Nonlinear Forward Invariant Synthesis: A Cone-Based Abstract Interpretation Approach

Guillaume Berger[∗] , Masoumeh Ghanbarpour, Sriram Sankaranarayanan

May 15, 2024

Table of contents

[Introduction](#page-1-0)

[Fixed-Point Algorithm for Barrier Function Synthesis](#page-7-0)

[Fixed-Point Algorithm for Vector Barrier Function Synthesis](#page-16-0)

[Numerical Experiments](#page-23-0)

[Conclusions](#page-30-0)

[Bibliography](#page-32-0)

Safety in Systems and Control

A Formal Definition of System and Safety

Continuous-time system: $\dot{x}(t) = f(x(t))$ for $t \in \mathbb{R}_+$, $x(t) \in \mathbb{R}^n$

Assumption: trajectories are well defined (unique and complete) **Notation:** $\phi(t, x)$ trajectory s.t. $\phi(0, x) = x$, at time $t \in \mathbb{R}_+$

Initial set: $I \subseteq \mathbb{R}^n$ Unsafe set: $U \subseteq \mathbb{R}^n$

Definition

The system with field f, initial set I and unsafe set U is safe if for all $x \in I$ and all $t \in \mathbb{R}_+$, $\phi(t, x) \notin U$.

Illustration of System and Safety

Forward Invariant Set

Definition

A set $P \subseteq \mathbb{R}^n$ is *forward invariant* for the field f if $x \in P$ implies that for all $t \in \mathbb{R}_+$, $\phi(t, x) \in P$.

It is a safe forward invariant set for the system $\langle f, I, U \rangle$ if moreover $I \subset P$ and $P \cap U = \emptyset$.

Theorem (common knowledge)

If P is a safe forward invariant set for $\langle f, I, U \rangle$, then $\langle f, I, U \rangle$ is safe.

Barrier Functions as Forward Invariants

```
Introduced by S. Prajna [Pra06]
```
Definition ([\[Ame+19\]](#page-35-1)) $B: \mathbb{R}^n \to \mathbb{R}$ is a *barrier function* for the system $\langle f, I, U \rangle$ if a) $B(x) < 0$ for all $x \in I$ b) $B(x) > 0$ for all $x \in U$ c) $\nabla B(x) \cdot f(x) \leq -\lambda(x)B(x)$, where λ is continuous

Proposition (see, e.g., [\[Ame+19\]](#page-35-1))

If B is a barrier function for $\langle f, I, U \rangle$, then $\{x \in \mathbb{R}^n : B(x) \le 0\}$ is a safe forward invariant set for $\langle f, I, U \rangle$

Table of contents

[Introduction](#page-1-0)

[Fixed-Point Algorithm for Barrier Function Synthesis](#page-7-0)

[Fixed-Point Algorithm for Vector Barrier Function Synthesis](#page-16-0)

[Numerical Experiments](#page-23-0)

[Conclusions](#page-30-0)

[Bibliography](#page-32-0)

Barrier Function Synthesis: Vanilla Version

\n- Search
$$
B
$$
 in some class (e.g., polynomial functions) such that
\n- a) $B(x) \leq 0$ for all $x \in I$
\n- b) $B(x) > 0$ for all $x \in U$
\n- c) $\nabla B(x) \cdot f(x) \leq -\lambda(x)B(x)$ for all $x \in \mathbb{R}^n$
\n

Challenges:

- If λ not fixed, the problem is nonconvex : (
- If λ fixed, needs to be carefully crafted :/

For instance, choosing $\lambda(x)$ constant:

- ▶ Conservative (implies that $\{x \in \mathbb{R}^n : B(x) \le 0\}$ is attractive!)
- ▶ Which constant to choose (not monotonic!)?

Barrier Function Synthesis: Our Contribution

1. Introduce a new decrease condition (c') : intuitively reads as

 $\nabla B(x) \cdot f(x) \leq -\lambda(x)B(x)$ for all $x \in \mathbb{R}^n$ with $B(x) \leq 0$ (1)

- 2. Justify the validity and advantages of (c')
- 3. Fixed-point algorithm for synthesis using (c')

New Decrease Condition: Na¨ıve Form

Assume that

 $\nabla B(x) \cdot f(x) \leq -\lambda(x)B(x)$ for all $x \in \mathbb{R}^n$ with $B(x) \leq 0$ [\(1\)](#page-9-0) holds. Is $\{x \in \mathbb{R}^n : B(x) \leq 0\}$ forward invariant? Not always :/

Example: $f(x) = 1$ and $B(x) = x^2$ [\(1\)](#page-9-0) holds but $\{x \in \mathbb{R}^n : B(x) \le 0\} = \{0\}$ is not forward invariant

New Decrease Condition: Valid Form

Theorem

Let $p(x) = \nabla B(x) \cdot f(x) + \lambda(x)B(x)$, and assume that

$$
p(x) = -\sum_{k=0}^{\ell} \sigma_k(x) (-B(x))^k
$$
 (2)

for some $\sigma_k(x) \geq 0$ continuous. Then, [\(1\)](#page-9-0) holds, and moreover ${x \in \mathbb{R}^n : B(x) \le 0}$ is forward invariant.

New Decrease Condition: Advantages

We can use $\lambda(x)$ constant, i.e., $\lambda(x) = \gamma$:

- ▶ Conservativeness decreases monotonically with $\gamma > 0$
- ▶ Not conservative for $\gamma > 0$ large enough¹

¹Under very mild assumptions. Still conservativeness coming from restricted search space for B and constraints "tractabilization".

Fixed-Point Characterization

Define the map

$$
G(B) = \{ \ \tilde{B} : \mathbb{R}^n \to \mathbb{R} \ \text{ such that} \\ \tilde{B}(x) \leq 0 \ \text{and} \ \nabla \tilde{B}(x) \cdot f(x) + \gamma \tilde{B}(x) \leq 0 \\ \text{for all } x \in \mathbb{R}^n \ \text{with} \ B(x) \leq 0 \ \}
$$

Proposition

B satisfies [\(1\)](#page-9-0) if and only if $B \in G(B)$

Proposition

 $G(B)$ is a convex cone

Fixed-Point Algorithm

Start with
$$
B_0 : \mathbb{R}^n \to \mathbb{R}
$$
 such that $B_0(x) \le 0$ for all $x \in I$
\n $B_1 \in G(B_0)$
\n $B_2 \in G(B_1)$
\netc.
\nuntil $G(B_k) = \emptyset$ or $B_k \in G(B_k)$ or $B_k \ge 0$ on U

To avoid large steps:

$$
B_{k+1} = \arg\min_{\tilde{B} \in G(B_k)} \|\tilde{B} - B_k\|
$$

Fixed-Point Algorithm and Abstract Interpretation

Table of contents

[Introduction](#page-1-0)

[Fixed-Point Algorithm for Barrier Function Synthesis](#page-7-0)

[Fixed-Point Algorithm for Vector Barrier Function Synthesis](#page-16-0)

[Numerical Experiments](#page-23-0)

[Conclusions](#page-30-0)

[Bibliography](#page-32-0)

Vector Barrier Functions

Introduced by A. Sogokon, K. Ghorbal, Y. Kiam Tan and A. Platzer [\[Sog+18\]](#page-35-2)

Definition ([\[Sog+18\]](#page-35-2))

 $B: \mathbb{R}^n \to \mathbb{R}^m$ is a vector barrier function for the system with field f, initial set I and unsafe set U if

,

\n- a)
$$
B(x) \preceq 0
$$
 for all $x \in I$
\n- b) $B(x) \npreceq 0$ for all $x \in U$
\n- c) $\nabla B(x) \cdot f(x) \preceq AB(x)$ for all $x \in \mathbb{R}^n$ where $A \in \mathbb{R}^{m \times m}$ is Metzler
\n

Proposition ([\[Sog+18\]](#page-35-2))

If B is a vector barrier function for $\langle f, I, U \rangle$, then ${x \in \mathbb{R}^n : B(x) \preceq 0}$ is a safe forward invariant set for $\langle f, I, U \rangle$

Illustration of Vector Barrier Function

Berger, Ghanbarpour, Sankaranarayanan Monlinear Forward Invariant Synthesis May 15, 2024 19

Vector Barrier Function Synthesis: Our Contribution

1. Introduce the condition (c') : intuitively reads as

 $\nabla B(x) \cdot f(x) \preceq -\lambda(x)B(x)$ for all $x \in \mathbb{R}^n$ with $B(x) \preceq 0$ (3)

- 2. Justify the validity and advantages of (c')
- 3. Fixed-point algorithm for synthesis using (c')

New Decrease Condition: Validity

Theorem

Let $p(x) = \nabla B(x) \cdot f(x) + \lambda(x)B(x)$, and assume that

$$
p(x) = -\sum_{k_1=0}^{\ell} \cdots \sum_{k_m=0}^{\ell} \sigma_{k_1,\ldots,k_m}(x) \prod_{j=1}^m (-[B(x)]_j)^{k_j} \qquad (4)
$$

for some $\sigma_{k_1,...,k_m}(x) \succeq 0$ continuous. Then, [\(3\)](#page-19-0) holds, and moreover $\{x \in \mathbb{R}^n : B(x) \preceq 0\}$ is forward invariant.

Fixed-Point Characterization

Define the map

$$
G(B) = \{ \ \tilde{B} : \mathbb{R}^n \to \mathbb{R}^m \ \text{such that} \\ \tilde{B}(x) \preceq 0 \ \text{and} \ \nabla \tilde{B}(x) \cdot f(x) + \gamma \tilde{B}(x) \preceq 0 \\ \text{for all } x \in \mathbb{R}^n \ \text{with} \ B(x) \preceq 0 \ \}
$$

Proposition

B satisfies [\(3\)](#page-19-0) if and only if $B \in G(B)$

Proposition

 $G(B)$ is a convex cone

Fixed-Point Algorithm

Start with
$$
B_0 : \mathbb{R}^n \to \mathbb{R}^m
$$
 such that $B_0(x) \preceq 0$ for all $x \in I$
\n $B_1 \in G(B_0)$
\n $B_2 \in G(B_1)$
\netc.
\nuntil $G(B_k) = \emptyset$ or $B_k \in G(B_k)$ or $B_k(x) \preceq 0$ for some $x \in U$

To avoid large steps:

$$
[\mathcal{B}_{k+1}]_j = \arg\min_{\tilde{\mathcal{B}} \in \mathcal{G}(\mathcal{B}_k)} \|\tilde{\mathcal{B}} - [\mathcal{B}_k]_j\|
$$

Table of contents

[Introduction](#page-1-0)

[Fixed-Point Algorithm for Barrier Function Synthesis](#page-7-0)

[Fixed-Point Algorithm for Vector Barrier Function Synthesis](#page-16-0)

[Numerical Experiments](#page-23-0)

[Conclusions](#page-30-0)

[Bibliography](#page-32-0)

Implementation Details

 \triangleright Search B as a vector-valued polynomial of bounded degree ▶ [\(4\)](#page-20-0) enforced using Sum-of-Squares, i.e.,

$$
p(x)=-\sum_{k_1=0}^\ell \cdots \sum_{k_m=0}^\ell \sigma_{k_1,...,k_m}(x) \prod_{j=1}^m (-[B(x)]_j)^{k_j}
$$

for SoS polynomials $\sigma_{k_1,...,k_m}(x)$

▶ Implementation in Julia, using SumOfSquares.jl and Mosek

Vanderpol Oscillator I

$$
\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ \frac{1}{2}x_2 - x_1 - \frac{1}{2}x_1^2 x_2 \end{bmatrix}, \qquad I = \begin{Bmatrix} x_1^2 + x_2^2 \leq \frac{1}{4} \end{Bmatrix}
$$

Search B as a polynomial of degree 2 with 8 components Results: Computation time of 50 sec.

Vanderpol Oscillator II

Final output $=$ purple curve, not verified by SMT solver Trimmed output $=$ green curve, verified by SMT solver Vanilla SoS output $=$ blue curve, requires degree ≥ 8 , not verified by SMT solver

Berger, Ghanbarpour, Sankaranarayanan [Nonlinear Forward Invariant Synthesis](#page-0-0) May 15, 2024 27

Nonlinear System I

$$
\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -x_1^3 + \frac{1}{2}x_2 \\ -x_1 - 2x_2 \end{bmatrix}, \qquad I = \begin{Bmatrix} x_1^2 + x_2^2 \leq \frac{1}{4} \end{Bmatrix}
$$

Search B as a polynomial of degree 2 with 1 (resp. 11) components

Results: Computation time of 1 (resp. 50) sec.

Nonlinear System II

Final output $(1 \text{ comp.}) = \text{green curve}$ Final output $(11 \text{ comp.}) = \text{red curve}$ Vanilla SoS output $=$ blue curve, with degree $>$ 4

Summary of Numerical Experiments

Table of contents

[Introduction](#page-1-0)

[Fixed-Point Algorithm for Barrier Function Synthesis](#page-7-0)

[Fixed-Point Algorithm for Vector Barrier Function Synthesis](#page-16-0)

[Numerical Experiments](#page-23-0)

[Conclusions](#page-30-0)

[Bibliography](#page-32-0)

Conclusions

- ▶ Introduced a less conservative decrease condition for barrier functions, and provided a fixed-point algorithm for barrier function synthesis using this condition: no more manual search for $\lambda(x)!$
- ▶ Extended the approach to vector barrier functions: reduced function complexity!
- \triangleright Showcased the applicability on numerical examples
- \triangleright Not discussed: how to choose B_0 (see paper)
- ▶ Not discussed: widening to ensure termination (see paper) Future work:
	- ▶ Reduce the number of components when possible (merging)
	- \blacktriangleright Increase the convergence speed with momentum/widening techniques
	- \triangleright Apply the projection trick to other fixed-point algorithms

Table of contents

[Introduction](#page-1-0)

[Fixed-Point Algorithm for Barrier Function Synthesis](#page-7-0)

[Fixed-Point Algorithm for Vector Barrier Function Synthesis](#page-16-0)

[Numerical Experiments](#page-23-0)

[Conclusions](#page-30-0)

[Bibliography](#page-32-0)

Bibliography I

[Nag42] Mitio Nagumo. "Uber die lage der integralkurven gewöhnlicher differentialgleichungen". In: Proceedings of the Physico-Mathematical Society of Japan. 3rd Series 24 (1942). DOI: [10.11429/ppmsj1919.24.0_551](https://doi.org/10.11429/ppmsj1919.24.0_551).

[Par00] Pablo A Parrilo. "Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization". PhD thesis. California Institute of Technology, 2000.

Bibliography II

[PJ04] Stephen Prajna and Ali Jadbabaie. "Safety verification of hybrid systems using barrier certificates". In: Hybrid Systems: Computation and Control. HSCC 2004. Ed. by Rajeev Alur and George J Pappas. Vol. 2993. Lecture Notes in Computer Science. Berlin: Springer, 2004, pp. 477-492. DOI: [10.1007/978-3-540-24743-2_32](https://doi.org/10.1007/978-3-540-24743-2_32).

[Pra06] Stephen Prajna. "Barrier certificates for nonlinear model validation". In: Automatica 42.1 (2006), pp. 117–126. DOI: [10.1016/j.automatica.2005.08.007](https://doi.org/10.1016/j.automatica.2005.08.007).

Bibliography III

[SCÁ13] Sriram Sankaranarayanan, Xin Chen, and Erika Ábrahám. "Lyapunov function synthesis using Handelman representations". In: IFAC Proceedings Volumes 46.23 (2013), pp. 576–581. DOI: [10.3182/20130904-3-FR-2041.00198](https://doi.org/10.3182/20130904-3-FR-2041.00198).

[Sog+18] Andrew Sogokon et al. "Vector barrier certificates and comparison systems". In: Formal Methods. FM 2018. Ed. by Klaus Havelund et al. Vol. 10951. Lecture Notes in Computer Science. Cham: Springer, 2018, pp. 418–437. DOI: [10.1007/978-3-319-95582-7_25](https://doi.org/10.1007/978-3-319-95582-7_25).

[Ame+19] Aaron D Ames et al. "Control barrier functions: theory and applications". In: 2019 18th European control conference (ECC) . IEEE, 2019, pp. 3420–3431. DOI: [10.23919/ECC.2019.8796030](https://doi.org/10.23919/ECC.2019.8796030).