Algorithms for Identifying Flagged and Guarded Linear Systems

Guillaume Berger¹, Monal Narasimhamurthy² and Sriram Sankaranarayanan². July 12, 2024

- 1. Université Catholique Louvain, Belgium
- 2. University of Colorado Boulder, USA

- x' = x + 0.01v
- $heta' = heta + 0.01 \omega$
- $\begin{array}{l} \mathsf{v}' &= (3.99 \mathsf{x} + 1.85\theta + 0.42 \mathsf{v} + 2.16\omega 0.69) + \\ [g_1] \left(-4.72 \mathsf{x} 2.13\theta + 0.61 \mathsf{v} 2.22\omega + 0.64 \right) + \\ [g_2] \left(0.49 \mathsf{x} 0.3\theta + 0.01\omega + 0.05 \right) \end{array}$
- $\omega' = (1.82x + 0.44\theta 0.23v + 1.9\omega 0.31) + [g_1](-2.12x 0.96\theta + 0.27v \omega + 0.29) + [g_2](0.22x 0.13\theta + 0.01\omega + 0.02)$

x' = x + 0.01v

 $\theta' = \theta + 0.01 \omega$

- $\begin{array}{l} \nu' & = (3.99x + 1.85\theta + 0.42\nu + 2.16\omega 0.69) + \\ [g_1] & (-4.72x 2.13\theta + 0.61\nu 2.22\omega + 0.64) + \\ [g_2] & (0.49x 0.3\theta + 0.01\omega + 0.05) \end{array}$
- $\omega' = (1.82x + 0.44\theta 0.23v + 1.9\omega 0.31) + [g_1](-2.12x 0.96\theta + 0.27v \omega + 0.29) + [g_2](0.22x 0.13\theta + 0.01\omega + 0.02)$
- $g_1(\mathbf{x}) = -x + \theta + 0.11v 0.48\omega + 1$ $g_2(\mathbf{x}) = 0.51x - \theta + 0.02v + 0.12\omega + 0.11$

Guarded Linear System.

- Flagged and Guarded Linear System Identification
- Expressivity
- Identification Algorithm
- Complexity Analysis
- Numerical Results.

Flagged Linear Systems

State-Variables: $(x_1, \ldots, x_n) \in \mathbb{R}^n$ Flags: $(f_1, \ldots, f_k) \in \{-1, 1\}^k$

 $\mathbf{x}(t+1) = A_0 \mathbf{x}(t) + \mathbf{f}_1(t) \times A_1 \mathbf{x}(t) + \cdots + \mathbf{f}_k(t) \times A_m \mathbf{x}(t).$

State-Variables: $(x_1, \ldots, x_n) \in \mathbb{R}^n$ Flags: $(f_1, \ldots, f_k) \in \{-1, 1\}^k$

 $\mathbf{x}(t+1) = A_0 \mathbf{x}(t) + \mathbf{f}_1(t) \times A_1 \mathbf{x}(t) + \cdots + \mathbf{f}_k(t) \times A_m \mathbf{x}(t).$

Linear Switched System:

- Exogenous Switching Signal (flags $f_i(t) \in \{-1, 1\}$).
- 2^{*k*} modes.

Guarded Linear Systems

State-Variables: $(x_1, \ldots, x_n) \in \mathbb{R}^n$

 $\mathbf{x}(t+1) = A_0 \mathbf{x}(t) + [g_1(\mathbf{x}(t))] \times A_1 \mathbf{x}(t) + \cdots + [g_m(\mathbf{x}(t))] \times A_m \mathbf{x}(t).$

Guarded Linear Systems

State-Variables: $(x_1, \ldots, x_n) \in \mathbb{R}^n$

 $\mathbf{x}(t+1) = A_0 \mathbf{x}(t) + [g_1(\mathbf{x}(t))] \times A_1 \mathbf{x}(t) + \cdots + [g_m(\mathbf{x}(t))] \times A_m \mathbf{x}(t).$

Guards:

•
$$g_i(\mathbf{x}) = \mathbf{c}_i^\top \mathbf{x} + d_i$$

• $[g_i(\mathbf{x})] = \begin{cases} +1 & g_i(\mathbf{x}) \ge 0 \\ -1 & o.w. \end{cases}$

Guarded Linear Systems

State-Variables: $(x_1, \ldots, x_n) \in \mathbb{R}^n$

$$\mathbf{x}(t+1) = A_0 \mathbf{x}(t) + [g_1(\mathbf{x}(t))] \times A_1 \mathbf{x}(t) + \cdots + [g_m(\mathbf{x}(t))] \times A_m \mathbf{x}(t).$$

Guards:

•
$$g_i(\mathbf{x}) = \mathbf{c}_i^\top \mathbf{x} + d_i$$

• $[g_i(\mathbf{x})] = \begin{cases} +1 & g_i(\mathbf{x}) \ge 0 \\ -1 & o.w. \end{cases}$

Compactly specified state-based switching.

Expressivity

Hinging Hyperplanes [Brieman'93]: $f(\mathbf{x}) = c_0^t \mathbf{x} + \sum_{j=1}^k \pm \max(\mathbf{c}_j^t \mathbf{x}, \mathbf{d}_j^t \mathbf{x})$ Expressivity

Hinging Hyperplanes [Brieman'93]: $f(\mathbf{x}) = c_0^t \mathbf{x} + \sum_{j=1}^k \pm \max(\mathbf{c}_j^t \mathbf{x}, \mathbf{d}_j^t \mathbf{x})$

Input:

- 1. Data $(x_t, y_t), t = 1, ..., N$
- 2. # of flags: k
- 3. Relative Error : $\epsilon >$ 0, Absolute Error: $\tau >$ 0

Input:

- 1. Data $(\mathbf{x}_t, \mathbf{y}_t), t = 1, ..., N$
- 2. # of flags: k
- 3. Relative Error : $\epsilon > 0$, Absolute Error: $\tau > 0$

Output:

- 1. Matrices A_0, \ldots, A_k 2. Latent Flags: $f_t^{(1)}, \ldots, f_t^{(k)}$.

Input:

- 1. Data $(x_t, y_t), t = 1, ..., N$
- 2. # of flags: k
- 3. Relative Error : $\epsilon >$ 0, Absolute Error: $\tau >$ 0

Output:

1. Matrices A_0, \ldots, A_k 2. Latent Flags: $f_t^{(1)}, \ldots, f_t^{(k)}$.

$$(orall t) || \mathbf{y}_t - (A_0 \mathbf{x}_t + \sum_{j=1}^k f_t^{(j)} A_j \mathbf{x}_t) || \le \epsilon || \mathbf{x}_t || + au$$

Input:

- 1. Data $(x_t, y_t), t = 1, ..., N$
- 2. # of flags: k
- 3. Relative Error : $\epsilon >$ 0, Absolute Error: $\tau >$ 0

Output:

1. Matrices A_0, \ldots, A_k 2. Latent Flags: $f_t^{(1)}, \ldots, f_t^{(k)}$.

$$(\forall t) \left(\left| \mathbf{y}_t - (A_0 \mathbf{x}_t + \sum_{j=1}^k f_t^{(j)} A_j \mathbf{x}_t) \right| \right) \le \epsilon ||\mathbf{x}_t|| + \tau$$

Prediction error: $(\mathbf{x}_t, \mathbf{y}_t)$

Input:

- 1. Data $(x_t, y_t), t = 1, ..., N$
- 2. # of flags: k
- 3. Relative Error : $\epsilon >$ 0, Absolute Error: $\tau >$ 0

Output:

1. Matrices A_0, \ldots, A_k 2. Latent Flags: $f_t^{(1)}, \ldots, f_t^{(k)}$.

$$(\forall t) \left(\mathbf{y}_t - (A_0 \mathbf{x}_t + \sum_{j=1}^k f_t^{(j)} A_j \mathbf{x}_t) \right) \leq \frac{\mathbf{Rel. Err.}}{\epsilon ||\mathbf{x}_t||} + \tau$$

Prediction error: $(\mathbf{x}_t, \mathbf{y}_t)$

Goal: Find model that minimizes rel. error ϵ . Fix: abs. error τ and # latent flags k.

Best Known Algorithm: Mixed Integer Linear Programming. Complexity: $O(2^{kN} \times poly(N, k, n)).$

Approximation Algorithm:

Guaranteed solution in the interval $[\epsilon^*, \epsilon^* + \epsilon_{gap}]$.

Inputs: Data $(\mathbf{x}_t, \mathbf{y}_t)$ for $t \in [N]$, # Flags k, Err. gap $\epsilon_{gap}, \tau > 0$. Approximation Algorithm:

• Guaranteed solution in the interval $[\epsilon^*, \epsilon^* + \epsilon_{gap}]$.

Inputs: Data $(\mathbf{x}_t, \mathbf{y}_t)$ for $t \in [N]$, # Flags k, Err. gap $\epsilon_{gap}, \tau > 0$. Approximation Algorithm:

- Guaranteed solution in the interval $[\epsilon^*, \epsilon^* + \epsilon_{gap}]$.
- Running time complexity:

$$O\left(2^{O\left(k^3 n^4 \log\left(\frac{k}{\epsilon_{gap}}\right)\right)} \operatorname{poly}\left(k, n, \log\left(\frac{1}{\epsilon_{gap}}\right)\right) \times N\right)$$

Inputs: Data $(\mathbf{x}_t, \mathbf{y}_t)$ for $t \in [N]$, # Flags k, Err. gap $\epsilon_{gap}, \tau > 0$. Approximation Algorithm:

- Guaranteed solution in the interval $[\epsilon^*, \epsilon^* + \epsilon_{gap}]$.
- Running time complexity:

$$O\left(2^{O\left(k^3 n^4 \log\left(\frac{k}{\epsilon_{gap}}\right)\right)} \operatorname{poly}\left(k, n, \log\left(\frac{1}{\epsilon_{gap}}\right)\right) \times N\right)$$

• Linear in the size of the data.

Inputs: Data $(\mathbf{x}_t, \mathbf{y}_t)$ for $t \in [N]$, # Flags k, Err. gap $\epsilon_{gap}, \tau > 0$. Approximation Algorithm:

- Guaranteed solution in the interval $[\epsilon^*, \epsilon^* + \epsilon_{gap}]$.
- Running time complexity:

$$O\left(2^{O\left(k^3n^4\log\left(\frac{k}{\epsilon_{gap}}\right)\right)}\operatorname{poly}\left(k,n,\log\left(\frac{1}{\epsilon_{gap}}\right)\right)\times N\right)$$

- Linear in the size of the data.
- Compared to [Berger et al. Neurips 2022]: $O(2^{k^3})$ vs. $O(2^{k \times 2^k})$.

Inputs: Data $(\mathbf{x}_t, \mathbf{y}_t)$ for $t \in [N]$, # Flags k, Err. gap $\epsilon_{gap}, \tau > 0$. Approximation Algorithm:

- Guaranteed solution in the interval $[\epsilon^*, \epsilon^* + \epsilon_{gap}]$.
- Running time complexity:

$$O\left(2^{O\left(k^3n^4\log\left(\frac{k}{\epsilon_{gap}}
ight)
ight)}\operatorname{poly}\left(k,n,\log\left(\frac{1}{\epsilon_{gap}}
ight)
ight) imes N
ight)$$

- Linear in the size of the data.
- Compared to [Berger et al. Neurips 2022]: $O(2^{k^3})$ vs. $O(2^{k \times 2^k})$.
- "Simple" algorithm inspired by CEGIS and Branch-and-Cut.

Promise Problem

Decision (Yes/No) version of an approximation algorithm [Even+Selman+Yacobi'82, Goldreich'2006].

Assume:

- ϵ^* is optimal relative err.
- $\epsilon^* \leq \epsilon$ or $\epsilon^* > \epsilon + \epsilon_{gap}$.

Promise Problem

Decision (Yes/No) version of an approximation algorithm [Even+Selman+Yacobi'82, Goldreich'2006].

Assume:

- ϵ^* is optimal relative err.
- $\epsilon^* \leq \epsilon$ or $\epsilon^* > \epsilon + \epsilon_{gap}$.

Output:

- YES : $\epsilon^* \leq \epsilon$.
- No: $\epsilon^* > \epsilon + \epsilon_{gap}$.

Promise Problem

Decision (Yes/No) version of an approximation algorithm [Even+Selman+Yacobi'82, Goldreich'2006].

Assume:

- ϵ^* is optimal relative err.
- $\epsilon^* \leq \epsilon$ or $\epsilon^* > \epsilon + \epsilon_{gap}$.

Output:

- YES : $\epsilon^* \leq \epsilon$. Output model with rel. err $\leq \epsilon + \epsilon_{gap}$
- No: $\epsilon^* > \epsilon + \epsilon_{gap}$.

Algorithm (Flagged Regression)

Tree Search Algorithm: Expanding a Node

Tree Search Algorithm: Expanding a Node

Cutting Plane Method

Cutting Plane Method

How does $vol(\hat{P})$ relate to vol(P)?

Cutting Plane Method

Center of Max. Vol. Inscribed Ellipsoid:

$$\operatorname{vol}(\hat{P}) \leq \left(1 - \frac{1}{2n}\right) \operatorname{vol}(P).$$

Overall Algorithm

- Expand Tree by choosing unexplained data point.
- Choose MVE center \Rightarrow volume of one polyhedron shrinks.
- Key Result: If $\epsilon^* \leq \epsilon$ then \exists node with $P \supseteq \mathcal{B}(L(\epsilon_{gap}))$.
 - If *Chebyshev Radius* $< R(\epsilon_{gap})$ node can be pruned.

Overall Algorithm

- Expand Tree by choosing unexplained data point.
- Choose MVE center \Rightarrow volume of one polyhedron shrinks.
- Key Result: If $\epsilon^* \leq \epsilon$ then \exists node with $P \supseteq \mathcal{B}(L(\epsilon_{gap}))$.
 - If Chebyshev Radius $< R(\epsilon_{gap})$ node can be pruned.
- Guarantee: If $\epsilon^* \leq \epsilon$ then guaranteed to find a model with error $\leq \epsilon + \epsilon_{gap}$.
- Depth of the tree is bounded.
- Overall Time Complexity:

$$2^{O\left(k^3 n^4 \log\left(\frac{k}{\epsilon_{gap}}\right)\right)} \operatorname{poly}\left(k, n, \log\left(\frac{1}{\epsilon_{gap}}\right)\right) N$$

Empirical Evaluation

Microbenchmarks

Randomly generated models: n = 2, k = 3 with $N \in [1, 10^4]$.

Experimental Comparisons

- Benchmarks: acrobot, cartpole with soft-walls and 6-DOF industrial robot arm.
- Comparison with Neural Networks:
 - Feedforward models: 2 layes, 32 RELU units/layer.
 - Trained using Tensorflow.
 - Training error $< 10^{-4}$.
- Comparison with PARC: [Bemporad 2022].
 - We set number of regions K = 10.
 - Other hyper-parameters were set as recommended by the manual.

- Multiple arms connected by joints and "soft" walls [Aydinoglu et al. 2021].
- Generated data from simulations and added random noise to states.
- Comparisons: guarded linear regression versus neural network learning.

Acrobot Comparisons

	N=200 N=		N=	400	N=800		N=1000	
	R^2	t(s)	R^2	t(s)	R^2	t(s)	R^2	t(s)
NN	-0.75	1.90	0.74	2.84	0.87	5.17	0.89	6.9
PARC	-0.95	1.34	0.94	4.23	0.99	6.9	0.96	7.04
FR	0.99	2.25	0.99	7.6	0.99	8.41	0.99	11.5
GR	0.99	13.16	0.99	12.0	0.92	21.8	0.99	19.1

- States collected from a 6-DOF industrial robot arm [Weigand et al. 2023].
- Nonlinear System Identification benchmark.
- 6 state variables and 6 control inputs.
- Flagged/Guarded regression k = 4.

6-DOF Robot Arm

Approach	Test NMRSE	R^2 score	Time (s)
Linear	0.83	0.31	unspecified
NN	0.30	0.88	3.02
PARC	1.78	-7.63	27.71
FR	0.14	0.98	82.32

Conclusion and Future Work

- Flagged/Guarded Linear Systems may be useful.
- Approximate identification algorithm with guarantees.
 - Guaranteed approximation error for relative error tolerance.
 - Linear in number of data points.
 - Exponential in number of flags/dimensions.
- Implementation runs in few minutes for $n \le 12$, $k \le 4$.
- How do we take it to the next level?
- Future Work.
 - Incorporate more system knowledge/constraints to speed up identification?
 - PCA-style estimation [Vidal+Ma+Sastry'2005].

G. Berger was supported in part by a fellowship from the Belgian American Educational Foundation (BAEF). This work was funded by the US National Science Foundation (NSF) under grant numbers CPS 1836900 and 1932189.