoder during its operation. An example of application 
is when one has to design the communication infrastruc-
ture between the plant (e.g., of a factory) and the observer 
(placed at a remote location, e.g., the headquarter of the 
company), and the switching signal is not known at the 
time of the infrastructure’s design or might change with 
time. For instance, a given sequence of modes might be 
used by the plant of a factory for a certain amount of time. 
But after a few days or months, another signal might be 
needed (e.g. to meet the ever-changing consumer demand). 
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2.2. Switched linear systems
In this paper, we are interested in the topological entropy of 
discrete-time switched linear systems (SLSs):

  (3)

where σ is the switching signal as in Equation (1) and  
Ai ∈ Rd×d for all i ∈ Σ. SLSs are thus particular instances of sys-
tem (1) where each mode is linear. Following the notation 
of the previous subsection, we let xσ(t, ξ) be the solution, at 
time t, of system (3) with switching signal σ and initial state 
ξ ∈ Rd. In formulas, it is convenient to identify the SLS (3) 
by its set of modes AΣ := {A1, …, AN}. We will also use (Aσ, K) 
to denote system (3) with switching signal σ and initial set 
K. The system being linear, the transition of the state from 
a time t1 to a time t2 can be represented by a matrix: for t1, 
t2 ∈ N, t1 ≤ t2, we denote the fundamental matrix solution of 
system (3) from t1 to t2 with switching signal σ by

  (4)

The fundamental matrix solution satisfies that for all ξ ∈ Rd 
and t1, t2 ∈ N, t1 ≤ t2,   .

The topological entropy of (Aσ, K), denoted by h(Aσ, K), 
is defined in the same way as for switched systems (see 
Definition 1). However, in the case of SLSs, h(Aσ, K) does 
not depend on a particular choice of the initial set K ⊆ Rd, 
as long as it is compact with nonempty interior; see, for 
example, Yang et al23 (Proposition 2). Therefore, we omit 
the initial set in the notation and denote by h(Aσ) the topo-
logical entropy of Aσ.

We study the worst-case topological entropy of system (3), 
that is, the maximal topological entropy that can be reached 
by the system among all its switching signals.

Definition 2. The worst-case topological entropy of system (3) 
is defined as

  (5)

where the supremum is over all switching signals σ : N → Σ.

The computational aspects of the worst-case topological 
entropy are discussed in Section 3. It should also be noted 
that at this point, there is a priori no link between the topo-
logical entropy (which is defined as a topological property of 
the system) and the minimal data rate for state estimation of 
the system (which involves the notion of coder–decoder). In 
Section 4, we show that the worst-case topological entropy 
is in fact equal to the minimal data rate for state estimation 
of the system under arbitrary switching, and that this data 
rate limit can be approached as close as desired by practical 
coders–decoders.

The example here illustrates the notions of SLS, spanning 
sets, topological entropy, and worst-case topological entropy.

Example 1. Consider the one-dimensional SLS (3) with  
Σ = {1, 2}, and A1 = 1, and A2 = 2. Let σ be the switching signal 
alternating modes 1 and 2: σ = (1, 2, 1, 2, …). The trajectories 
of the system are thus given by xσ(t, ξ) = 2⎣t/2⎦ξ. We will show  
that  As mentioned above, for SLSs, as long as 
topological entropy is concerned, the choice of the initial set 
is not important; hence, we fix K = [0, 1].

For ε > 0 and T ∈ N, let n = ⎡ε−12T/2−1⎤ and E = {0, 1/n, 2/n, …, 1}. 
We show that E is (ε, T)-spanning for (Aσ, K). To do this, let  
ξ ∈ K, and let η ∈ E be such that . Then, 
by definition of E, it holds that |ξ − η| ≤ 1/(2n) ≤ ε2−T/2. This 
implies that for every t ∈ [0, T], |xσ(t, ξ) − xσ(t, η)| = 2⎣t/2⎦|ξ − η| ≤ ε.  
Hence, E is (ε, T)-spanning for (Aσ, K) and thus

Injecting in Equation (2), we get that  is an upper bound 
on h(Aσ):

Now, we show that  is a lower bound on h(Aσ). Let m = 
⎡ε−12T/2−2⎤ − 1 (without loss of generality, we may assume m > 0, 
because we take the limit when ε → 0 and T → ¥), and define 
F = {0, 1/m, 2/m, …, 1}. Then, for any distinct ξ, η ∈ F, it holds 
that |ξ − η| > ε22−T/2, so that |xσ(T, ξ) − xσ(T, η)| = 2⎣T/2⎦|ξ − η| > 2ε. 
This implies that

(see, for example, Liberzon and Mitra15, Lemma 3, for 
details). Hence, injecting in Equation (2), it follows that 

As for the worst-case topological entropy, it is quite intui-
tive that a switching signal σ that maximizes the topological 
entropy is given for instance by using only mode 2: σ = (2, 2, 
2, …). In this case, xσ(t, ξ) = 2tξ, and we deduce that h(Aσ) = log2 2 
= 1. Hence, h*(AΣ) = 1.

3. CLOSED-FORM EXPRESSION FOR THE WORST- 
CASE TOPOLOGICAL ENTROPY OF SWITCHED  
LINEAR  SYSTEMS
We start by presenting a closed-form expression for the 
worst-case topological entropy of SLSs. This will require 
concepts from stability analysis of SLSs (namely, the joint 

x1

x2

t = 0

t = 1

t = 2

t = 3

t = 4 xσ(t, η)

K

ε xσ(t, ξ)

ξη

Figure 2. The set of trajectories in blue is (ε, T)-spanning for (fσ, K) 
if every trajectory xσ(⋅, ξ) (e.g., the trajectory represented in red) is 
contained in the “ε-tube” around at least one of the trajectories in 
blue for all t ∈ [0, T].
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3.3. Main result and consequences
The main contribution of this section is the following theorem 
which provides a closed-form expression for the worst-case 
topological entropy of SLSs.

Theorem 1. The worst-case topological entropy of system (3) 
satisfies

  (7)

where 
A wide range of methods, of very different natures, have 

been proposed in the last decades to evaluate the JSR of a 
set of matrices; see, for example, Jungers9 (Section 2.3). 
Although theoretical discouraging results exist for the com-
putation of the JSR in general, these methods turn out to be 
extremely powerful in practice and to provide JSR approxima-
tion algorithms of high accuracy. Any of these algorithms can be 
used to approximate the right-hand side term of Equation (7). 
The computation of the exterior power of a matrix is straight-
forward from its definition, and thus  can be computed in 
a systematic way. However, it should be noted that the dimen-
sion of increases exponentially with the dimension of the  
system, and thus so will the complexity of approximating the JSR 
of  (this is the curse of dimensionality). In this regard, we note 
that a simple and algorithm-independent way to substantially  
speed up the approximation of —although not suffi-
cient to fight the curse of dimensionality—is to observe that  
as the matrices are block diagonal (each diagonal block 
corresponding to a given size of the multi-indexes I ∈ J  ), the 
computation of the JSR of can be decoupled among the  
different diagonal blocks (see Jungers9, Proposition 1.5).

Furthermore, there are cases for which the computation 
of the JSR is straightforward; for instance, if Aσ is a set of 
normal (or triangular) matrices. Combining these observa-
tions with the properties of the exterior power of matrices 
(Proposition 1), this gives efficient ways to compute the 
worst-case topological entropy of such sets of matrices.

Corollary 1. Let AΣ := {A1, …,  AN} ⊆ Rd×d be a set of normal matri-
ces. For each i ∈ Σ, let λ1(Ai), …, λd(Ai) be the eigenvalues of Ai. Then

The same holds for sets of upper-triangular (resp. lower- 
triangular) matrices. Moreover, in this case, the eigenvalues are 
on the diagonal of the matrices.

Numerical illustrative examples of the computation of 
the worst-case topological entropy of SLSs, using Theorem 1 
and Corollary 1, are presented in Subsection 5.1.

3.4. Related works
The worst-case topological entropy provides an upper bound 
on the topological entropy of Aσ for any switching signal σ. 
The question of estimating h(Aσ) has been addressed, for 
example, in the works of Yang et al.22, 23. Because the focus is 
put on a particular matrix sequence Aσ (disregarding other 
sequences), the bounds on h(Aσ) obtained in the works of 

spectral radius) and from multilinear algebra (namely, the 
exterior power of a matrix). We also discuss the algorithmic 
aspects of computing the worst-case topological entropy of 
SLSs with this expression. Connections with related results 
in the literature are discussed at the end of this section.

3.1. Joint spectral radius
The joint spectral radius (JSR) of a set of matrices measures 
the asymptotic growth rate of the maximal norm of products 
of matrices in the set, when the size of the product goes to ¥.  
More precisely, for a finite set of matrices AΣ := {A1, …, AN} ⊆ 
Rd×d, the joint spectral radius of AΣ is defined as

  (6)

This quantity was introduced by Rota and Strang in 
196018 in order to characterize the stability of SLSs. In partic-
ular, the JSR has the following property (see, e.g., Jungers9, 
Theorem 1.2): Every trajectory xσ(⋅, ξ) (i.e., for any switching 
signal σ and any ξ ∈ Rd) of the SLS associated to AΣ converges 
to zero as t → ¥, if and only if the JSR of AΣ satisfies ρ(AΣ) < 1.

3.2. Exterior power of matrices
Exterior algebras are algebraic constructions used to study 
the notions of areas, volumes, and their higher-dimensional  
analogues, in general vector spaces. In particular, the notion 
of exterior power of linear operators is used to represent the 
action of these operators on such elements of areas, volumes, 
etc. The exterior power can be defined in a coordinate-free 
fashion; see, for example, Arnold1 (Section 3.2.2). However, 
in this paper, due to space limitation, we will restrict our 
attention to the exterior powers of matrices, which are 
themselves matrices and thus allow for a coordinate- based 
definition.

To do this, let I be the set of all multi-indexes of the form 
(i1, …, ik) ∈ {1, …, d}k, with k ∈ {0, …, d} and i1 < i2 < … < ik. 
Hence, the size of I is 2d.

Let A ∈ Rd×d. The exterior power of A, denoted by A∧, is the 
2d × 2d matrix whose entries are indexed by the elements of I, 
and is defined for any I, J ∈ I by

(See also Section 5 for a numerical example.)
The following proposition, whose proof can be found in 

Arnold1 (Section 3.2.3), summarizes the properties of the 
exterior power of matrices that we will need in this work.

Proposition 1. Let A, B ∈ Rd×d.
1. I∧ = I, (AB)∧ = A∧B∧, (A)∧ = (A∧).
2. If A is upper-triangular (resp. lower-triangular, or orthog-

onal), then so is A∧ (if the elements of I are ordered with 
the canonical “lexicographical” ordering).

3.  where  are the 
singular values of A.

4. The eigenvalues of A∧ are given by , I ∈ I, where 
λ1(A), …, λd(A) are the eigenvalues of A.
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Yang et al.22, 23 are in general better than the worst-case topo-
logical entropy. However, in some “ill-conditioned” cases 
(e.g., triangular systems with large differences among the 
diagonal entries), the bounds available in the works of Yang 
et al.22, 23 can be quite conservative. In these cases, it can be 
beneficial to use h*(AΣ) as an upper bound on h(Aσ).

As already mentioned, the joint spectral radius is a cor-
nerstone of SLS theory, and has attracted a lot of attention in 
the last decades.9, 18, 21 As a measure of the worst-case asymp-
totic growth rate of the trajectories of the system, it is not 
surprising to encounter this quantity in the characterization 
of the worst-case topological entropy.

Exterior algebras have also received attention in dynami-
cal systems theory; in particular, in the study of the Lyapunov 
exponents1, 2 and entropy-related properties11, 13 of dynami-
cal systems and control systems. For instance, we note the 
remarkable formula by Kozlovski13 for the topological entropy 
of a discrete-time autonomous dynamical system, described 
by a C¥ map f : X → X, on a compact Riemannian manifold:

Theorem 1 shows that the integral can be replaced by a max-
imum over all switching signals in the case of the worst-case 
topological entropy of SLSs, and enables practical computa-
tion using the stability theory of SLSs.

4. PRACTICAL CODER–DECODER
We investigate the problem of estimating the state of  
system (3) via a limited data-rate communication network. 
The observation process is as follows (see also Figure 1 for an 
illustration). At specific transmission times, 0 = T0 < T1 < T2 < …  
(Tj ∈ N), a coder measures the state x(Tj) of the system, and 
sends a symbol e(Tj) to a decoder via a noiseless digital chan-
nel which can carry one discrete-valued symbol per time 
epoch [Tj, Tj+1], selected from a coding alphabet Ej. Neglecting 
propagation delay and transmission errors, each symbol 
takes at most one epoch duration Tj+1 − Tj to be completely 
transmitted. Hence, at time Tj+1, the decoder has e(T0), …, e(Tj)  
available and generates estimates  of the state of the sys-
tem for the ongoing epoch [Tj+1, Tj+2).

More precisely, the coder is a family of functions C[⋅, ⋅, ⋅ 
| j, σ] (parameterized by j the index of the epoch and σ the 
switching signal of the system):

  (8)

where  is an estimate of the current state x(Tj), 
and δj satisfies . The output is e(Tj) ∈ Ej ⊆ 
Rd, where Ej is a finite set depending on j and σ. The symbol 
e(Tj) will be transmitted to the decoder at most at Tj+1. The 
decoder is a family of functions D[⋅, ⋅, ⋅ | j, σ] (also parameter-
ized by j and σ):

  

(9)

where  satisfies , and e(Tj−1) is  
the symbol transmitted at Tj−1 and received by the decoder 
at Tj. If j = 0, take . The decoder outputs 
estimates of the state for the ongoing epoch [Tj, Tj+1). The 
transmission times Tj, the error bounds δj, and the coding 
alphabets Ej depend only on the switching signal σ and thus 
they can be computed by both the coder and the decoder 
independently. The data rate R (in bits per unit of time) of 
the coder–decoder is defined as

  (10)

We want to build coders–decoders that estimate the state 
of the system with exponentially decreasing error.

Definition 3. The coder–decoder (Equations (8) and (9) ) is 
said to observe the SLS (3) with initial set K if there exists 
C > 0 and g ∈ (0, 1) such that for every switching signal σ and 
initial state ξ ∈ K, it holds that

  (11)

Remark 1. Equations (8) and (9) assume that the whole 
switching signal is known by the coder and the decoder dur-
ing its operation (see also Section 1 for the relevance of this 
assumption). In fact, as it will be clear from the implemen-
tation of the coder and decoder (see paragraphs below), it is 
sufficient that only the Tj+1 − Tj modes that are used during the 
ongoing epoch [Tj, Tj+1] are known by the coder and the decoder.

We describe a family of practical coders–decoders that 
observe system (3) and whose data rate can be as close as 
desired to the worst-case topological entropy of the system. 
More precisely, for any compact set K ⊆ Rd and R′ > h*(AΣ), 
there is such a coder–decoder that observes system (3) 
with initial set K and whose data rate satisfies R ≤ R′ (see 
also Theorem 2 at the end of this section). This result relies 
on the properties of the joint spectral radius and the exterior 
power of matrices to build coders–decoders with data rate as 
close as desired to the right-hand side term of Equation (7).

Coder–decoder’s implementation. For r > 0, we let

where Zeven (resp. Zodd) is the set of even (resp. odd) integers. 
By construction, for every ξ ∈ [−r, r], there is η ∈ I(r) such that 
|ξ − η| ≤ 1, and we have that |I(r)| ≤ ⎡r⎤. If r = 0, we let I(0) = {0}. 
Now, for r1, …, rd ≥ 0, we define

Its cardinality satisfies  where 
⎡α⎤* = max{⎡α⎤, 1}. Finally, for ξ ∈ Rd, we let Q(ξ) be the closest 
point to ξ in Grid(r1, …, rd). Hence, Q(⋅) is a -point quantizer 
and satisfies
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Let K ⊆ Rd be a compact set and fix a target data rate R′ strictly 
larger than the right-hand side term of Equation (7). We will 
build a coder–decoder that observes the SLS (3) with initial set 
K and whose data rate satisfies R ≤ R′. (The reader may find use-
ful to refer to Figure 3, where the different quantities appearing 
in the definition of the coder– decoder are represented.)

Let T0 = 0. Also, let  be an estimation of the initial 
state and δ0 ≥ 0 be such that . Fix α > 1. For 
each j ∈ N, let δj = δ0=αj (this will imply that the bound on the 
estimation error  decreases by a factor 1/α 
between two transmission times Tj and Tj+1, and thus the rate 
g of decay of the estimation error (see Definition 3) is given 
by α−1/τ where τ is an upper bound on Tj+1 − Tj).

• At time Tj, the values of Tj+1 and Ej are computed as fol-
lows (these computations are carried out by both the 
coder and the decoder independently). For T ∈ N, T > Tj, 
we let , i ∈ {1, …, d}, be the singular values of 
the fundamental matrix solution . We define Tj+1 
as the smallest T ∈ N, T > Tj, satisfying

  (12)

Finally, Tj+1 being fixed, we let

  (13)

• The coder is defined as follows. At time Tj, if  is the 
current estimate of the state (stored in the memory of 
the coder) and x(Tj) is the current state of the system (the 
coder has access to the plant), we let . 
Let U SV* be the Singular Value Decomposition of ,  
where the singular values on the diagonal of S are in the 

same order as in Equation (13). The symbol sent by the 
coder at time Tj is then defined as

 (14)

where Q(⋅) is the quantizer associated to Ej = Grid(r1, …, rd).
• The decoder is defined as follows. At time Tj, the decoder 

receives the symbol e(Tj−1) and has the last estimate 
 in memory. Then, the decoder computes the esti-

mates  for the ongoing epoch [Tj, Tj+1) as follows:

 (15)

where U SV* is the Singular Value Decomposition of ,  
as above. If Tj = 0, simply use the initial estimate  given in 
the parameters of the coder–decoder. Next, define inductively

 (16)

The implementation of the above coder–decoder is 
described in Figure 4.

Summarizing, we have proved the following result on the 
equivalence of the worst-case topological entropy and the 
minimal data rate for state estimation of the system under 
arbitrary switching signals.

Theorem 2. Let K ⊆ Rd be compact, and consider the SLS (3). 
If R′ < h*(AΣ), then there is no coder–decoder with data rate 
R ≤ R′ that observes system (3). If R′ > h*(AΣ), then there is a 
practical coder–decoder with data rate R ≤ R′ that observes 
system (3).

Remark 2. It is worth noticing the following effects of the 
parameters α and R on the output of the coder–decoder. 
By definition of δj = δ0/α j, α gives the rate of decrease of the 

x(Tj + 1)

x(Tj + 1)

x(Tj )

δj

δj σ−2

δj σ−1

δj α–1d–1/2
 U

αd1/2
 σ−2

αd1/2
 σ−1

2d–1/2
 δj /α

x(Tj+1 – 1)

x
∧(Tj+1 – 1)

e(Tj)

Φσ,Tj,Tj+1 Bj
Bj

x
∧(Tj  + 1)

x
∧(Tj + 1)

x
−(Tj + 1)

2

O

x
∧(Tj )

Figure 3. The different quantities appearing in the definition of the 
coder–decoder. The gray dots (bottom left) represent Grid(r1, r2),  
where ,  are the singular values of . According to  
Equation (15), Grid(r1, r2) is scaled and rotated by δj+1d−1/2U, and 
centered at . The latter is the best available 
estimate of x(Tj+1) before the reception of the symbol e(Tj). At 
reception of e(Tj), the new estimate  is then given by the  
center of the square in which the state x(Tj+1) lies.

Coder
Input: R, α, x̂(0), δ0, and σ.
Let j = 0 and Tj = 0

wait until treal = TjLoop: (treal is the real time)
Measure the current state x(Tj) of the system
Compute Tj+1 and    j, as in (12)–(13)
Compute e(Tj) as in (14) and send e(Tj) to the decoder
Let j = j + 1
Compute x̂(Tj) as in (15)

end loop

Decoder
Input: R, α, x̂(0), δ0, and σ.
Let j = 0 and Tj = 0
Loop: wait until treal = Tj (treal is the real time)

Receive symbol e(Tj−1) (If j = 0, e(T−1) = 0)
Compute Tj+1 and    j, as in (12)–(13)
Compute x̂ (Tj ) as in (15) (If j = 0, x̂(T0) = x̂(0))

Compute x̂(t) for t ∈ (Tj, Tj +1 ) as in (16)
Let j = j + 1

end loop

Figure 4. Coder and decoder implementations.
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use different values for the maximal data rate R, as explained 
here.

Firstly, to make a comprehensive visual illustration, we use 
a data rate of R = 4, which is much larger than the worst-case 
topological entropy (see Example 2). This ensures that 
each epoch lasts one unit of time, that is, Tj+1 − Tj = 1 (see 
also Remark 2). A sample execution of the coder–decoder is 
presented in Figure 5—top. In this picture, the states x(t) of  
the true system are represented in blue. The estimates  
computed by the coder–decoder are represented in red.

Secondly, we simulate the execution of the coder–decoder 
with data rates that are closer to the worst-case topological 
entropy of the system, namely R = 0.8 and R = 0.5. For these 
values of R, the duration of the epochs is longer (between 5 
and 12, in our simulation). The evolution of the estima-
tion error  is represented in Figure 5-bottom. 
As expected, we observe that the estimation error decreases 
more rapidly when the data rate is higher.

6. CONCLUSION
This paper introduced the concept of worst-case topological 
entropy for switched linear systems. It was shown that this 
quantity is relevant for the problem of state estimation of 
these systems with limited data rate. More precisely, we con-
structed a practical coder–decoder, operating at a data rate 
as close as desired to the worst-case topological entropy, 
which estimates the state of the system for any switching sig-
nal and with exponentially decreasing estimation error. We 

worst-case estimation error at the transmission times Tj. On 
the other hand, by Equation (12), for a fixed α > 0, the maxi-
mal length Tj+1 − Tj of an epoch will depend on the maximal 
allowed data rate R of the coder–decoder; the smaller R, the 
longer Tj+1 − Tj. Furthermore, if R is smaller than the worst-
case topological entropy—and only in this case—the maxi-
mal epoch length may be infinite.

5. NUMERICAL EXPERIMENTS
5.1. Worst-case topological entropy
We use the results of Section 3 to compute the worst-case topo-
logical entropy of SLSs with general and triangular matrices.

Example 2. Consider the two-dimensional SLS (3) with  
Σ = {1, 2}, and

We use Theorem 1 to compute the worst-case topological 
entropy of this system. Therefore, we compute the exterior 
power of A1 and A2:

We have used the JSR Toolbox21 (in MATLAB) to compute the 
JSR of : This gives . Hence, we conclude 
that h*(AΣ) = 0.3079.

Example 3. Consider the 2-dimensional SLS (3) with  
Σ = {1, 2}, and

Because A1 and A2 are upper-triangular matrices, we may 
apply Corollary 1. We deduce that the worst-case topologi-
cal entropy of the SLS associated with AΣ is equal to log2  
3 = 1.5850. The reader will check that the same result can be 
obtained by applying directly Theorem 1; indeed the exterior 
power of A1 and A2 are given by

and the JSR of upper-triangular matrices is given by the 
largest absolute value of its diagonal entries (see Jungers9, 
Proposition 2.3).

5.2. State estimation with limited data rate
We apply the coder–decoder described in Section 4 for the 
state estimation of the SLS in Example 2. The parameters of the 
coder–decoder (see Figure 4) are set as follows: We fix the value 
α = 2.5; the values of  and δ0 are given in Figure 5-top; and we 
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Figure 5. Top: Evolution of x(t) and  for a sample execution of 
the coder–decoder with data rate R = 4. Bottom: Evolution of the 
estimation error  for sample executions of the coder–
decoder with data rates R = 0.8 (red) and R = 0.5 (blue). The vertical 
gray lines indicate the transmission times Tj (in general, the error 
decreases at these times because the decoder receives a new symbol).
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also discussed the computational aspects of the worst-case 
topological entropy. In particular, we provided a closed-form 
expression describing the worst-case topological entropy as 
the joint spectral radius of some set of matrices obtained 
from the original system by taking the exterior power of the 
individual modes. Among other consequences, the compu-
tation of the worst-case topological entropy can thereby ben-
efit from the numerous algorithmic tools developed in the 
last decades for the computation of the joint spectral radius 
of switched linear systems.

In our framework, it is assumed that the switching signal 
is known by the coder–decoder. However, it was noted in 
Remark 1 that only a few future values of the switching sig-
nal actually need to be known by the coder-decoder. Based 
on this observation, we plan to show that the concept of 
worst-case topological entropy is also relevant for the control 
of switched linear systems with limited data rate. We think 
for instance to control schemes involving the switching sig-
nal as control input (see, e.g., Jungers and Mason10 and Sun 
and Ge20—Chapter 4).

We also plan to consider variants of this framework, 
involving for instance relaxations of the assumption that 
the switching signal is known by the coder–decoder (non-
deterministic systems), and considering the stabilization 
of switched linear systems under data-rate constraints. 
Related questions have been addressed, for example, in the 
works of Savkin19 (topological entropy for nondeterminis-
tic systems); Colonius6, Hagihara and Nair7, and Savkin19 
(control of autonomous systems with limited data rate), 
and Liberzon14 (stabilization of nondeterministic switched 
linear systems with limited data rate). Another potential 
direction for further research is to combine our results for 
the computation of the worst-case topological entropy with 
other techniques for the analysis of switched linear systems, 
in order to fight the curse of dimensionality. We think for 
instance to p-dominance analysis techniques3, 4 that allow 
one to decide whether the system has a low-dimensional 
dominant behavior.
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