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Abstract
We present a counterexample-guided approach for synthesizing

convex piecewise affine control Lyapunov functions, obtained as

the maximum over a finite number of affine functions, for stabi-

lizing switched linear systems. Our approach considers systems

whose dynamics are defined by a set of affine ODEs over differ-

ent regions of the state-space. The goal is to synthesize a control

feedback function that uses state-based switching by assigning a

dynamical mode to each state from the set of available dynamics.

This is achieved by synthesizing a piecewise affine control Lya-

punov function that guarantees that for each state variable, the

appropriate choice of a control input can cause an instantaneous

decrease in the value of the Lyapunov function. Since piecewise

affine functions are not smooth, we use a non-smooth analytic

characterization of piecewise affine Lyapunov functions. The key

contribution of our approach is a counterexample driven algorithm

that alternates between verification that a given convex PWA func-

tion is a control Lyapunov function or generating a counterexample

point where the Lyapunov conditions fail, and synthesis from a fi-

nite set of counterexamples generated in the past. We demonstrate

that the two steps can be performed using mixed integer linear pro-

gramming problems (MILP) although no termination guarantees

are possible. We show that the branch and cut approach used inside

a MILP solver can be adapted to yield a termination guarantee. Al-

though the resulting approach is computationally expensive, it has

the advantage of not requiring a “demonstrator” or a pre-existing

controller. We provide an empirical evaluation that explores the

results of this approach over a set of numerical examples.
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1 Introduction
Synthesizing provably correct stabilizing feedback control law is

of paramount important in many (safety-critical) applications in-

volving dynamical systems. Many different approaches have been
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proposed in the literature, including symbolic control [33], set-

theoretic methods [8], and co-design of a control feedback law and

an associated stability certificate [10, 13]. In this work, we consider

the approach of synthesizing a control Lyapunov function (CLF). A

CLF is a function 𝑉 satisfying that for every state x, there is an
input u such that𝑉 decreases instantly when the system flows from

x with u applied as input to the system. CLFs have received a lot of

attention in the literature, since the seminal work of Sontag [31].

In this paper we explore the problem of synthesizing polyhedral

CLFs which are expressed as the maximum over a finite set of linear

functions: 𝑉 (x) = max
𝑘
𝑖=1

c⊤
𝑖
x for a plant model that is specified as

a switched affine control system with finitely many modes and a set

of affine differential equations corresponding to each mode. Synthe-

sizing polyhedral CLFs is known to be a hard problem. In fact, this

is the case even for polyhedral LFs. Kousoulidis et al [21] present an

approach for synthesizing polyhedral LFs for linear hybrid systems

that requires solving bilinear (nonconvex) constraints.

Our approach is based on the idea of counterexample-guided

inductive synthesis (CEGIS), that alternates between finding a can-

didate CLF and verifying it. Failure to verify a given candidate

results in generation of new constraints that restrict the space of

future candidate CLFs. This process is iterated until no candidate

CLFs remain or a candidate CLF satisfies the verification conditions

yielding the required CLF. Counterexample-guided inductive syn-

thesis (CEGIS) provides an avenue to solve the tractability problem

posed by the infinite number of constraints while keeping in some

cases a form of completeness.

CEGIS approaches for synthesizing LFs have received a lot of

attention in the literature, using various templates for the LF (poly-

hedral, polynomial, Neural Networks, etc.) and approaches for the

computation of the candidates and the counterexamples (Linear

Program, Mixed-Integer Programming, Sum-of-Squares Optimiza-

tion, SMT solvers, etc.); see Section 1.1 for a detailed discussion of

these approaches. The problem of synthesizing a CLF 𝑉 for a given

dynamical system ¤x = 𝑓 (x, u) is in general even more challenging

than the one of synthesizing a LF since the condition on 𝑉 at each

x is a disjunction of several (possibly infinitely many) constraints,

namely:

(∀x ≠ 0) (∃ u) 𝐿𝑓 ,u𝑉 (x) ≜ ∇𝑉 (x) · 𝑓 (x, u) < 0.

Hence, when designing CEGIS approaches to compute CLFs, we

need to account for the fact that even for a small sample set of con-

straints, the computation of the candidate can be very challenging

due to the disjunctive nature of the constraints. One way to address

this is to assume a demonstrator, which is an oracle that for each

counterexample x provides an input u, thereby “selecting” which

clause of the disjunction must be satisfied. The drawback is that if
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the demonstrator is not stabilizing, the CEGIS loop might fail to

find a CLF. See Section 1.1 for related works on CEGIS approaches

for CLF synthesis.

In this paper, we consider switched affine controlled systems, that
is systems that have a finite set of modes 𝑞, where each mode 𝑞 has

a domain and a finite set of dynamics ¤x = 𝐴𝑞,𝑗x + b𝑞,𝑗 , 𝑗 = 1, . . . , 𝑙 .

The control problem is to select for each pair (𝑞, x) a dynamic 𝑗

such that the resulting switched affine system is (strongly) stable for

all the solutions. Switched affine controlled systems arise naturally

in a wide range of applications [25, 32], or as approximations of

nonlinear systems [23]. We also consider polyhedral CLFs, which

are convex piecewise linear CLFs, with a pre-defined number of

linear pieces. We show that for these type of systems and CLFs, we

can formulate the computation of the candidates and the counterex-

amples as Mixed-Integer Linear Programs (MILPs). This allows us

to leverage the power of MILP solvers to solve these problems in an

efficient manner. In particular, the MILP solvers we used are guar-

anteed to find a feasible point if one exists. This allows us to prove

an asymptotic completeness guarantees on our CEGIS framework.

By contrast, other approaches using Sum-of-Squares relaxations or

Neural Networks generally do not guarantee completeness because

of the added conservatism or the presence of local minima.

As part of the asymptotic completeness guarantee, we prove an

upper bound on the number of iterations of the CEGIS loop. The

bound can be very large, and we observed in numerical experiments

that the actual number of iterations is much smaller. Therefore, we

propose also an alternative approach, that is computationally more

efficient, but does not come with a formal bound on the number

of iterations. We demonstrate the validity and efficiency of our

approach on several benchmark examples.

We examine the performance of our approach on a set of small

numerical examples. One limitation of our approach is the need

of solving MILPs at each iteration of the CEGIS with a number of

integer variables growing linearly with the number of iterations.

Although, “warm-start” of the MILP solvers using solutions found

at the previous iterations already allows us to improve significantly

the practical efficiency of the framework, in future work we plan to

improve this efficiency by combining it with educated guesses (e.g.,

using a demonstrator) provided as soft constraints or warm-starts

to the solver.

1.1 Related Work
CEGIS frameworks for synthesizing LFs for closed-loop systems

have received a lot of attention in the literature in recent years

[1, 2, 6, 7, 10, 12, 19, 34]. Our work differs from those ones in that we

consider the problem of controller synthesis (not only verification).

CEGIS frameworks for synthesizing controllers have also re-

ceived attention in the literature in recent years. The works [9, 13,

16] propose counterexample-based approaches to train simultane-

ously two neural networks: one representing the control feedback

function and one representing a Lyapunov function for the closed-

loop systems. In [9, 16], SMT solvers (such as Z3 [15] or dREAL

[17]) are used to falsify the candidate functions and generate coun-

terexamples. The falsification method in [13] is more similar to

ours in that it uses MILP, thriving on the fact that the functions are

PWA, arising from ReLU neural networks. Our work differs from

the above in that we do not learn a control feedback function during

training; instead we learn a CLF, from which a stabilizing feedback

control in derived afterwards. Also the frameworks in [9, 13, 16]

do not come in general with formal guarantees of correctness, as

they can be stucked in local minima.

The works [14, 29] propose a counterexample-guided frame-

work to learn polynomial CLF for switched systems. SMT solvers

and Sum-of-Squares (SoS) programming are used to generate the

candidate CLFs, while SoS programming is used to generate the

counterexamples. One limitation of this approach is that the SoS

relaxation introduces conservatism in the method. By contrast, our

work focuses on switched affine systems and polyhedral CLFs in

order to provide a sound and asymptotically complete procedure

by leveraging the efficiency of MILP solvers to find global solutions

to mixed-integer linear problems.

The work [30] proposes a counterexample-guided approach to

controller synthesis that assumes a demonstrator, on top of the

learner and the falsifier, to provide a control input for every coun-

terexample. This allows to remove the need of SMT solvers in the

generation of the candidate CLF. However, if the demonstrator

is not stabilizing, then the approach might fail. By contrast, our

approach does not require a demonstrator; hence, removing the

burden of synthesizing a priori a stabilizing controller.

The work [20] synthesizes likely CLFs for robotic tasks based on

demonstrations without relying on a verifier or counterexamples to

refine the solution. Their method learns a Lyapunov function from

a set of sampled states, models motion estimates using regression

techniques, and ensures stability by solving a convex optimization

problem. Because their approach lacks formal verification steps, the

correctness of the derived CLF is not guaranteed formally, which

contrasts with methods that iteratively refine CLFs using coun-

terexamples to ensure formal stability guarantees.

The works [3, 5–8, 18, 21, 24, 26, 28] focus on the computation

of polyhedral LFs for linear or PWA systems. Except for [5, 8, 21],

they do not study the problem of controller synthesis. The work

[8] uses set propagation to find polyhedral control invariant sets

for linear systems. A limitation of such set-theoretic approaches

is that the complexity of the propagated set grows very quickly,

especially when applied to PWA systems (“mode explosion”). The

work [5] proposes an approach to synthesize CLFs based on trian-

gulations of the state space. In order to guarantee that a CLF can

be found, the triangulation must be fine enough, which induces an

exponential complexity of the approach with the dimension of the

system. By contrast, our counterexample-based approach keeps a

fixed complexity of the CLF throughout all iterations. The work

[21] proposes a nonconvex bilinear optimization problem for the

computation of the CLF, which is solved using alternating mini-

mization (block-coordinate descent), without guarantees of global

optimality (i.e., completeness). The works [6, 7] connect to ours

in that they also use counterexample-based approaches. However,

they are restricted to the verification of closed-loop systems.

2 Preliminaries
In this section, we define the model of switched systems, introduce

the class of piecewise affine functions and a candidate piecewise

affine control Lyapunov function (CLF) along with its associated
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control feedback law. We recall previously known results from

nonsmooth analysis to show that a candidate piecewise affine CLF

along with the canonical feedback law yields an asymptotically

stable system.

We use capital letters 𝐴, 𝐵,𝐶, . . . to denote matrices and boldface

font a, b, x, u to denote vectors. For𝑚 ∈ N, we let [𝑚] = {1, . . . ,𝑚}.∨
and

∧
denote logical or and logical and respectively. cl(·) shows

a closure of a set.

Let 𝑋 ⊆ R𝑛
denote the state-space and x∗ ∈ 𝑋 be a desired

equilibrium point. Throughout this paper, we take x∗ = 0 without
loss of generality.

Definition 2.1 (Nondeterministic Switched Affine System). A con-

tinuous time nondeterministic switched affine system (NSAS) over

a state-space 𝑋 is a tuple Γ = ⟨𝑄,I,D⟩ wherein 𝑄 is a finite set
of modes, I maps each mode 𝑞 ∈ 𝑄 to a domain I(𝑞) ⊆ 𝑋 and

D maps each mode 𝑞 ∈ 𝑄 to a pair D(𝑞) = (𝐴𝑞, b𝑞) so that the

dynamics associated with the mode 𝑞 are given by ¤𝑥 = 𝐴𝑞x + b𝑞 .
The system is polyhedral if for each 𝑞 ∈ 𝑄 , I(𝑞) is defined by a

convex polyhedron of the form 𝐶𝑞x ≤ d𝑞 .

We assume that

⋃
𝑞∈𝑄 I(𝑞) = 𝑋 , i.e, each state belongs to some

mode 𝑞 ∈ 𝑄 . For given mode 𝑞, we denote the dynamics D(𝑞) by
matrices (𝐴𝑞, b𝑞). However, a state may belong to more than one

mode. We can view a nondeterministic switched affine system as a

differential inclusion of the form:

¤x ∈ convex {𝐴𝑞x + b𝑞 | 𝑞 ∈ 𝑄, x ∈ I(𝑞)} ,
wherein convex(𝐹 ) denotes the set of all convex combinations for

a finite set of vectors 𝐹 . A trajectory of the system is given by a

Carathéodeory solution to this differential inclusion, which is well

defined since we use the convex hull over the dynamics correspond-

ing to all the modes corresponding to a given state [4, Theorem 2.3].

Our plant model is given as a continuous-time switched affine

control system wherein each mode is associated with multiple

dynamics from which the controller chooses one based on the

current state and mode.

Definition 2.2 (Switched Affine Control System). A continuous

time switched affine control system (SACS) has a finite set of modes

𝑄 , wherein each mode 𝑞 is associated with the following informa-

tion: (a) a domain I(𝑞) ⊆ 𝑋 , and (b) a finite set of possible dy-

namics D(𝑞) = {(𝐴𝑞,1, b𝑞,1), . . . , (𝐴𝑞,𝑙 , b𝑞,𝑙 )}, wherein (𝐴𝑞,𝑖 , b𝑞,𝑖 )
represents the ODE: ¤x = 𝐴𝑞,𝑖x + b𝑞,𝑖 .

We say that the control system is polyhedral if each I(𝑞) is
expressed as a convex polyhedron 𝐶𝑞x ≤ d𝑞 .

Note that two modes may overlap: I(𝑞1) ∩ I(𝑞2) ≠ ∅ for some

𝑞1 ≠ 𝑞2. We now list key simplifying assumptions:

Assumption 1. We will assume the following structural properties
for any SACS we consider in this paper:

(1) Every state belongs to at least one mode:
⋃𝑚

𝑞∈𝑄 I(𝑞) = 𝑋 ,
(2) If 0 ∈ I(𝑞) for a mode𝑞 ∈ 𝑄 , then for each available dynamics

(𝐴𝑞,𝑖 , b𝑞,𝑖 ) ∈ D(𝑞), it holds that b𝑞,𝑖 = 0.1

(3) For all x ∈ I(𝑞) \ {0}, 0 ∉ {𝐴𝑞,𝑖x + b𝑞,𝑖 | (𝐴𝑞,𝑖 , b𝑞,𝑖 ) ∈
D(𝑞)}. This condition is not strictly necessary. Nevertheless,

1
This condition may be relaxed by requiring one of the dynamics to have zero affine

component.

it simplifies the analysis of the algorithms we will present
subsequently in the paper.

(4) |D(𝑞) | = 𝑙 for all 𝑞 ∈ 𝑄 . In other words, all modes have the
same number of available dynamics. This assumption is not
strictly necessary. It serves to make the presentation simpler.

Example 2.3. Consider an example SACS Π with 𝑄 = {𝑞1, 𝑞2}
and 𝑛 = 2. We have I(𝑞1) = {x | x1 ≤ 0} and I(𝑞2) = {x | x1 ≥ 0}.

Each mode has two dynamics associated with it (𝑙 = 2). The

dynamics associated with 𝑞1 are

𝐴𝑞1,1 =

(
0 1

−1 0

)
, 𝐴𝑞1,2 =

(
0.1 −0.8
1.3 0

)
, b𝑞1,1 = b𝑞1,2 = 0 .

The dynamics associated with 𝑞2 are

𝐴𝑞2,1 =

(
−0.1 0.1

0.5 −0.05

)
, 𝐴𝑞2,2 =

(
−0.1 0.1

−0.5 −1.0

)
, b𝑞2,1 = b𝑞2,2 = 0 .

The eigenvalues of 𝐴𝑞1,1 are ±𝑖 , 𝐴𝑞1,2 are 0.05 ± 1.02𝑖 , 𝐴𝑞2,1 are

−0.3, 0.15 and𝐴𝑞2,2 are−0.94,−0.16. In other words,𝐴𝑞2,2 is a stable
dynamic but applicable only when 𝑥1 ≥ 0.

Definition 2.4 (Switching Feedback Law). A (state-based) switch-

ing feedback law is defined by a sequence of maps 𝜎 = ⟨𝜎 (𝑞)⟩𝑞∈𝑄 ,
one for each state 𝑞 ∈ 𝑄 , wherein 𝜎 (𝑞) : I(𝑞) ↦→ [𝑙] maps each

state x that belongs to mode 𝑞 ∈ 𝑄 to the index of one of the dy-

namics associated with the mode in the set D(𝑞). For convenience
given a mode 𝑞 ∈ 𝑄 and a state x ∈ I(𝑞), we write 𝜎 (𝑞, x) as a
short-hand for 𝜎 (𝑞) (x).

We say that the feedback law is polyhedral if for each 𝑞 ∈ 𝑄 and

𝑖 ∈ [𝑙], the closure of the set {x | 𝜎 (𝑞, x) = 𝑖} can be written as a

finite union of convex polyhedra

⋃
𝑘∈{1,...,𝑁 (𝑞,𝑖 ) } 𝐺𝑞,𝑖,𝑘x ≤ h𝑞,𝑖,𝑘

for some natural number 𝑁 (𝑞, 𝑖).
Definition 2.5 (Composition of SACS and Feedback Law). Given

a SACS Π and a switched feedback law 𝜎 , we can define their

composition as a NSAS whose discrete modes are given by the set

𝑄̂ = {(𝑞, 𝑖) | 𝑞 ∈ 𝑄, 𝑖 ∈ [𝑙]} wherein the mode (𝑞, 𝑖) is associated
with the dynamics ¤x = 𝐴𝑞,𝑖x + b𝑞,𝑖 and domain I(𝑞, 𝑖) is the set
cl ({x | 𝜎 (𝑞, x) = 𝑖}).

If a feedback law 𝜎 is polyhedral, then we can express the

composition as a polyhedral NSAS whose modes are written as

𝑄̂ = {(𝑞, 𝑖, 𝑘) | 𝑞 ∈ 𝑄, 𝑖 ∈ [𝑙], 𝑘 ∈ [𝑁 (𝑞, 𝑖)]} such that I(𝑞, 𝑖, 𝑘) is
the convex polyhedron 𝐺𝑞,𝑖,𝑘x ≤ h𝑞,𝑖,𝑘 .

2.1 Polyhedral Control Lyapunov Functions
A function 𝑓 : R𝑛 → R is said to be polyhedral if it is of the form
𝑓 (x) = max𝑖∈[𝑘 ] c⊤𝑖 x. Such a function is said to have 𝑘 pieces.

The function is positive definite if for all x ∈ 𝑋 \ {0}, 𝑓 (x) > 0.

Throughout the paper, we will assume 𝑘 ≥ 2.

Definition 2.6 (Lyapunov Function). Let Γ : ⟨𝑄,I,D⟩ be a given
non-deterministic switched system. A polyhedral function 𝑉 (x) =
max𝑖∈[𝑘 ] c⊤𝑖 x is said to be a Lyapunov function for Γ if (a) 𝑉 (x)
is positive definite, and (b) for all 𝑞 ∈ 𝑄 and x ∈ I(𝑞) \ {0}, the
following condition holds:

(∀ 𝑖 ∈ [𝑘]) 𝑉 (x) = c⊤𝑖 x =⇒ c⊤𝑖 (𝐴𝑞x + b𝑞) < 0. (1)

Theorem 2.7 ([8, Theorem 2.19]). If 𝑉 (x) is a polyhedral Lya-
punov function for a switched system Γ, then Γ is globally asymptoti-
cally stable.
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¤x = 𝐴1x

¤x = 𝐴2x
¤x = 𝐴3x

𝑉
(x
)=

c⊤ 1
x

𝑉 (x) = c⊤
2
x

x∗

𝑃

Figure 1: Example that shows designing the feedback switch-
ing law based on Eq. (3) may fail to achieve stability.

We now extend our approach from Lyapunov functions for non-

deterministic switched systems to SACS which allow one of 𝑙 pos-

sible dynamics for each mode 𝑞. Let Π : ⟨𝑄,I,D⟩ be a SACS with
|𝑄 | = 𝑚 modes and 𝑙 ≥ 2 dynamics for each mode that satisfies

Assumption 1.

Definition 2.8 (Control Lyapunov Function). A polyhedral func-

tion 𝑉 (x) = max𝑖∈[𝑘 ] c⊤𝑖 x is a control Lyapunov function (CLF) for

a SACS Π if (a) 𝑉 (x) is positive definite, and (b) for each 𝑞 ∈ 𝑄 and

x ∈ I(𝑞) \ {0}:

(∃ 𝑗 ∈ [𝑙]) (∀ 𝑖 ∈ [𝑘]) 𝑉 (x) = c⊤𝑖 x =⇒ c⊤𝑖 (𝐴𝑞,𝑗x + b𝑞,𝑗 ) < 0.

(2)

In other words, for every state x and mode 𝑞, there is a choice

of dynamics from the set of available ones that ensures that all

the pieces of the CPWL that are maximized at the state x can be

decreased by the chosen dynamics.

Now, the question is how can we define the switching signal as a

feedback law. We can make the choice arbitrarily by simply picking

one of the many possible choices that result in a decrease:

𝜎 (𝑞, x) = min{ 𝑗 ∈ [𝑙] | 𝑗 satisfies condition (2) for (𝑞, x)} . (3)

However, such an approach does not always result in a feedback

law that yields a stable trajectory. The key here is that we are forced

to define dynamics on regions of measure 0 whose neighborhoods

have different dynamics. Using the Carathéodeory solution allows

us to ignore these regions effectively, possibly leading to unstable

behaviors. Consider the situation shown in Figure 1: the dynamics

𝐴3 is chosen by the switching rule only at point 𝑃 and the two other

dynamics that are chosen in the neighborhood of 𝑃 do not satisfy

the decrease condition at point 𝑃 . If we choose the active subsystem

based on Eq. (3), the decreasing condition does not hold. To address

this problem, we will define a canonical feedback law in Section 2.2.

This feedback is chosen carefully to yield a feedback law 𝜎 (𝑞, x)
such that for each 𝑗 ∈ [𝑙], the decrease condition holds for the

closure of the set {x | 𝜎 (𝑞, x) = 𝑗}. This will avoid the situation

shown in Figure 1.

2.2 Switching Feedback Law from CLF
Let 𝑉 (𝑥) = max𝑖∈[𝑘 ] c⊤𝑖 𝑥 be a CLF for a SACS Π. We will now

derive a feedback law 𝜎 (𝑞, 𝑥) for mode 𝑞 and state 𝑥 ∈ I(𝑞) \ {0}.
We wish the feedback law to have the following closure property.

Definition 2.9 (Closure Property). For any 𝑞 ∈ 𝑄 and 𝑗 ∈ [𝑙], let
D(𝑞, 𝑗) = {x ∈ I(𝑞) \ {0} : 𝜎 (𝑞, x) = 𝑗}. We say that the feedback

𝜎 has the closure property iff for all x ∈ cl(D(𝑞, 𝑗)) \ {0},
(∀ 𝑖 ∈ [𝑘]) 𝑉 (x) = c⊤𝑖 x =⇒ c⊤𝑖 (𝐴𝑞,𝑗x + b𝑞,𝑗 ) < 0. (4)

Seen another way, if a feedback law has a closure property then

for any convergent sequence of states x1, · · · , x𝑗 , · · · → x∗ all

belonging to the set I(𝑞) \ {0}, if 𝜎 (𝑞, x𝑖 ) = 𝑗 for each x𝑖 , then x∗

satisfies the decrease condition (4) for dynamics 𝑗 even if 𝜎 (𝑞, x∗) ≠
𝑗 . A feedback law with closure property can therefore avoid the

situation shown in Figure 1, since the vertex 𝑃 belongs to the closure

the region wherein the feedback maps states to the dynamics 𝐴1

(or 𝐴2). Therefore, 𝐴1 (or 𝐴2) must necessarily satisfy the decrease

condition at 𝑃 , if the feedback law satisfies the closure property.

Our strategy is to define the choice of dynamics at each state by

means of a merit function 𝜖 (𝑞, x, 𝑗) for 𝑞 ∈ 𝑄 , x ∈ I(𝑞) \ {0} and
𝑗 ∈ [𝑙], satisfying the following properties:

(1) 𝜖 (𝑞, x, 𝑗) ≥ 0 for all 𝑞, x, 𝑗 (belonging to the respective sets, as
stated above).

(2) 𝜖 (𝑞, x, 𝑗) > 0 if and only if the dynamics ¤x = 𝐴𝑞,𝑗x+b𝑞,𝑗 satisfies
the decrease condition (4) for mode 𝑞 and state x.

(3) For fixed 𝑞 and 𝑗 , 𝜖 (𝑞, x, 𝑗) is a continuous function in x, for all
x ∈ I(𝑞) \ {0}.
If a function 𝜖 (𝑞, x, 𝑗) can be defined for each mode 𝑞 ∈ 𝑄 ,

x ∈ I(𝑞) \ {0} and 𝑗 ∈ [𝑙], we can derive a feedback law

𝜎 (𝑞, x) ≔ argmax𝑗∈[𝑙 ] 𝜖 (𝑞, x, 𝑗) . (5)

Theorem 2.10. The feedback law 𝜎 (𝑞, x) derived from a merit
function 𝜖 (𝑞, x, 𝑗) following (5) satisfies the closure property, i.e, for
all x ∈ cl(D(𝑞, 𝑗)) \ {0}, the decrease condition (4) holds.

Proof. Let x ∈ cl(D(𝑞, 𝑗)) \ {0}. Due to the fact that 𝑉 (x) is a
CLF, there exists a mode 𝑝 ∈ [𝑙] (𝑝 may or may not be the same

as 𝑗 ) such that the decrease condition holds at x for 𝑝 , and thus,

𝜖 (𝑞, x, 𝑝) > 0 by property (2). Since 𝜖 (𝑞, x, 𝑝) is continuous over x
by property (3), we deduce the existence of an open neighborhood

𝑈 of x and a constant 𝑐 > 0 such that 𝜖 (𝑞, y, 𝑝) > 𝑐 for all y ∈ 𝑈 .
Hence, for y ∈ D(𝑞, 𝑗) ∩ 𝑈 , we have 𝜖 (𝑞, y, 𝑗) ≥ 𝜖 (𝑞, y, 𝑝) > 𝑐 .

Therefore, applying property (3), we conclude that 𝜖 (𝑞, x, 𝑗) ≥ 𝑐 >
0. Therefore, the decrease condition (4) for 𝑗 ∈ [𝑙] holds for all
x ∈ cl(D(𝑞, 𝑗)) \ {0}. □

It remains to define a merit function that satisfies the properties

noted above. There are many ways to define such a function, we

consider one such definition. For convenience, let us denote 𝑣 =

𝑉 (x), 𝑣𝑖 = c⊤
𝑖
x and 𝑣𝑖 = c⊤

𝑖
(𝐴𝑞,𝑗x + b𝑞,𝑗 ). We define 𝜖 as

𝜖 (𝑞, x, 𝑗) = min

𝑖∈[𝑘 ]
max { 𝜏 ≥ 0 | (𝑣 − 𝑣𝑖 ) − 𝜏𝑣𝑖 − 𝜏2 ≥ 0 } .

Clearly 𝜖 (𝑞, x, 𝑗) ≥ 0 for all x ∈ I(𝑞) \ {0}.

Theorem 2.11. 𝜖 (𝑞, x, 𝑗) > 0 if and only if (∀ 𝑖 ∈ [𝑘]) 𝑉 (x) =
c⊤
𝑖
x =⇒ c⊤

𝑖
(𝐴𝑞,𝑗x + b𝑞,𝑗 ) < 0.

Proof. (⇐=) Let us assume that the decrease condition holds:

(∀ 𝑖 ∈ [𝑘]) 𝑣 = 𝑣𝑖 =⇒ 𝑣𝑖 < 0. We wish to show that 𝜖 (𝑞, x, 𝑗) >
0. Consider two cases: (a) 𝑣 = 𝑣𝑖 or (b) 𝑣𝑖 < 𝑣 . Note that 𝑣 =

max(𝑣1, . . . , 𝑣𝑘 ) and therefore, no other case is possible.
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For case (a), we note that max {𝜏 ≥ 0 | (𝑣−𝑣𝑖 )−𝜏𝑣𝑖 −𝜏2 ≥ 0} > 0

since 𝑣 = 𝑣𝑖 , we have 𝑣𝑖 < 0. Therefore, −𝜏𝑣𝑖 − 𝜏2 ≥ 0 if and only if

𝜏 ∈ [0,−𝑣𝑖 ] and by the decrease condition, 𝑣𝑖 < 0.

For case (b), the polynomial (𝑣 − 𝑣𝑖 ) − 𝜏𝑣𝑖 − 𝜏2 > 0 when 𝜏 = 0

since 𝑣 > 𝑣𝑖 . It remains non-negative for 𝜏 ∈ [0, 𝑟𝑖 ] wherein 𝑟𝑖 =
−𝑣𝑖+

√︃
𝑣2
𝑖
+4(𝑣−𝑣𝑖 )
2

is a positive root of the polynomial. Therefore,

max {𝜏 ≥ 0 | (𝑣 − 𝑣𝑖 ) − 𝜏𝑣𝑖 − 𝜏2 ≥ 0} = 𝑟𝑖 > 0. We conclude that

𝜖 (𝑞, x, 𝑗) > 0 since it is the minimum over 𝑘 positive terms.

(=⇒) Conversely, let us assume that the decrease condition fails

to hold at x for mode 𝑗 . Therefore, ∃𝑖 ∈ [𝑘] such that 𝑣 = 𝑣𝑖 and

𝑣𝑖 ≥ 0. The polynomial (𝑣 − 𝑣𝑖 ) − 𝜏𝑣𝑖 − 𝜏2 = −𝜏𝑣𝑖 − 𝜏2 < 0 for all

𝜏 > 0. Therefore, max {𝜏 ≥ 0 | (𝑣 − 𝑣𝑖 ) − 𝜏𝑣𝑖 − 𝜏2 ≥ 0} = 0. Hence,

𝜖 (𝑞, x, 𝑗) = 0. □

Theorem 2.12. 𝜖 (𝑞, x, 𝑗) is continuous over x ∈ I(𝑞) \ {0}.

Proof. Note that 𝜖 (𝑞, x, 𝑗) can be written as min𝑖∈[𝑘 ] 𝜖𝑖 (𝑞, x, 𝑗),
wherein 𝜖𝑖 (𝑞, x, 𝑗) ≔ max {𝜏 ≥ 0 | (𝑣 − 𝑣𝑖 ) − 𝜏𝑣𝑖 − 𝜏2 ≥ 0}. Clearly,
if 𝑣 = 𝑣𝑖 , then 𝜖𝑖 (𝑞, x, 𝑗) = max(−𝑣𝑖 , 0). Otherwise, if 𝑣 > 𝑣𝑖 , then

𝜖𝑖 (𝑞, x, 𝑗) =
−𝑣𝑖+

√︃
𝑣2
𝑖
+4(𝑣−𝑣𝑖 )
2

. Thus, each 𝜖𝑖 (𝑞, x, 𝑗) is continuous
and 𝜖 = min𝑖∈[𝑘 ] 𝜖𝑖 is continuous. □

Observe that 𝜎 is not necessarily polyhedral since the closure of

D(𝑞, 𝑗) is not necessarily the union of finitely many polyhedra. It

is possible to modify the function 𝜖 slightly so that 𝜎 is polyhedral

if the state-space is compact. We will provide details in an extended

version.

3 Verification of Polyhedral CLFs
In this section, we provide algorithms that verify a given polyhedral

function 𝑉 (x) = max𝑖∈[𝑘 ] c⊤𝑖 x satisfies the conditions for a CLF

for a SACS Π : ⟨𝑄,I,D⟩ given in Definition 2.8. We show that the

conditions can be expressed by checking if a sequence of (mixed-

integer) linear programs (MILPs) is infeasible.

Let 𝐶 : ⟨c1, . . . , c𝑘 ⟩ represent the coefficients of a polyhedral

function 𝑉 (x) = max𝑖∈[𝑘 ] c⊤𝑖 x. We wish to check if it is a CLF for

a given SACS Π or find a witness state x ∈ 𝑋 for which the CLF

conditions fail.

Verifying positive definiteness: First, we need to verify that 𝑉 (x)
is positive definite. In other words, for all x ≠ 0, we wish to check

that 𝑉 (x) > 0. We formulate a feasibility problem that focuses on

finding a witness where the condition fails, i.e, 𝑉 (x) ≤ 0. If the

problem is infeasible, we note that 𝑉 is positive definite.

find x ∈ 𝑋
s.t. c⊤

𝑖
x ≤ 0 𝑖 = 1, . . . , 𝑘

x ≠ 0

 (6)

The difficulty lies in enforcing the constraint x ≠ 0. This is
achieved using a simple trick that notes that 𝑉 (x) ≤ 0 implies that

𝑉 (𝜆x) ≤ 0 for all 𝜆 ≥ 0. Let 𝛿 > 0 be a positive constant such that

the hypercube 𝐻𝛿 = [−𝛿, 𝛿]𝑛 lies entirely in 𝑋 .

Lemma 3.1. Let x ∈ R𝑛 \ {0} satisfy 𝑉 (x) ≤ 0. There exists
y ∈ bd(𝐻𝛿 ) such that 𝑉 (y) ≤ 0.

Proof. Let 𝜆 = 𝛿/∥x∥∞. It holds that 𝜆x ∈ bd(𝐻𝛿 ). Furthermore,

𝑉 (𝜆x) = 𝜆𝑉 (x) ≤ 0. This concludes the proof. □

Thus, verifying if𝑉 (x) is positive definite can be solved by formu-

lating 2𝑛 linear programs, each of which fixing 𝑥𝛼 = 𝛿 or 𝑥𝛼 = −𝛿
for some 𝛼 ∈ [𝑛].

Verifying the decrease condition: Next, we present an approach

to verifying the decrease condition in (2). Rather than verifying

this condition, we seek to find a witness x for its negation and the

infeasibility of doing so signals that the condition holds.

Therefore, we seek for each mode 𝑞 ∈ 𝑄 to solve the following

feasibility problem:

find x
s.t. x ∈ I(𝑞), x ≠ 0,

(∀ 𝑗 ∈ [𝑙]) (∃ 𝑖 ∈ [𝑘])∧
𝑖′∈[𝑘 ] 𝑐

⊤
𝑖
x ≥ 𝑐⊤

𝑖′ x ∧ c⊤
𝑖
(𝐴𝑞,𝑗x + b𝑞,𝑗 ) ≥ 0.

 (7)

The negation expresses the idea that for every state x ∈ I(𝑞)\{0}
and for each 𝑗 ∈ [𝑙] there is a piece c⊤

𝑖
x that is maximal at x and

fails to satisfy the decrease condition. This can be encoded using

𝑘 × 𝑙 binary variables𝑤 𝑗,𝑖 for each 𝑖 ∈ [𝑘] and 𝑗 ∈ [𝑙]. The idea is
that for each 𝑗 ,𝑤 𝑗,𝑖 = 1 if 𝑖 ∈ [𝑘] “witnesses” the lack of decrease

using the dynamic 𝑗 ∈ [𝑙]. Thus, we obtain the equivalent problem:

find x
s.t. x ∈ I(𝑞), x ≠ 0,

(∀ 𝑗 ∈ [𝑙]) ∑𝑘
𝑖=1𝑤 𝑗,𝑖 = 1,

(∀ 𝑗 ∈ [𝑙]) (∀ 𝑖 ∈ [𝑘]) 𝑤 𝑗,𝑖 = 1 ⇒{∧
𝑖′∈[𝑘 ] 𝑐

⊤
𝑖
x ≥ 𝑐⊤

𝑖′ x ∧ c⊤
𝑖
(𝐴𝑞,𝑗x + b𝑞,𝑗 ) ≥ 0

}
.


(8)

The last constraint is a conditional constraint which can be encoded

as a MILP constraint using the “big-𝑀” trick [35].

Suppose 0 ∉ I(𝑞), the constraint x ≠ 0 can be ignored. Other-

wise, we can run 2𝑛 separate MILPs by fixing 𝑥𝛼 = ±𝛿 for each

𝛼 ∈ [𝑛]. The 2𝑛 MILPs are succinctly represented as:

find x
s.t. x ∈ I(𝑞), x ≠ 0,

(∀ 𝑗 ∈ [𝑙]) ∑𝑘
𝑖=1𝑤 𝑗,𝑖 = 1,

(∀ 𝑗 ∈ [𝑙]) (∀ 𝑖 ∈ [𝑘]) 𝑤 𝑗,𝑖 = 1 ⇒{∧
𝑖′∈[𝑘 ] 𝑐

⊤
𝑖
x ≥ 𝑐⊤

𝑖′ x ∧ c⊤
𝑖
(𝐴𝑞,𝑗x + b𝑞,𝑗 ) ≥ 0

}
,∨

𝛼∈[𝑛] 𝑥𝛼 = 𝛿 ∨ ∨
𝛼∈[𝑛] 𝑥𝛼 = −𝛿.


(9)

Each disjunct is used in a separate MILP instance.

This works because if 0 ∈ I(𝑞), we have already assumed that

b𝑞 = 0 (Assumption 1). This means that if a particular solution

x ≠ 0 satisfies (8) then so does 𝜆x for 𝜆 > 0 and 𝜆x ∈ I(𝑞).
Therefore, verification of condition (2) is achieved by means of

running at most 2𝑛 MILP instances with 𝑘 × 𝑙 binary variables, 𝑛

continuous variables and 𝑂 (𝑘𝑙) constraints. If feasible, it yields a
witness x for which the decrease condition fails. Otherwise, all the

MILPs so obtained are infeasible, we conclude that the given CLF

𝑉 is valid.

4 Synthesis of Polyhedral CLFs
In this section, we describe a counterexample-guided approach to

synthesizing polyhedral CLFs 𝑉 (x) = max𝑖∈[𝑘 ] c⊤𝑖 x wherein the

number of pieces 𝑘 is fixed a priori. We first describe the overall
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counterexample driven approach and propose two algorithms based

on this approach.

We assume as inputs a SACS Π : ⟨𝑄,I,D⟩, a bound 𝑘 ≥ 2 on the

number of pieces of the polyhedral CLF that we seek and a bound

𝐾 > 0 on each coefficient. We assume a user-input 𝛼 > 0 which we

call the robustness parameter: we will demonstrate how it can be

used to prove convergence of our iterative scheme. The approach

searches for unknown coefficients𝐶 : ⟨c1, . . . , c𝑘 ⟩, wherein c𝑖 ∈ R𝑛
.

We also impose the constraint −𝐾1 ≤ c𝑖 ≤ 𝐾1, i.e, each entry of c𝑖
lies in the interval [−𝐾,𝐾], where 𝐾 is given as an input.

The counterexample-driven synthesis approach is based on the

alternation between two phases: learning and verification. At the 𝑟 th

iteration, we maintain a constraint Ψ𝑟 [c1, . . . , c𝑘 ] that represents
the unexplored solutions for the coefficients of the desired CLF.

• To begin with, Ψ0 :
∧

𝑖∈[𝑘 ] −𝐾1 ≤ c𝑖 ≤ 𝐾1.
• At each iteration, we check if Ψ𝑟 is feasible. If so, we obtain
a feasible candidate solution 𝐶𝑟 :

〈
c𝑟,1, . . . , c𝑟,𝑘

〉
that we use

to instantiate the candidate polyhedral function 𝑉𝑟 (x) =

max𝑖∈[𝑘 ] c⊤𝑟,𝑖x.
• We verify using the techniques from Section 3 whether𝑉𝑟 (x)
is a valid polyhedral CLF.

• If the verification succeeds, we have our CLF 𝑉 (x) = 𝑉𝑟 (x)
and we terminate successfully.

• Otherwise, we have a witness x = x𝑟 where the approach
fails. We will use this witness to eliminate 𝐶𝑟 and possibly

other candidates from further consideration.

We propose two approaches for incorporating witnesses: (a) a

direct approach wherein the witness x𝑟 to create a formula Ψ𝑟+1 =
Ψ𝑟 ∧ Ψblock (x𝑟 ); (b) a tree-based search wherein, we maintain Ψ𝑟 as
a tree whose nodes are labeled with polyhedra over the unknown

coefficients𝐶 . In this approach, every branch of the tree may gener-

ate a different set of witnesses. We will show using the robustness

parameter 𝛼 > 0 that the tree approach terminates although the

computational complexity can be quite high.

4.1 Direct Counterexample-Driven Approach
We add a constraint based on the witness: Ψ𝑟+1 = Ψ𝑟 ∧ Ψblock (x𝑟 ),
wherein the so-called blocking assertion Ψblock (x𝑟 ) depends on the

witness x𝑟 and is described below. The goal of Ψblock (x𝑟 ) is to
ensure that the candidate𝐶𝑟 , which failed at x𝑟 , is removed from the

space of unexplored solutions. The blocking assertion is composed

of two conjunctive assertions, i.e., Ψblock (x𝑟 ) = Ψ1 (x𝑟 ) ∧ Ψ2 (x𝑟 ),
where Ψ1 and Ψ2 are described below. We drop the x𝑟 from the

notation for the sake of readability. First, Ψ1 postulates that some

piece 𝑖 ∈ [𝑘] is maximized at x𝑟 and the function 𝑉𝑟 evaluated at

x𝑟 is greater than equal to 𝛼 ∥x𝑟 ∥, wherein 𝛼 is a user-provided

“robustness” parameter:

Ψ1 [𝐶] :
∨
𝑖∈[𝑘 ]

∧
𝑖′∈[𝑘 ]

c⊤𝑖 x𝑟 ≥ c⊤𝑖′x𝑟 ∧ c⊤𝑖 x𝑟 ≥ 𝛼 ∥x𝑟 ∥ .

The term 𝛼 ∥x𝑟 ∥ is used in place of a strict positivity constraint

c⊤
𝑖
x𝑟 > 0 and without loss of generality, we can use the 𝐿2-norm

∥x𝑟 ∥2 = x⊤𝑟 x𝑟 . We can encode this as a combination of real-valued

and binary indicator variables𝑤𝑟,1, . . . ,𝑤𝑟,𝑘 , wherein𝑤𝑟,𝑖 is used

to indicate the that 𝑖th piece of the polyhedral function is larger

than the others at x𝑟 :

Ψ1 [𝐶,w𝑟 ] :


∑
𝑖∈[𝑘 ] 𝑤𝑟,𝑖 ≥ 1∧
𝑖∈[𝑘 ] 𝑤𝑟,𝑖 = 1 ⇒ {∧𝑖′∈[𝑘 ] c⊤𝑖 x𝑟 ≥ c⊤

𝑖′x𝑟 }∧
𝑖∈[𝑘 ] 𝑤𝑟,𝑖 = 1 ⇒ {c⊤

𝑖
x𝑟 ≥ 𝛼 ∥x𝑟 ∥}

Next, consider each mode 𝑞 ∈ 𝑄 such that x𝑟 ∈ I(𝑞). Let D(𝑞) =
{(𝐴𝑞,1, b𝑞,1), . . . , (𝐴𝑞,𝑙 , b𝑞,𝑙 )}. We encode that at least one dynamic

causes a strict decrease of a maximal piece at x𝑟 :

Ψ2 [𝐶,w𝑟 ] :
∨
𝑗∈[𝑙 ]

∧
𝑖∈[𝑘 ]

𝑤𝑟,𝑖 = 1 ⇒ c⊤𝑖 (𝐴𝑞,𝑗x𝑟 + b𝑞,𝑗 ) ≤ −𝛼 ∥x𝑟 ∥ .

We add new binary variables 𝑠𝑟,1, . . . , 𝑠𝑟,𝑙 , wherein 𝑠𝑟, 𝑗 indicates the

dynamics (𝐴𝑞,𝑗 , b𝑞,𝑗 ) are being used. This gives

Ψ2 [𝐶,w𝑟 , s𝑟 ] :


∑
𝑗∈[𝑙 ] 𝑠𝑟, 𝑗 = 1∧
𝑗∈[𝑙 ]

∧
𝑖∈[𝑘 ] (𝑠𝑟,𝑗 = 1 ∧𝑤𝑟,𝑖 = 1) ⇒

c⊤
𝑖
(𝐴𝑞,𝑗x𝑟 + b𝑞,𝑗 ) ≤ −𝛼 ∥x𝑟 ∥

We can use the “big-M” trick to write this equivalently as
∑

𝑗∈[𝑙 ] 𝑠𝑟,𝑗 = 1∧
𝑗∈[𝑙 ]

∧
𝑖∈[𝑘 ]

c⊤
𝑖
(𝐴𝑞,𝑗x𝑟 + b𝑞,𝑗 ) ≤ −𝛼 ∥x𝑟 ∥ +𝑀 (2 − 𝑠𝑟, 𝑗 −𝑤𝑟,𝑖 ) .

The value of𝑀 is estimated as 𝛼 ∥x𝑟 ∥ +𝐾 max𝑗∈[𝑙 ] ∥𝐴𝑞,𝑗x𝑟 + b𝑞,𝑗 ∥1.
The blocking constraint is Ψblock : Ψ1 [𝐶,w𝑟 ] ∧ Ψ2 [𝐶,w𝑟 , s𝑟 ].

Lemma 4.1. The candidate coefficients at the 𝑟 th iteration 𝐶𝑟 :〈
c𝑟,1, . . . , c𝑟,𝑘

〉
do not satisfy Ψblock (x𝑟 ).

Proof. Note that thewitness x𝑟 must either demonstrate𝑉 (x𝑟 ) ≤
0 (violation of positive semidefiniteness) or 𝑉 fails to satisfy (2) at

x = x𝑟 . Ψ1 [𝐶] enforces that any satisfying solution 𝐶 must yield

a function 𝑉𝐶 (x𝑟 ) ≥ 𝛼 ∥x𝑟 ∥. Clearly 𝐶 = 𝐶𝑟 would violate Ψ1 and
hence Ψblock in this case.

Otherwise, x𝑟 violates the derivative condition (2). However

Ψ2 [𝐶] posits that any solution 𝐶 must satisfy the derivative condi-

tion and x = x𝑟 . In this case, 𝐶𝑟 violates Ψ2 and hence Ψblock. □

The direct approach starts with an initial formula Ψ0 [𝐶] and at

each iteration, it constructs Ψ𝑟+1 = Ψ𝑟 ∧ Ψblock (x𝑟 ) corresponding
to the witness x𝑟 obtained at the 𝑟 th iteration. This approach can be

implemented simply as an alternation between finding candidates

by checking Ψ𝑟 for satisfiability and verifying the candidate, each

of which can be expressed as a series of MILPs. After 𝑟 iterations,

the MILP for generating candidates will have 𝑂 (𝑟 (𝑘 +𝑚𝑙)) binary
variables (where |𝑄 | = 𝑚), 𝑘𝑛 real-valued variables and 𝑂 (𝑟𝑘2 +
𝑟𝑚𝑙) constraints. The time for finding feasibility is bounded by

𝑂 (2𝑟 (𝑘+𝑚𝑙 )poly(𝑘𝑛, 𝑟𝑘2 + 𝑟𝑚𝑙)), wherein poly(𝑑, 𝑒) represents an
upper bound on the time taken to find a feasible solution for a linear

program with 𝑑 variables and 𝑒 constraints.

However, there is no upper bound on the number of iterations 𝑟

since the process does not have a known convergence guarantee.

Example 4.2. We ran the direct counterexample-driven search

procedure on the SACS Π from Example 2.3 with 𝑘 = 6, while

setting the bounds 𝐾 = 10.0. The approach yields the CLF below

after 97 iterations:

𝑉 (𝑥1, 𝑥2) = max


10𝑥1 − 1.53𝑥2, 8.29𝑥1 + 1.57𝑥2,

−8.29𝑥1 − 1.57𝑥2, 10𝑥1 + 1.86𝑥2,

−9.23𝑥1 + 10𝑥2, −9.66𝑥1 + 1.61𝑥2 .
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Figure 2: Vector field and trajectories of the closed-loop sys-
tem shown for the CLF 𝑉 (𝑥1, 𝑥2) from Example 4.2.

The computation time was 5 seconds on a Macbook laptop with

Apple M3 processor and 24GB RAM. Figure 2 shows the vector field

and closed-loop trajectories for a feedback law 𝜎 constructed from

this CLF.

4.2 Tree-Based Search Algorithm
We now describe a different approach that maintains Ψ𝑟 implicitly

as a tree whose nodes are labeled with a set of linear inequalities

over𝐶 . At the start the tree consists of a single root node N0 which

is labeled with a polyhedron P0 whose constraints are given by

Ψ0 :
∧

𝑖∈[𝑘 ] −𝐾1 ≤ c𝑖 ≤ 𝐾1. In practice, we also add a “symmetry

breaking” constraint wherein we choose a seed state x◦ ≠ 0 and

enforce that c⊤
1
x◦ ≥ 𝛼 ∥x◦∥. At iteration 𝑟 , we proceed as follows:

(1) Choose a previously unexplored leaf node N𝑟 and mark it

as explored.

• If no such node remains in the tree, we exit and declare

that no polyhedral CLF could be found.

(2) Select a feasible point 𝐶𝑟 that satisfies P𝑟 .
• If no such point can be found, then we go back to the

previous step.

(3) Verify 𝐶𝑟 , i.e., try to find a witness.

• If verification succeeds (i.e., no witness could be found),

we terminate having successfully found a CLF 𝐶𝑟 .

(4) Otherwise, we have a witness x𝑟 . We use this witness to

refine the node N𝑟 and add child nodes to N𝑟 in the tree,

each associated with a new polyhedron. The refinement

process is discussed in detail below.

We define the refinement process for a node N𝑟 with polyhedron

P𝑟 from a witness x𝑟 . Let 𝑄̂ = {𝑞 ∈ 𝑄 | x𝑟 ∈ I(𝑞)} denote the set
of active modes at x𝑟 . We consider all maps of the form 𝜇 : 𝑄̂ → [𝑙]
that assigns the index of a dynamic to each active mode. There are

𝑙𝑚𝑟
such maps (where |𝑄̂ | =𝑚𝑟 ).

We create a child node of the form N𝑟,𝜇,𝑖 for each map 𝜇 : 𝑄̂ →
[𝑙] and each 𝑖 ∈ [𝑘]. The rationale is that in nodeN𝑟,𝜇,𝑖 , we assign to

(𝑞, x𝑟 ) the dynamics (𝐴𝑞,𝜇 (𝑞) , b𝑞,𝜇 (𝑞) ) and that the 𝑖th piece of𝑉 is

maximal at x𝑟 . Therefore, we have 𝑘×𝑙𝑚𝑟
children. The polyhedron

P𝑟,𝜇,𝑖 is given as a conjunction P𝑟 ∧ 𝑃𝑟,𝜇,𝑖 wherein 𝑃𝑟,𝜇,𝑖 is given

by 
∧

𝑖′∈[𝑘 ]\{𝑖 } c⊤
𝑖
x𝑟 ≥ c⊤

𝑖′x𝑟 + 𝛼 ∥x𝑟 ∥,
c⊤
𝑖
x ≥ 𝛼 ∥x𝑟 ∥,∧
𝑞∈𝑄̂ c⊤

𝑖
(𝐴𝑞,𝜇 (𝑞)x𝑟 + b𝑞,𝜇 (𝑞) ) ≤ −𝛼 ∥x𝑟 ∥.

(10)

In other words, 𝑃𝑟,𝜇,𝑖 forces the 𝑖
th
piece c⊤

𝑖
x to be “robustly” greater

than the other pieces, be robustly positive and for each mode 𝑞,

the dynamic 𝜇 (𝑞) ∈ [𝑙] is used to enforce the decrease condition

also in a robust manner. Here, by “robustness”, we mean that strict

inequalities of the form 𝑓 (x) > 0 are replaced by 𝑓 (x) ≥ 𝛼 ∥x𝑟 ∥.

Lemma 4.3. The candidate 𝐶𝑟 :

〈
c𝑟,1, . . . , c𝑟,𝑘

〉
does not belong to

the polyhedron 𝑃𝑟,𝜇,𝑖 for all 𝛼 > 0.

Proof. Note that 𝐶𝑟 fails to be verified as a CLF. Let 𝑉𝑟 be the

corresponding CLF. Therefore (case-a) it fails to be positive definite

at x𝑟 , or (case-b) it fails the decrease condition at x𝑟 . In this proof,

we simply write 𝑃 = 𝑃𝑟,𝜇,𝑖 .

Consider (case-a): It holds that 𝑉𝑟 (x𝑟 ) ≤ 0. However, 𝑃 ensures

that for any solution 𝐶 that belongs to it, 𝑉𝐶 (x𝑟 ) ≥ 𝛼 ∥x𝑟 ∥. Hence,
𝐶𝑟 does not belong to 𝑃 . Therefore, the result follows for this case.

Consider (case-b): Since𝑉𝑟 fails the decrease condition at x = x𝑟 ,
there is a mode 𝑞 such that x𝑟 ∈ I(𝑞) and for all 𝑗 ∈ [𝑙], there is a
piece 𝑖 ∈ [𝑘] such that c⊤

𝑖
x𝑟 = 𝑉𝑟 (x𝑟 ) and c⊤

𝑖
(𝐴𝑞,𝑗x𝑟 + b𝑞,𝑗 ) ≥ 0.

Since x𝑟 ∈ I(𝑞), we have that 𝑞 ∈ 𝑄̂ . Let 𝜇 (𝑞) = 𝑗 . Let 𝑖′ ∈ [𝑘]
be the piece that fails the decrease condition corresponding to 𝑗 ,

i.e., c⊤
𝑖′ (𝐴𝑞,𝑗x𝑟 + b𝑞,𝑗 ) ≥ 0. If 𝑖 = 𝑖′, then it follows directly that 𝐶𝑟

does not belong to 𝑃 . This is because 𝑃 includes the inequality :

c⊤
𝑖
(𝐴𝑞,𝑗x𝑟 + b𝑞,𝑗 ) ≤ −𝛼 ∥x𝑟 ∥ which directly contradicts.

Otherwise, if 𝑖 ≠ 𝑖′, then for any solution 𝐶 that satisfies 𝑃 , it

holds that c⊤
𝑖
x𝑟 ≥ c⊤

𝑖′x𝑟 +𝛼 ∥x𝑟 ∥ However, for𝐶 = 𝐶𝑟 , we note that

c⊤
𝑟,𝑖′x𝑟 ≥ c⊤

𝑟,𝑖
x𝑟 since we assumed that𝑉𝑟 (x𝑟 ) = c⊤

𝑟,𝑖′x𝑟 . This shows
that 𝐶𝑟 does not belong to 𝑃 . □

Termination of Iterations: Thus, the node N𝑟 has children of the

form N𝑟,𝜇,𝑖 , each with an associated polyhedron P𝑟,𝜇,𝑖 . We will now

prove convergence for the special case when the affine term in each

mode is zero, i.e., for each 𝑞 ∈ 𝑄 and 𝑗 ∈ [𝑙], b𝑞,𝑗 = 0. Therefore,
each dynamics are of the form ¤x = 𝐴𝑞,𝑗x. Recall that for a matrix

𝐴, its spectral norm ∥𝐴∥ is its largest singular value, also defined
as maxx≠0

∥𝐴x∥
∥𝑥 ∥ .

Let 𝑀 = max𝑞∈𝑄 max𝑗∈[𝑙 ] ∥𝐴𝑞,𝑗 ∥ be the largest spectral norm
of any matrix. Let 𝐿 > max(2, 𝑀). We establish the following key

lemma that shows that not only does 𝐶𝑟 not belong to 𝑃𝑟,𝜇,𝑖 , all

solutions within a distance of
𝛼
𝐿
are excluded as well.

Lemma 4.4. Let 𝐶 : ⟨c1, . . . , c𝑘 ⟩ be such that max𝑖′∈[𝑘 ] , ∥c𝑖′ −
c(𝑟 )
𝑖′ ∥ ≤ 𝛼

𝐿
. It holds that 𝐶 does not belong to 𝑃𝑟,𝜇,𝑖 for any 𝜇, 𝑖 .

Proof. We will show that if 𝐶 satisfies the constraints of 𝑃𝑟,𝜇,𝑖 ,

then 𝐶𝑟 satisfies the same constraints but with 𝛼 replaced by a

smaller value 𝛼 ′ > 0. However, Lemma 4.3 can be applied to rule

out this possibility.

Let us assume, for the sake of a contradiction, that𝐶 satisfies the

constraints of 𝑃𝑟,𝜇,𝑖 defined in (10). For all (𝑖, 𝑖′) ∈ [𝑘]2 with 𝑖 ≠ 𝑖′,
we have

(c⊤𝑟,𝑖 − c⊤𝑖′,𝑟 )x𝑟 = (c⊤𝑖 − c⊤𝑖′ )x𝑟 + (c⊤𝑟,𝑖 − c⊤𝑖 )x𝑟 − (c⊤𝑟,𝑖′ − c⊤𝑖′ )x𝑟
≥ 𝛼 ∥x𝑟 ∥ − ∥c𝑟,𝑖 − c𝑖 ∥∥x𝑟 ∥ − ∥c𝑟,𝑖′ − c𝑖′ ∥∥x𝑟 ∥

≥ 𝛼 ∥x𝑟 ∥ − 2

𝛼

𝐿
∥x𝑟 ∥

≥
(
1 − 2

𝐿

)
𝛼 ∥x𝑟 ∥

A similar argument establishes that c⊤
𝑟,𝑖
x𝑟 ≥

(
1 − 1

𝐿

)
𝛼 ∥x𝑟 ∥.
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Figure 3: Vector field and trajectories of the closed loop sys-
tem shown for the CLF 𝑉 (𝑥1, 𝑥2) from Example 4.6.

Finally, let𝑞 ∈ 𝑄 and denote 𝑗 = 𝜇 (𝑞).We have that c⊤
𝑖
(𝐴𝑞,𝑗x𝑟 ) ≤

−𝛼 ∥x𝑟 ∥ since we assumed b𝑞,𝑗 = 0. Hence,

c⊤𝑟,𝑖 (𝐴𝑞,𝑗x𝑟 ) = c⊤𝑖 𝐴𝑞,𝑗x𝑟 + (c⊤𝑟,𝑖 − c⊤𝑖 )𝐴𝑞,𝑗x𝑟
≤ −𝛼 ∥x𝑟 ∥ + ∥c𝑟,𝑖 − c𝑖 ∥∥𝐴𝑞,𝑗 ∥∥x𝑟 ∥

≤ −𝛼 ∥x𝑟 ∥ +
𝛼

𝐿
𝑀 ∥x𝑟 ∥

≤ −
(
1 − 𝑀

𝐿

)
𝛼 ∥x𝑟 ∥.

Since 𝐿 > max(2, 𝑀), we have
2

𝐿
< 1 and

𝑀
𝐿

< 1. Hence, we

can choose 𝛼 ′ > 0 such that 𝛼 ′ ≤ min

{(
1 − 2

𝐿

)
𝛼,

(
1 − 𝑀

𝐿

)
𝛼

}
. It

follows that 𝐶𝑟 satisfies the constraints of 𝑃𝑟,𝜇,𝑖 with 𝛼 replaced by

𝛼 ′. Applying Lemma 4.3 yields the contradiction. □

Lemma 4.4 shows that 𝑃𝑟,𝜇,𝑖 excludes𝐶𝑟 and a ball of radius 𝛼/𝐿
around it for some constant 𝐿 > 0. Therefore, the depth of the tree

cannot exceed pack(𝜓0, 𝛼/2𝐿)𝑘 , wherein𝜓0 : −𝐾1 ≤ c ≤ 𝐾1, and
pack(𝑃, 𝛿) denotes the maximum number of balls of size 𝛿 > 0 that

can fit inside 𝑃 .

Theorem 4.5. The tree-based search algorithm terminates pro-
vided the dynamics in each mode all have b𝑞,𝑗 = 0.

Our future work will consider removing the assumption b𝑞,𝑗 = 0.
It requires modifying our choice of the witness x𝑟 to establish

bounds on its norm.

Bounds using a cutting-plane argument: In practice, the bounds

provided by the closeness of distances are too large to be useful. We

may obtain termination by choosing𝐶𝑟 to be a suitable center of the

polyhedron P𝑟 and cutting off our search whenever the volume of

P𝑟 is too small. Using well-known ideas from cutting plane methods,

we can bound the depth of the tree to be a polynomial in 𝑛, 𝑘 . We

refer the reader to Berger et al. [6] for this approach.

Example 4.6. Returning to Example 2.3, we use the tree-based

search algorithm to find a CLF with 6 pieces. The search tree was

explored to a depth of 7 and discovered the CLF

𝑉 (𝑥1, 𝑥2) = max


9.86𝑥1 + 9.74𝑥2, −1.9𝑥1 + 8.19𝑥2,

9.34𝑥1 + 9.86𝑥2, 9.87𝑥1 + 1.19𝑥2,

−0.95𝑥1 − 0.34𝑥2, −5.96𝑥1 + 4.4𝑥2

The overall search required 13.6 seconds. The vector field for the

feedback law and the closed loop trajectories are shown in Figure 3.

5 Implementation and Empirical Evaluation
We first describe our implementation of the ideas in this paper.

Our implementation uses the Julia programming language with

the JuMP optimization library interface to the Gurobi optimiza-

tion package (obtained through an academic license). We imple-

mented two algorithms for searching for CLFs given a SACS: (a)

the direct approach using MILP solvers; and (b) the tree search

method. For the latter, we implemented two variants: one approach

that systematically explored the tree up to some fixed depth using

depth-first or breadth-first search and another approach based on

randomized search that will be described below. We report on the

performance on a few interesting benchmark systems and a set

of mini-benchmarks synthesized by first fixing a quadratic CLF

and designing the dynamics so that the CLF holds true. Note that

despite having a quadratic CLF, our approach is not necessarily

guaranteed to find a polyhedral CLF.

Implementation of Tree Search: The tree search method requires

the exploration of a large search tree, wherein each node in the tree

can have 𝑂 (𝑘 × 𝑙 |𝑄 | ) children. We have implemented three explo-

ration strategies including depth-first exploration (DFS), breadth-

first exploration (BFS) and a randomized strategy (RS). Description

of the BFS and DFS strategies are available from an elementary

algorithms textbook [11].

We will provide a brief description of the randomized search

strategy. In this strategy, we are given a depth cutoff 𝐷 . We explore

the tree starting from the root and at each node, we pick a branch

uniformly at random and explore the child node along this branch.

When the depth cutoff 𝐷 is reached without obtaining a solution,

we backtrack to one of the ancestors of the current node, chosen

uniformly at random from the ancestors. We continue the search

from the chosen ancestor. Randomized search continues until some

a priori fixed number of nodes 𝑁 have been explored, and/or a

timeout 𝑇 has been exceeded.

However, the randomized search approach requires an important

modification to be effective. Rather than pick a child node at random

at each step, we pick from among all the children nodes𝑁𝑟,𝜇,𝑖 whose

polyhedron 𝑃𝑟,𝜇,𝑖 is non-empty.

Implementation “Tricks”: We implemented several tricks to speedup

the overall search. Here we describe the most significant ones: (a)

avoiding the need for non-negativity checks by enforcing that𝑉 (x)
is positive definite by construction; and (b) breaking symmetry

through a seed point.

Enforcing PSD:. First, we consider CLFs with 𝑘 + 2𝑛 pieces of the

form 𝑉 (x) = max(c⊤
1
x, . . . , c⊤

𝑘
x, x1,−x1, . . . , x𝑛,−x𝑛). These are

automatically guaranteed to be positive definite: 𝑉 (x) > 0 for all

x ≠ 0, since𝑉 (x) ≥ ∥x∥∞. At the cost of increasing the complexity

of the search, it avoids the need to check at each step that 𝑉 (x) is
positive definite. In our experience, we found that this trick did not

benefit the “direct approach” of section 4.1 in terms of being able to

find CLFs for new problems, but had a marked benefit for the tree

search method of section 4.2. Therefore, we implement this for the

tree search method but not for the direct approach.

Symmetry Breaking: Next, we note that for any CLF 𝑉 (x) =

max(c⊤
1
x, . . . , c⊤

𝑘
x), and for any permutation 𝜋 : [𝑘] → [𝑘], the
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function 𝑉 (x) = max(c⊤
𝜋 (1)x, . . . , c

⊤
𝜋 (𝑘 )x) is also a solution that

represents the same function. A symmetry breaking constraint tries

to force the search to discard such equivalent representations of

the same function. Let x0 ≠ 0 be an arbitrary “seed” point in the

state-space of the system. We add the constraints c⊤
1
x0 ≥ 𝛼 ∥x0∥

for the fixed robustness parameter 𝛼 > 0 (discussed previously).

Furthermore, we impose an ordering

c⊤
1
x0 ≥ c⊤

2
x0 · · · ≥ c⊤

𝑘
x0 .

Note that such an ordering does not lose any solutions since the

coefficients (c1, . . . , c𝑘 ) for any CLF can be made to satisfy it upto a

permutation of the indices 1, . . . , 𝑘 . In our experience, the addition

of such a seed point benefits both searchmethods: the direct method

(section 4.1) and the tree-search approaches 4.2. We set the seed

point to x0 = (1, . . . , 1) for all our experiements.

5.1 Empirical Evaluation
We will first present empirical evaluation on some ad-hoc and

simple 2D/3D examples.

Simple 2D Example: Consider a SACSwith a single mode𝑄 = {𝑞}
over R2

. We have I(𝑞) = R2
and D(𝑞) has four linear but unstable

dynamics of the form ¤x = 𝐴𝑖x, wherein

𝐴1 =

(
−0.2 1

1 0.2

)
𝐴2 =

(
0.5 −1.5
0.2 −0.1

)
𝐴3 =

(
0.1 −0.1
−0.1 −0.1

)
𝐴4 =

(
−1.0 −0.1
−1.0 −0.1

)
Can we stablize this system through state-based switching feedback

law? As it turns out, yes we can! The direct approach synthesizes a

polyhedral CLF with 6 pieces in 2.1 seconds of computation time

after examining 126 witnesses. The tree based approach succeeds

in finding a different CLF with 6 pieces by searching the tree up to

depth 7 in 1.8 seconds of computation time. For both approaches,

we have considered 𝐾 = 10.0. Figure 4 shows the resulting CLF

along with closed loop trajectories generated by two feedback laws:

(middle) the feedback law derived in Section 2.2 against (right)

the minimum index feedback law shown in Eq. (3). This provides

clear evidence that a careful choice a feedback function can avoid

instabilities arising from the presence of rapid mode changes and

numerical solver time-steps.

2D System with 4 Modes: Next we analyze a system taken from

Berger et al. [6] wherein a polyhedral Lyapunov function is con-

structed. We add extra dynamics to each mode since our goal is to

synthesize a feedback controller, changing the problem to one of

controlling a system rather than verifying a given feedback law for

stability. Each mode has 4 possible dynamics to choose from. The

details of the model are provided in the Appendix. A CLF with 6

pieces and 𝐾 = 10.0 was constructed in 14 seconds of computation

time after examining 246 witnesses. Figure 5 shows the results.

A 3D Example: We formulated a SACS with 4 modes along the

lines of our running example 2.3 but with 3 state variables and 4

modes. Each mode has 3 dynamics to choose from. The direct search

approach generated a CLF with 𝑘 = 13 pieces and 𝐾 = 10.0 that

was generated within 34.5 seconds after examining 144 witnesses.

Table 1: Performance of the direct approach on the micro-
benchmarks. Each row represents the performance over 20
benchmark instances. 𝑘: number of pieces of the CLF (not
forced to be PSD), #sol: number of instances that were solved
within the timeout of 1 hour, # wit: number of witnesses ex-
amined by successful runs, ST: time taken for the successful
runs (seconds).

𝑛 𝑘 # sol. # wit. (avg./[min., max.]) ST (avg./ [min., max.])

2 5 20 8.2/[3.0, 34] 17.0/[3.0,127.8]

3 5 0 - -

3 10 0 - -

3 15 0 - -

4 10 0 - -

4 15 0 - -

The generated CLF is also shown in the appendix as part of the

supplementary materials.

Failing Examples: Finally, we attempted to find CLFs 6 other sys-

tems with 𝑛 ∈ {3, 4} state variables that were randomly generated

by partitioning the space R𝑛
into multiple modes and assigning sta-

ble dynamics to at least one of the modes. However, nothing in the

construction of these systems guarantees that they are stabilizable

or for that matter stabilizable using a polyhedral CLF.

5.2 Performance on Micro-benchmarks
We will now systematically generate benchmarks that are known

to be stabilizable through a quadratic CLF. Each benchmark has

a single mode 𝑄 = {𝑞} with I(𝑞) = R𝑛
and 𝑙 = 2

𝑟
dynamics

{(𝐴1, 0), . . . , (𝐴𝑙 , 0)}. We ensure that each 𝐴 𝑗 is not Hurwitz. The

matrices 𝐴 𝑗 are generated as follows:

(1) Generate a random positive definite 𝑛 × 𝑛 matrix 𝑄 which

yields a candidate CLF 𝑉 (x) = x⊤𝑄x.
(2) Generate 𝑟 random linear expressions a⊤

1
x, . . . , a⊤𝑟 x.

(3) For each of the 2
𝑟
regions defined by the cone𝐶𝑠 :

∧𝑟
𝑖=1 𝑠𝑖a

⊤
𝑖
x ≥

0, wherein 𝑠𝑖 ∈ {−1, 1},
(a) Find a 𝑛 ×𝑛 matrix 𝐴 such that x ∈ 𝐶𝑠 =⇒ x⊤ (𝐴⊤𝑄 +
𝑄𝐴)x ≤ −𝜖 ∥x∥2 for a fixed constant 𝜖 > 0 by encoding

the implication as a sum-of-squares problem [22, 27].

(b) We constrain each entry of 𝐴 to lie in the range [−𝛾,𝛾]
and set the objective to be tr(𝑅 ∗ 𝐴) for a random 𝑛 × 𝑛
matrix 𝐴.

(c) If the matrix 𝐴 is Hurwitz, we reject the matrix 𝐴 and

retry using a different objective function. Otherwise, we

add matrix 𝐴 to the set of matrices for the mode 𝑞.

We generated 20micro-benchmark examples eachwith𝑛 = 2, 3, 4

and 𝑙 = 4.

Direct Approach: We first ran the direct approach of Section 4.1

on our microbenchmarks. Table 1 reports on the performance over

benchmarks ranging from 𝑛 ∈ {2, 3, 4}. We note that all the two

dimensional examples were solved by the direct approach within

130 seconds with most of them taking less than 20 seconds. Unfor-

tunately, the direct approach fails to solve any of the benchmarks

beyond two dimensions.
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Figure 4: The polyhedral CLF (left), (mid) closed loop trajectories generated using the feedback law described in Section 2.2
contrasted with (right) the closed loop trajectories generated using the “minimum index” feedback function (Eq. (3)).

Table 2: Performance of the randomized search approach on
themicro-benchmarks. Each row represents the performance
over 20 benchmark instances. 𝑘 : number of pieces of the CLF
(forced to be PSD by adding 2𝑛 extra pieces), #sol: number
of instances that were solved within the timeout of 𝑇 = 40

minutes and limit on number of nodes 𝑁 = 15, 000, D: depth
at which solution was found in the tree (avg/[min, max]), N:
number of tree nodes examined before solution was found
(avg/[min,max]) and ST: time taken for the successful runs
(seconds, avg./[min,max]).

𝑛 𝑘 + 2𝑛 # sol. D N ST

2 5 + 4 20 1.4 /[0,6] 26.6/[1,235] 19.4/[6.4,81.2]

3 10 + 6 17 9.25/[4,15] 1764/[21, 10606] 237.5/[2.9, 1678]

4 10 + 8 0 - - -

4 15 + 8 0 - - -

Figure 5: The polyhedral CLF (left) and closed loop trajecto-
ries generated using the feedback lawdescribed in Section 2.2.

Tree Search: We experimented with DFS and BFS-based tree

search and found that randomized search dominates both approach

in terms of its performance on the benchmarks for 2 and 3 dimen-

sions. Therefore, we will omit the BFS/DFS results. Despite the fact

that the search is random, it can consistently discover CLFs for

these benchmarks. For our experiments, we initialized the pseudo-

random number generator using a fixed seed in order to ensure

reproducibility. Table 2 reports the results over the randomized tree

search method. Interestingly, the approach rapidly finds CLFs for

all the 2D examples and most of the 3D examples. The running time

is comparable to that of the direct approach. However, we note that

for 𝑛 = 4, setting 𝑘 = 10 + 8 or 𝑘 = 15 + 8 is unable to yield any

CLFs for a time out 𝑇 = 2400 seconds, and a maximum limit on the

number of nodes 𝑁 = 15, 000.

6 Conclusions
To conclude, we have demonstrated an approach that uses poly-

hedral CLFs to stabilize switched affine control systems. The key

novelty lies in the characterization of feedback for polyhedral CLFs,

the systematic search for a CLF using MILP solvers and demonstra-

tion over some numerical examples. The approach has the distinct

advantage of not requiring a demonstrator unlike some previous

approaches. At the same time, however, it is computationally expen-

sive both in theory and practice. In the future, we hope to make our

algorithm faster by combining it with ideas from machine learning

that would enable us to use to rapidly learn candidate CLFs while

using verification and counterexample generation to drive iterative

exploration. We are also interested in extensions of our approach

to nonlinear hybrid systems.
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