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Abstract

The goal of systems and control theory is to study natural phenomena (e.g.,
biological processes), technological devices (e.g., robots) or combinations of
both (e.g., medical devices like pacemakers, etc.), and to design strategies to
control them so that they behave in some intended way. For that, we rely
on mathematical models describing the evolution of these phenomena/devices
(called systems) and their reaction to external inputs. The challenge with
modern systems is that these systems are becoming immensely complex. We
think for instance to ”cyber-physical systems”, which result from the interac-
tion of physical components and computerized components (e.g., self-driving
cars where the dynamics of the car is governed by embedded or decentralized
micro-controllers controlling it). These systems have become pervasive in our
technological world, but they have also many non-standard characteristics (e.g.,
hybrid behavior, networked components), which preclude the use of classical
control techniques and thus call for the development of new mathematical and
algorithmic tools for their analysis and control.

In this thesis, we study these two fundamental and challenging aspects of
modern control systems (hybrid behavior and networked systems). For that,
we leverage several tools from classical control theory and generalize them to
switched or hybrid systems. In particular, we focus on the property that the
dynamics of these systems can often be divided into several components, which
grow at different speeds. This property, called ”dominance”, allows to study
the convergence properties of these systems to low-dimensional attractors (with
application for instance in population dynamics where the stability of the pop-
ulation composition amounts to the convergence of the system to a subspace
of dimension one); or to study the stability of complex attractors for these
systems (with application for instance in physics to study chaotic behaviors
of electrical or meteorological systems). It is also highly relevant in networked
control because dynamics that grow at different speeds generally do not require
the same information flow (to be sent across the network) to be controlled sat-
isfactorily. We provide both theoretical and algorithmic frameworks for the
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study of these questions for switched and networked systems, and we demon-
strate their applicability on various numerical examples and concrete modern
control problems.
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Preamble

Motivation: analysis and control of complex systems

A system is an entity or a group of interdependent entities that act according
to a set of rules and are affected by their environment and/or external stimuli.
Systems are ubiquitous in our technological world and in nature: for instance,

• in biology: populations of bacteria, plants, animals, etc., evolve accord-
ing to some rules and are influenced by the environment, such as food
supplies, climate conditions, etc.;

• in social science: the opinion or attitude of a social group can be seen
as a system that evolves according to sociological and behavioral “rules”,
and is influenced by external stimuli, such as media, interactions with
external people, etc.;

• in technologies: robots are devices including mechanical, electronic and
computerized components that act as a whole governed by physical, elec-
trical and algorithmic rules, and they are influenced by their environment
and react to external inputs;

The goal of systems and control theory is to understand how these systems
are working (system analysis), or to design control strategies, that is, defining
a sequence of inputs for the system, so that the system acts in some predefined
way (control design). To illustrate this, let us take the example of a platoon
of self-driving cars. In most situations, it is important that the cars maintain
a minimal safety distance between them; see also Figure 1 for an illustration.
A control strategy to do that could be:

“if the distance with the car in front is below some threshold: brake
with maximal strength; if the distance with the car behind is below
some threshold: put the acceleration at the maximum; otherwise:
do nothing (except maintaining constant speed)”.
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2 Preamble

However, this strategy is probably not the best one (in general such “bang-
bang” strategies produce oscillations that rapidly become out of control). An-
other strategy could be to set the acceleration or braking intensity proportional
to the gap between the actual and the ideal distance between cars. Would this
be a good strategy to solve the problem? Mathematicians, scientists and en-
gineers have been facing similar questions for ages (it goes back for instance
to the work of James Watt on the regulation of steam machines). The best
way we have found so far to answer these questions rigorously is to build a
mathematical model of the system and to use mathematical tools to study
it.

Figure 1: Platoon of self-
driving cars (image adapted
from Hu et al., 2020).

Systems and control engineers thus study mathematical models of systems
to derive properties of the system or to design control strategies so that the
system acts in some specified way. These models generally comprise ordinary
differential equations to model the evolution of continuous variables (the
velocity of the car is an example of continuous variable), switching rules to
model the transitions of the system between different discrete states (the gear
position of the car is an example of discrete variable), or stochastic processes
to account for random phenomenons and unknown disturbances (the “patinage”
of the car wheels is an example of random phenomenon).

Cyber-physical systems: a major rising challenge in modern control

Modern control systems are a big challenge for control theorists because these
systems are becoming increasingly complex. We think for instance to cyber-
physical systems (CPS), which are systems that include both physical and
computerized components, with strong interactions between the two types of
components. Self-driving cars are a good illustrative example of CPS: the
physics of the system (velocity, acceleration, etc.) interacts with complex al-
gorithms and software components implemented in decentralized or embedded
micro-controllers.
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Other examples of CPS include: Wireless Control Networks (where the
controlling devices, which often consist of embedded and decentralized compo-
nents, communicate through error-prone, physically constrained wireless chan-
nels), Smart Energy Grids (where local devices that produce or consume elec-
tricity have to computationally optimize the global behavior of the grid, taking
into account physical and human constraints), autonomous robots, smart med-
ical devices, and many others; see, e.g., Kim and Kumar (2012), Broy et al.
(2012), Alur (2015), Lee and Seshia (2017) and Mitra (2021).

Systems including physical and computerized elements are not new, but it
is only recently that it has become urgent to reason about these systems as a
whole and not only as a collection of physical or cyber subsystems. To illus-
trate this, let us take the example of self-driving cars: for the control of these
systems, one cannot dissociate the questions of control and communication, as
issues in communication with the other cars will have a direct impact on the
control of the car, and reversely the controlling devices of the car may trigger
communication with the other cars when some conditions are met.

CPS have many non-standard characteristics, which preclude the use of
classical control techniques; see, e.g., Figure 2 for some of these characteristics.
Of particular importance,

• they have a hybrid behavior, which results from the interaction of
discrete phenomenons (the “cyber” part) and continuous phenomenons
(the “physical” part);

• they are subject to unknown or even adversarial disturbances, due to
the presence of stochasticity and humans in the loop;

• they often involve spatially distributed components that communicate
via a shared communication network (networked systems);

• they are subject to physical and resource constraints.

As a consequence, CPS are in general very hard to analyze, control, and design.
Moreover, CPS are often involved in safety-critical applications (self-driving
cars, medical devices, energy grids, etc.).

Several major advances in the understanding and design of these systems
have been made in the last decades, allowing to provide workable solutions
to a wide range of practical problems involving CPS, and contributing to the
phenomenal expansion of CPS in the last years (coined as the cyber-physical
revolution); see, e.g., Alur (2015), Lee and Seshia (2017) and Mitra (2021).
This entailed the development of new techniques that are as interdisciplinary
as the systems that they seek to control (namely, by combining tools from
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Figure 2: Some challenging aspects of CPS.

systems and control theory, computer science, information theory, physics, pure
mathematics, etc.). However, despite the significant progress, CPS continue to
be extremely challenging in terms of analysis and control, thereby calling for
continued improvements and developments of techniques for their study and
design.

Objectives and methodology: switched systems, worst-case analysis
and quantization

The goal of this thesis is to provide mathematical and algorithmic tools for
the analysis and control of complex systems, like cyber-physical systems.

Therefore, we consider several approaches to handle some of the challenging
aspects of these systems.

For instance, we give a great deal of attention to switched systems, which
are systems described by a finite set of “continuous” modes among which the
system can switch over time. These systems thus combine continuous dynam-
ics with discrete switching, thereby providing a paradigmatic class of hybrid
systems. In particular, they appear naturally in a wide range of applications
involving CPS, such as computer networks, digital power converters, viral dy-
namics, etc.; see, e.g., van der Schaft and Schumacher (2000), Liberzon (2003)
and Jungers (2009).

Secondly, to study the problems of unknown or adversarial disturbances and
safety requirements, we take the approach of worst-case analysis, whose goal
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is to provide formal guarantees that the system will satisfy the specifications
in all situations (that is, it will work even in the “worst case”). In the case
of switched systems, this generally amounts to derive properties of the system
that are satisfied for all admissible sequences of modes of the system (that
is, whatever the way the system is switching among its different continuous
modes).

Finally, to study the challenges posed by networked systems and resource
limitations, we focus on the quantized control of these systems, whose goal is
to study the impact of quantization and limited information for the observation
and control of these systems. Quantization is the process of representing con-
tinuous variables with quantities from a finite set, thereby introducing round-off
or quantization errors. This occurs for instance when such variables are mea-
sured with digital sensors or are converted into finite-bits numbers for handling
by a computer; see, e.g., Figure 3 for an illustration. Quantization and limited
information flow (which occurs unavoidably when the information is carried
by communication networks) can have important negative effects on the per-
formance of control strategies for networked systems. The goal of quantized
control is to study these effects and determine requirements on the quantization
and information flow to ensure proper working the system.

Figure 3: Quantiza-
tion in self-driving
car control.

Contributions: dominated splitting and quantization of hy-
brid systems

In this thesis, we draw on the observation that the dynamics of systems can
often be separated into two or more components, such that each component
grows with a different speed. For instance, in opinion dynamics, it often hap-
pens that some opinions are shared more slowly than other ones, so that these
opinions eventually disappear, supplanted by faster-spread ideas. This prop-
erty, called sometimes fast and slow modes1 separation, has proved useful in
a wide range of contexts: for instance, to identify dominant trends in the
behavior of systems; or to study the convergence of systems beyond classical
convergence to fixed points (as we will explain below in this introduction); also,
in quantized control, the notion of separation of the dynamics plays a central

1The term “mode” should be understood here has “component of the dynamics”; it does
not refer to the continuous modes of switched systems.
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role, since dynamics that grow at different speeds generally require different
levels of quantization.

In this thesis, we study the property of separation of the dynamics for hy-
brid systems. We provide mathematical and algorithmic frameworks for the
theoretical and practical analysis of the property, and we study several appli-
cations of it, in particular, in quantized control.

For that, we leverage several tools from applied mathematics. Let us present
in this introduction two important such tools: namely, the concepts of hyper-
bolicity and exterior algebras.

Hyperbolicity is a central concept in systems theory. This concept ac-
counts for the fact that the “linearized” dynamics of the system can be split
into two components: a unstable component and a stable component. The
unstable component has a dynamics that grows exponentially fast, while the
stable component has a dynamics that converges exponentially fast to zero.

The property of stable–unstable dynamics separation allows to study a wide
range of complex behaviors of systems, such as the existence of strange attrac-
tors for such systems.2 This happens for instance when the unstable dynamics
is visible only “from inside” the attractor (thereby allowing for rich behavior
inside the attractor, while “from outside”, the trajectories of the system seem
to simply converge to the attractor); see also Figure 4 for an illustration. In
this sense, the notion of hyperbolicity connects with the well-known notions
of safety and reachability in control theory, which study questions like “will
the trajectories of the system starting in some safe region stay in that safe
region?” or “will the trajectories reach some target set eventually?”. In the
case of hyperbolic dynamics, the behavior on the safe or target set needs not
be a stable or convergent dynamics, as opposed to some other classical notions
of stability in systems and control theory.

Figure 4: Example of hyperbolic system (see Example
2.9 in Subsection 2.3.3). The dynamics is unstable in
the direction of the “circular flow” (red line), and is
stable in the transversal direction. Consequently, the
trajectories converge to the red set, but the behavior
of the system on the red set is unstable.

2The notion of hyperbolicity emerged namely from the study of chaotic behaviors in
engineering problems; see, e.g., Cartwright and Littlewood (1945).
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The property of hyperbolicity has also proved useful in quantized control;
see, e.g., Kawan (2013). To illustrate this, let us take the example of the prop-
erty of shadowing, which accounts for the fact that “almost-trajectories” of
hyperbolic systems are close to genuine trajectories of the system. Almost-
trajectories occur for instance when one applies to the system a control input
that is a quantized version of the nominal or intended input; the property of
hyperbolicity tells us that if the quantization is sufficiently fine, the trajecto-
ries of the quantized-controlled system will be close to the trajectories of the
intended-controlled system. In this sense, the property of shadowing connects
with the one of incremental stability, which is a well-known property in
systems and control theory and describes systems whose trajectories starting
from nearby initial conditions converge to each other.

Exterior algebras are a very useful tool in mathematics. They allow to
generalize the notions of length, area and volume in higher dimensions (that is,
beyond 3D spaces). By analyzing the rate at which such elements of “higher-
dimensional volume” grow under the action of a system, one can infer the
growth rate of different components of the dynamics of the system. For in-
stance, hyperbolicity implies that all elements of volume with some dimension
grow faster (under the action of the system) than all elements of volume with
higher dimensions; see Figure 5 for an illustration. We will also use this prop-
erty for the quantized control of hybrid systems: as already mentioned before,
dynamics that grow at different speeds generally require different levels of quan-
tization; by combining this observation with the properties of exterior algebras,
we analyze the “worst-case minimal data rate” for observation and control of
switched linear systems.

Figure 5: Hyperbolic system of Figure 4. The element
of area (rectangle “1”) is mapped by the system to
region “2”. The rectangle is expanded in the direction
parallel to the red line and is contracted in the radial
direction.

Let us now detail our contributions. The research that we conducted re-
garding the study of the separation of dynamics for hybrid systems can be
divided into two main topics that we present below: namely, the dominance
analysis of hybrid systems and the quantized control of these systems.
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Dominance analysis of hybrid systems

We introduce the notion of dominance to study the property of having a
separation of the dynamics for hybrid systems. This notion generalizes the one
of hyperbolicity by considering splittings of the dynamics into dominant and
dominated components, but without requiring that the dominated dynamics
converges exponentially to zero (hyperbolicity can thus be seen as a special
case of dominance; see below for some details).

We study the property of dominance, from theoretical and algorithmic
points of view, for switched linear systems (a paradigmatic class of hybrid
systems) and for smooth nonlinear systems.

First, we study this property for switched linear systems. Therefore, we
introduce the notion of dominated splitting to describe the separation of
the dynamics for these systems. We show that the trajectories of a switched
linear system with a dominated splitting converge to a low-dimensional time-
varying attractor; this convergence property can be seen as the “switched-
linear-system” counterpart of the property of hyperbolic systems to admit at-
tractors with an unstable dynamics; it can also be seen as the property of
incremental stability (discussed above in this introduction) when the system
is considered as acting on subspaces of fixed dimension (i.e., acting on the
projective space or on the Grassmannian manifold).

As for the algorithmic aspects, we provide a geometric characterization of
the property of having a dominated splitting for switched linear systems. This
characterization can be represented as the contraction of a set of “general-
ized cones” by the system; see Figure 6 for an illustration. Note that similar
(and less similar) geometric approaches are used for instance to study posi-
tive or differentially positive systems (see, e.g., Grussler and Rantzer, 2014,
Forni and Sepulchre, 2016, and Forni et al., 2017), or systems whose asymp-
totic behavior is low-dimensional, called p-dominant systems (see Forni and
Sepulchre, 2019). By extending the property of p-dominant systems to switched
linear systems and combining it with graph-theoretic tools to increase its ex-
pressiveness, we provide an asymptotically non-conservative algorithmic frame-
work for the study of the property of having a dominated splitting for switched
linear systems; in particular, in this framework, the generalized cones are com-
puted using convex optimization (a field of applied mathematics that has proved
useful in many areas of systems and control theory) and the relations of con-
traction are enforced by a graph capturing the possible sequences of modes of
the system.

We also study the property of dominance for nonlinear systems. The goal
is to study those systems whose “linearized” dynamics can be split into a dom-
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system
action

Figure 6: Two generalized cones (blue and green). The blue
cone is contracted into the green one by the action of one of
the modes of the system.

inant component and a dominated component. For that, we use the theory of
dominant switched linear systems, introduced before. In particular, by leverag-
ing the algorithmic approach for dominance analysis of switched linear systems
and combining it with techniques from abstraction (a well-known tool in con-
trol theory, allowing for instance to abstract a nonlinear system as a collection
of “locally defined” linear systems), we provide an algorithmic framework for
the verification of the property of dominance for nonlinear systems.

Finally, we describe several applications of the property of dominance for
switched linear systems and nonlinear systems; for instance,

• for the study of the convergence of the trajectories to a low-dimensional
time-varying attractor (with applications for instance in population dy-
namics);

• for the robustness analysis of attractors of nonlinear systems (via the
notion of hyperbolicity, which is a special case of dominance for nonlinear
systems);

• for the computation of data rate requirements for the observation and
control of switched linear systems and nonlinear systems (this application
is related with the second main topic of this thesis, namely the “quantized
control of hybrid systems”, introduced below).

Quantized control of hybrid systems

We study the impact of quantization and limited information for the observa-
tion and control of hybrid systems. Although hybrid systems and quantized
control have been two active research areas for some time now, the combina-
tion of these two aspects in control problems has received limited attention so
far; see, e.g., Nair et al. (2003), Xiao et al. (2010), Liberzon (2014), Vicinansa
and Liberzon (2019) and Yang et al. (2020). The study of these two aspects
in a unified framework is however essential to tackle numerous modern control
problems, encountered for instance in cyber-physical systems.

In this thesis, we focus on the quantized control of switched linear systems
(a paradigmatic class of hybrid systems). To do that, we study the existence
of “devices”, called coders–decoders, that stabilize or estimate the state of
the system by exchanging information at a limited data rate; see Figure 7
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for an illustration. In particular, we are interested in deriving bounds on the
communication data rate that is needed between the coder and the decoder to
ensure observability or stabilizability of the system.

Figure 7: Control of a hy-
brid system with a coder–
decoder.

The main difficulty arising from the presence of a switching behavior in
quantized control problems is that the coder–decoder does not know in ad-
vance when the switching will occur, and thus, since the effect of the switching
is abrupt, the coder cannot code the future state of the system and send this
information to the decoder. This effect can be mitigated if the decoder knows
in real time when a switching occurs (which can be achieved for instance
if one uses an event-triggered communication protocol, or if the decoder can
choose the mode of the system); or if the switching signal satisfies some condi-
tions (typically, slow-switching conditions) ensuring its trackability.

In this thesis, we study the observability and controllability of switched
linear systems under data-rate constraints, in both of these settings. Namely,

• for the first setting (the decoder knows the current mode in real time), we
study the relation between the topological entropy (a well-known concept
in systems theory) and the minimal data rate for state estimation and
stabilization of switched linear systems. In particular, we introduce the
notion of worst-case topological entropy for switched linear systems.
This quantity can be expressed as the the maximal growth rate of the
system when seen as acting on elements of volumes (formalized using the
notion of exterior algebra, introduced above); this allows us to provide
an algorithmic framework for the theoretical characterization and practi-
cal computation of optimal quantizing–controlling strategies for switched
linear systems.

• for the second setting (the decoder does not know the current mode in
real time), we provide several new results regarding the observability and
stabilizability of switched linear systems under data-rate constraints and
the importance of switching signal’s trackability for this problem. In
particular, we show that these systems are in general not stabilizable by
a coder–decoder with finite communication data rate, if the switching
signal can switch arbitrarily fast. On the other hand, we show that,
under mild slow-switching conditions, the system can be stabilized with
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a finite data rate and we describe the implementation of a coder–decoder
achieving stabilization as well as an upper bound on the required data rate
as a function of the slow-switching parameters. We also present results
regarding the observability of these systems under data-rate constraints;
namely, we show that these systems are in general not observable by a
coder–decoder with finite communication data rate, even if the switching
signal is constrained to switch arbitrarily slow.

Outline of the thesis

The thesis is organized as follows. See also Figure 8 for a representation of the
dependencies between the different sections of this thesis.

In Chapter 1, we introduce the necessary background. In Section 1.1, we
introduce the important concepts and results related to hybrid systems; this
class of systems provides a general and flexible framework for the study of a
wide range of phenomenons and concrete systems, including switched linear
systems, smooth dynamical systems and networked systems. Then, in Sec-
tion 1.2, we remind several important concepts and results from the theory of
smooth dynamical systems. In Section 1.3, we do the same with the theory
of switched systems. In Section 1.4, we remind some basic notions from the
theory of abstraction (aka. symbolic control) of dynamical systems, which will
be useful for the study of dominant smooth dynamical systems. Finally, in
Section 1.5, we introduce several concepts and results related to the networked
control of hybrid systems.

In Chapter 2, we present the first part of our contributions, which deals
with the dominance analysis of switched linear systems and smooth nonlinear
systems. In Section 2.1, we introduce the topic and review the literature. In
Section 2.2, we present our contributions for the study of dominant switched
linear systems. In Section 2.3, we do the same for dominant nonlinear systems.
Finally, in Section 2.4, we present our conclusions and perspectives for future
research on this topic.

In Chapter 3, we present the second part of our contributions, which
deals with the quantized control of switched linear systems. In Section 3.1,
we introduce the topic and review the literature. In Section 3.2, we present
our contributions for the study of the quantized control of linear time-varying
systems. In Section 3.3, we present our contributions for the study of the
quantized control of switched linear systems in the first setting (called the
“mode-dependent” setting). In Section 3.4, we do the same for the second
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setting (called the “mode-oblivious” setting). Finally, in Section 3.5, we present
our conclusions and perspectives for future research on this topic.

Section 1.1
Hybrid systems theory

Section 1.2
Dynamical

systems
theory

Section 1.4
Abstraction of

dynamical
systems

Section 1.3
Switched
systems
theory

Section 1.5
Networked

systems

Section 3.2
Quantized
observation

of LTV
systems

Section 2.2
Dominant

switched linear
systems

Section 2.3
Dominant

smooth nonlinear
systems

Section 3.3
Mode-dependent
quantized control

of switched
linear systems

Section 3.4
Mode-oblivious

quantized control
of switched

linear systems

Figure 8: Dependencies between the different sections of the thesis. Dashed arrows
represent soft dependencies, in the sense that the section at the origin of the arrow
is needed only for some subsections of the section at the end of the arrow.
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Guillaume O Berger, P-A Absil, Raphaël M Jungers, and Yurii Nesterov. On
the quality of first-order approximation of functions with Hölder continuous
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Guillaume O Berger and Raphaël M Jungers. Quantized stabilization of continuous-
time switched linear systems. IEEE Control Systems Letters, 5(1):319–324,
2021c. doi: 10.1109/LCSYS.2020.3002068.
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List of symbols

Below are some generic symbols and terminology used throughout the thesis.
Notation specific to the different chapters of the thesis will be introduced in
due course of the text.

For real numbers, “positive”, “negative”, “nonnegative” and “nonpositive” mean
“strictly larger than zero”, “strictly smaller than zero”, “larger than or equal
to zero” and “smaller than or equal to zero”, respectively.

Sets

∅, Z, N, R, C The empty set, the sets of integers, nonnegative integers, real
numbers and complex numbers

{x ∈ A : P(x)} Set defined by comprehension: contains all elements of A
satisfying P

2A The power set of A

Functions

f : A→ B A function from A to B
BA The set of functions from A to B
minA,
minx∈A f(x)

The minimum of A and the minimum of f over A

maxA,
maxx∈A f(x)

The maximum of A and the maximum of f over A

inf A, infx∈A f(x)The infimum of A and the infimum of f over A
supA,
supx∈A f(x)

The supremum of A and the supremum of f over A

arg minx∈A f(x) The minimizer of f over A
arg maxx∈A f(x) The maximizer of f over A
limx→a f(x) The limit of f at a
limx→a− f(x) The left limit of f at a
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limx→a+ f(x) The right limit of f at a
lim infx→a f(x) The limit inferior of f at a
lim supx→a f(x) The limit superior of f at a

Norms

|a|, |A| The absolute value (aka. modulus) of a ∈ C and the cardi-
nality of the set A

‖x‖, ‖M‖ The Euclidean norm of x ∈ Rn and the spectral norm of
M ∈ Rm×n

Others

Re(a), Im(a) The real part and the imaginary part of a ∈ C
x(i) The ith component of the vector x



Chapter 1

Preliminaries

In this chapter, we introduce the necessary background for the presentation
of the contributions of this thesis, described in the subsequent chapters. This
chapter needs not be read completely before the other chapters, but can be
referred to in due time.

1.1 Hybrid systems

Hybrid systems are dynamical systems resulting from the interaction of con-
tinuous and discrete dynamics. The setting of hybrid systems provides a very
general and flexible framework to study a wide range of phenomenons and con-
crete systems. For instance, smooth dynamical systems and switched linear
systems, which will be studied into details in this thesis, are both special in-
stances of hybrid systems. Similarly, devices such as coders–decoders, which
will be instrumental in our study of networked control systems, are essentially
hybrid systems. Having a single framework to study different classes of systems
allows to reduce the redundancy in the definitions and results, and more impor-
tantly to better see the connections between the different concepts and results,
and to identify possible generalizations to other classes of systems. In particu-
lar, we define the notions of trajectories, stability, convergence and control for
the general framework of hybrid systems, as these notions will be instrumental
in many different contexts throughout this thesis.

The section is organized as follows. In Subsection 1.1.1, we introduce the
concepts of hybrid system and trajectories of these systems. In Subsection
1.1.2, we introduce the classes of smooth dynamical systems, switched systems
and time-varying dynamical systems. Finally, in Subsection 1.1.3, we discuss
the notions of stability and control of hybrid systems.

17
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References. The literature on hybrid systems is quite vast; see, e.g., van der
Schaft and Schumacher (2000), Goebel et al. (2012), Alur (2015) and Lee and
Seshia (2017) for introductions. Our principal reference for the definition of
hybrid systems and their trajectories is Goebel et al. (2012). However, we
adapt the definition of the trajectories of hybrid systems to consider systems
with input and to have a single time variable (vs. a “hybrid time domain” as in
Goebel et al., 2012); the latter will be important for the study of these systems
under communication constraints (see Section 1.5).

Notation. A set-valued map F from A to B is denoted by F : A ⇒ B.
The domain of a set-valued map F : A ⇒ B, denoted by domF , is defined as
domF = {x ∈ A : F (x) 6= ∅}. The restriction of a function f : A→ B to a set
A′ ⊆ A is denoted by f |A′ .

1.1.1 Hybrid systems and their trajectories

We start with the concepts of hybrid system and trajectories of these systems.

Definition 1.1 (Hybrid system). A hybrid system is a quintuple (X,X0, U, F,G)
where

• X ⊆ Rn is a nonempty set called the state space of the system;

• X0 ⊆ X is a nonempty set called the initial set;

• U is a nonempty set called the input space of the system;

• F : X × U ⇒ Rn is a set-valued function called the flow map of the
system;

• G : X × U ⇒ X is a set-valued function called the jump map of the
system.

If the initial set X0 is the whole state space X, then we will denote the hybrid
system simply by the quadruple (X,U, F,G).

The above definition deserves the following explanations (which will also
become clearer with the definition of a trajectory of a hybrid system; see Def-
inition 1.3 below). The state space X is the set in which live the variables
of the system, meaning that the variables describing the state of the system
(e.g., the position, the velocity, the gear ratio, etc., in the case of a self-driving
car) belong to the set X. The initial set X0 contains the possible values of the
variables of the system at the initial time (i.e., at t = 0). The external inputs
(e.g., the accelerator intensity or the wind force in the case of a self-driving
car) are described as functions of time taking values in the set U . The flow
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map F describes how the derivative of the variables behaves when they evolve
“smoothly” (e.g., in the case of a self-driving car, the derivative of the position
is equal to the velocity, and the derivative of the velocity depends on the accel-
erator intensity and the wind force). At some discrete times, the variables of
the system can also evolve “abruptly” (aka. “jump”). Such abrupt transitions
of the variables are described by the jump map G.

The flow map and the jump map of a hybrid system are set-valued func-
tions. This allows for great expressiveness of these systems by enabling that
the derivative and the jumps of the trajectories (see Definition 1.3 below) can
take different values at a same point (x, u) ∈ X × U ; this property, called
non-determinism, is instrumental for instance for systems with unknown dis-
turbances. It also allows to restrict the flow set and the jump set of trajectories
(see Definition 1.3 below) by letting F and G be nonempty only on subsets of
X × U . See also Example 1.1 for an illustration.

A hybrid system (X,X0, U, F,G) for which U is a singleton cannot be in-
fluenced by external inputs. Such systems will be said to be autonomous. On
the other hand, if we want to emphasize that a given hybrid system is affected
by external inputs, we will say that the system is non-autonomous.

We define below the concept of trajectories of a hybrid system. But, first
of all, it is important to specify which kinds of input functions are acceptable
for the system. In this thesis, we restrict our attention to piecewise continuous
input functions.

Definition 1.2 (Piecewise continuous input functions). Consider a set U ⊆
Rm and an input function u : R≥0 → U . We say that u is piecewise continuous
if for any T ∈ R≥0, there is a finite sequence of times (τj)J+1

j=0 ⊆ R, 0 = τ0 <

τ1 < . . . < τJ+1 = T , such that for every j ∈ {0, . . . , J}, u is continuous on
(τj , τj+1) and has a right limit in τj and a left limit in τj+1.

Given a hybrid system HySys = (X,X0, U, F,G), we denote by U(HySys)
(or simply U if HySys is clear from the context) the set of piecewise continuous
functions from R≥0 to U . This space of input functions is at the same time
general enough to capture a large range of behaviors (any integrable function
can be approximated arbitrarily well by a piecewise continuous function in the
L1 topology) and sufficiently regular to guarantee (at least local) existence of
trajectories of hybrid systems.

Definition 1.3 (Trajectory of a hybrid system). Given a hybrid system HySys =
(X,X0, U, F,G) and an input function u ∈ U , a trajectory of HySys with input
u is a function φ : E → X, with domain E ⊆ R, satisfying that for any T ∈ E,
(i) (−∞, T ] ⊆ E, and (ii) there is a finite sequence of times (τj)J+1

j=0 ⊆ R,
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0 = τ0 < τ1 < . . . < τJ+1 = T , such that

• for every j ∈ {0, . . . , J}, φ is absolutely continuous on [τj , τj+1) and
satisfies{

(φ(t), u(t)) ∈ domF for all t ∈ [τj , τj+1),
φ̇(t) .= d

dtφ(t) ∈ F (φ(t), u(t)) for almost all t ∈ [τj , τj+1);
(1.1)

• for every j ∈ {0, . . . , J + 1}, φ has a left limit at τj, and satisfies

φ(τj) ∈ G(φ(τj−), u(τj)), where φ(τj−) = lim
t→τj−

φ(t), (1.2)

or satisfies φ(τj) ∈ G(φ(τj−), u(τj)) ∪ {φ(τj−)} if j ∈ {0, J + 1};

and φ(0−) ∈ X0.

In other words, the domain E of a trajectory φ : E → X of a hybrid
system (X,X0, U, F,G) can be decomposed into a finite or an infinite union
of disjoint intervals: E = (−∞, 0) ∪ [0, τ1) ∪ · · · ∪ [τj , τj+1) ∪ · · · ∪ [τN , τN+1)
or E = (−∞, 0) ∪ [0, τ1) ∪ · · · ∪ [τj , τj+1) ∪ · · · ∪ [τN , τN+1) ∪ {τN+1} or E =
(−∞, 0)∪[0, τ1)∪· · ·∪[τj , τj+1)∪· · · . The intervals [τj , τj+1) are called the flow
periods of φ, and φ satisfies (1.1) on these intervals. The events τj at which
φ satisfies (1.2) are called the jumps (or switches) of φ. Note that the part of
φ defined on (−∞, 0) is relevant only for the value of φ(0−); we will say that
φ(0−) is the initial condition of φ, or that φ starts at φ(0−). See also Figure
1.1 for an illustration.

Figure 1.1: Examples of trajecto-
ries of a hybrid system. The first
example shows a non-Zeno trajec-
tory, while the second one shows
a Zeno trajectory (see Definition
1.4).

We distinguish different types of trajectories of a hybrid system, depending
on whether they can be extended to “longer-term” trajectories, or depending
on their domain and the occurrences of flow and jump periods.

Definition 1.4 (Types of trajectories). Consider a hybrid system HySys =
(X,X0, U, F,G) and a trajectory φ : E → X of HySys with input u ∈ U . φ is
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said to be maximal if there is no trajectory φ′ : E′ → X of HySys with input u,
such that E ( E′ and φ = φ′|E. φ is said to be complete if E = R. φ is said
to be non-Zeno if it is complete or if there is T ∈ E such that [T,∞) ∩ E is a
flow period of φ; otherwise φ is said to be Zeno.

In the following of this thesis, we restrict our attention to maximal trajectories
of hybrid systems, and we refer to them simply as trajectories.

Examples of hybrid systems include complex systems, such as walking
robots or cyber-physical systems, but also simple mechanical systems such as
bouncing balls. We present below the academic example of the bouncing ball
(see, e.g., Goebel et al., 2012, Example 1.1) to illustrate the concepts of hybrid
systems and their trajectories.
Example 1.1 (Bouncing ball). Consider a ball (modeled as a point-mass m)
bouncing on the floor; see Figure 1.2 for an illustration. When the ball hits
the floor, it bounces upwards with a velocity that is slightly smaller than the
velocity it had just before hitting the floor, due to energy dissipation: namely,
after the bounce, the velocity is decreased by a factor γ ∈ (0, 1). Between two
bounces, the ball is subject only to the gravity (attracting it downwards with
acceleration g) and to an ascending wind with “force” u ≥ 0 (thereby pushing
the ball upwards with acceleration u/m). The force of the wind is considered
as an input of the system, so that the input space U is equal to R≥0.

The dynamics of the ball can be modeled as a hybrid system as follows. The
variables describing the movement of the ball are its height x and its vertical
velocity v (i.e., v is the time derivative of x). When the ball touches the floor
and its velocity is downwards (that is, when x = 0 and v < 0), then the ball
bounces, so that its velocity becomes −γv. Hence, the jump map (describing
the bouncing event) is defined by G(x, v, u) = {(0,−γv)} for all x = 0, v < 0
and u ≥ 0, and G(x, v, u) = ∅ for all other values of x, v and u. When the ball
is in the air, or touches the floor and goes upwards (that is, when x > 0, or
when x = 0 and v > 0), then the ball is subject to the gravity and the wind
force, so that its acceleration (that is, the time derivative of v) increases with
a rate equal to u/m − g. Hence, the flow map (describing the free fall of the
ball) is defined by F (x, v, u) = {(v, u/m − g)} for all x > 0, v and u ≥ 0 and
for all x = 0, v > 0 and u ≥ 0, and F (x, v, u) = ∅ for all other values of x, v
and u.

1.1.2 Special classes of hybrid systems

In this subsection, we discuss some specific classes of hybrid systems that are
relevant for this work.
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Figure 1.2: Bouncing ball. Left: The black arrows are the forces acting on the ball
when it is in the air. The green arrows represent the velocity of the ball before and
after the bounce. Right: Height of the ball as a function of time. Any trajectory of
the ball is a solution to the hybrid system described in Example 1.1.

Smooth dynamical systems

The first class of hybrid systems that we will consider is the one of smooth dy-
namical systems. Let us start with continuous-time smooth dynamical systems.
These systems are described by differential equations of the form

ξ̇(t) .= d
dt ξ(t) = f(ξ(t)) for all t ∈ R≥0,

where ξ : R≥0 → Rn and f : Rn → Rn is uniformly Lipschitz continuous
and infinitely differentiable1. As for the discrete time: discrete-time smooth
dynamical systems are described by difference equations of the form

ξ+(t) .= ξ(t+ 1) = f(ξ(t)) for all t ∈ N,

where ξ : N→ Rn and f : Rn → Rn is infinitely differentiable2.
Smooth dynamical systems are encountered in many natural processes, such

as biology, physics, opinion dynamics, etc. We give below a simple example
from population dynamics to illustrate the concept of discrete-time smooth
dynamical system.

Example 1.2 (Population dynamics). Consider a population evolving in an en-
vironment with limited food supply. The transmission rate (i.e., survival rate
+ fertility rate) decreases proportionally with the population (because food is
limited, so that when the population is too large, the individuals starve and are
less fertile); more precisely, the transmission rate is equal to r1 − r2ξ(t) where

1For most applications, assuming that f is only continuously differentiable would be
enough. However, the definition with f infinitely differentiable has the advantage of defining
a class of systems that is closed under linearization (see Subsection 1.2.3). Hence, for the
sake of simplicity, we restrict our attention to this class of systems, since the assumption that
f is infinitely differentiable is not limiting for the applications considered in this thesis.

2Same comment as for the continuous time.
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ξ(t) is the number of individuals at time t, and r1 > 0 and r2 > 0 are param-
eters. The evolution of the population can thus be described by the following
discrete-time smooth dynamical system: ξ(t+1) = (r1−r2ξ(t))ξ(t); see Figure
1.3 for an illustration. This system is often referred to as the logistic map and
is known to exhibit a large range of behaviors, from multi-stability to chaotic
behavior (see, e.g., Strogatz, 2015).

Figure 1.3: Evolution of rabbit population in an environment with limited food
supply. The time instants are discrete (t = 0, 1, 2, . . . ) and correspond to months.
The population (number of individuals) ξ(t) evolves according to the logistic map:
ξ(t+ 1) = (r1 − r2ξ(t))ξ(t).

Continuous-time and discrete-time smooth dynamical systems can be de-
fined using the formalism of hybrid systems as follows.

Definition 1.5 (Continuous-time smooth dynamical system). A continuous-
time smooth dynamical system is an autonomous hybrid system HySys =
(Rn, {0}, F,G) where F (x, 0) = {f(x)} for all x ∈ Rn with f : Rn → Rn uni-
formly Lipschitz continuous and infinitely differentiable, and G : Rn×{0}⇒ ∅
is the empty map.

Definition 1.6 (Discrete-time smooth dynamical system). A discrete-time
smooth dynamical system is an autonomous hybrid system (X̂, X̂0, {0}, F,G)
where X̂ = Rn × [0, 1], X̂0 = Rn × {0}, F (x, τ, 0) = {0} × {1} for all (x, τ) ∈
Rn × [0, 1], and G(x, 1, 0) = {f(x)} × {0} for all x ∈ Rn with f : Rn → Rn

infinitely differentiable and G(x, τ, 0) = ∅ for all (x, τ) ∈ Rn × [0, 1).

Remark 1.1. In Definition 1.6, the variable “τ” measures the time between
two jumps since its time derivative is equal to one during flow periods (see
the definition of F ) and it is mapped to zero at each jump (see the definition
of G). Similarly, the definition of F implies that the variable “x” is constant
between two jumps. Finally, the requirement that G(x, τ, 0) = ∅ when τ < 1
implies that jumps occur with an interval of exactly one unit of time between
them, so that the variable “x” can change only at integer times, hence the name
discrete-time systems.
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Continuous-time and discrete-time smooth dynamical systems are more con-
cisely described by specifying only the state space Rn and the map f . There-
fore, in the following, we will denote these systems simply by the ordered
pair (Rn, f) where f : Rn → Rn is infinitely differentiable (and uniformly
Lipschitz continuous if the system is continuous-time).

Switched systems

The second class of hybrid systems in which we will be interested is the one of
switched systems. Let us start with continuous-time switched systems. These
are systems of the form

ξ̇(t) = fσ(t)(ξ(t), u(t)) for almost all t ∈ R≥0,

where ξ : R≥0 → Rn, σ : R≥0 → Σ .= {1, . . . , N} and for each i ∈ Σ, fi :
Rn × U → Rn is uniformly Lipschitz continuous in its first argument. As for
the discrete time: discrete-time switched systems are systems of the form

ξ+(t) .= ξ(t+ 1) = fσ(t)(ξ(t), u(t)) for all t ∈ N,

where ξ : N→ Rn, σ : N→ Σ .= {1, . . . , N} and for each i ∈ Σ, fi : Rn × U →
Rn is continuous in its first argument. The set Σ is called the set of modes
of the system. The trajectories of a switched system are given by the ordered
pair (ξ, σ) where ξ : R≥0 → Rn is absolutely continuous and σ : R≥0 → Σ is
right-continuous and piecewise constant3 (in continuous time) or ξ : N → Rn

and σ : N → Σ (in discrete time); ξ is called the continuous variable and σ is
called the switching signal.

The description of a switched system also often involves conditions that
must be satisfied by the switching signal; see, e.g., Example 1.3 below and
Subsection 1.3.1 for examples of such conditions.

Example 1.3 (Addition with packet dropouts). Consider a simple discrete-time
system consisting in adding numbers generated sequentially by a user: that is,
the input is a function u : N→ R (i.e., the sequence of numbers u(0), u(1), . . .)
and the goal of the system is to compute at each time t ∈ N the sum ξ(t) =∑t−1
j=0 u(j) (with the convention that ξ(0) = 0). This can be implemented by

the following discrete-time system: ξ(t+ 1) = ξ(t) + u(t).
Now, assume that the numbers u(t) are sent to the system over a noisy

channel, so that it may happen that a number u(t) never arrives to the system

3This (being right-continuous and piecewise constant) means that for any T ∈ R≥0, there
is a finite sequence of times (τj)J+1

j=0 ⊆ R, 0 = τ0 < τ1 < . . . < τJ+1 = T , such that for every
j ∈ {0, . . . , J}, σ is constant on [τj , τj+1).
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due to packet dropouts; see Figure 1.4 for an illustration. In that case, the
system will not add the number (this is equivalent to assuming that u(t) = 0).
This system can be described as a discrete-time switched system with two
modes:

• Mode 1 describing the event when there is no dropout; in that case,
ξ(t+ 1) = ξ(t) + u(t);

• Mode 2 describing the event when there is a dropout; in that case, ξ(t+
1) = ξ(t).

Finally, in some cases, code-correction algorithms can be used to ensure that
packet dropouts are sufficiently spaced in time; for instance we may assume that
between two packet dropouts, there are at least m correctly sent packets. These
types of assumptions can be included in the description of the system as well:
namely, by imposing conditions on the switching signal of the system (in our
case, we impose that between any two time instants at which the switching
signal is equal to 1, there are at least m instants at which it is equal to 2).

Figure 1.4: Addi-
tion of numbers
over a noisy chan-
nel.

Continuous-time and discrete-time switched systems can be defined using
the formalism of hybrid systems as follows.

Definition 1.7 (Continuous-time switched system). A continuous-time switched
system is a hybrid system (X̂, U, F,G) where X̂ = Rn × Σ × Y with Σ =
{1, . . . , N} and Y ⊆ R`, U ⊆ Rm, F (x, i, y, u) = {f(x, i, u)} × F̄ (i, y, 0) for
all (x, i, y, u) ∈ Rn × Σ × Y × U with f : Rn × Σ × U → Rn uniformly Lip-
schitz continuous in its first argument and F̄ : Σ × Y × {0} ⇒ {0} × R`,
and G(x, i, y, u) = {x} × Ḡ(i, y, 0) for all (x, i, y, u) ∈ Rn × Σ × Y × U with
Ḡ : Σ× Y × {0}⇒ Σ× Y .

Definition 1.8 (Discrete-time switched system). A discrete-time switched
system is a hybrid system (X̂, X̂0, U, F,G) where X̂ = Rn × [0, 1] × Σ × Y

with Σ = {1, . . . , N} and Y ⊆ R`, X̂ = Rn × {0} × Σ × Y , U ⊆ Rm,
F (x, τ, i, y, u) = {0}×{1}×{0}×{0} for all (x, τ, i, y, u) ∈ Rn×[0, 1]×Σ×Y ×U ,
G(x, 1, i, y, u) = {f(x, i, u)}×{0}×Ḡ(i, y, 0) for all (x, i, y, u) ∈ Rn×Σ×Y ×U
with f : Rn×Σ×U → Rn continuous in its first argument and Ḡ : Σ×Y ×{0}⇒
Σ× Y , and G(x, τ, i, y, u) = ∅ for all (x, τ, i, y, u) ∈ Rn × [0, 1)× Σ× Y × U .
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Remark 1.2. See Remark 1.1 for the motivation of the name discrete-time
switched system.

The above definitions deserve the following explanations. Definition 1.7 tells
us that a continuous-time switched system can be decomposed in two parts:
(i) an autonomous hybrid system (Σ×Y, {0}, F̄ , Ḡ) describing the evolution of
the second component of the trajectories (called the switching signal), and (ii)
a continuous-time non-autonomous dynamical system (Rn, U×Σ, f) controlled
by the input and the switching signal. In particular, it is via the subsystem
(i) that constraints are imposed on the switching signal in the definition of a
continuous-time switched system. A similar decomposition holds for discrete-
time switched system.

Continuous-time and discrete-time switched systems can be more concisely
described by specifying only the state space Rn, the input space U and func-
tions fi, for each i ∈ Σ, plus a description of the set of admissible switching
signals of the system. Therefore, in the following, we will denote these systems
simply by the triple (Rn, U, {fi}i∈Σ) where for each i ∈ Σ, fi : Rn × U → Rn

is continuous (or uniformly Lipschitz continuous if the system is continuous-
time) in its first argument, plus a description of the set of admissible switching
signals of the system.

The description of the admissible switching signals can take different forms
and we will discuss some of them in Subsection 1.3.1.

Remark 1.3. Switched systems can also be defined as special instances of hybrid
automata, which are essentially graphs with continuous dynamics (described by
flow maps) associated to the vertices and with pre and post conditions (often
called guards and reset maps) associated to the edges; see, e.g., Mitra (2021). In
this thesis, we defined switched systems using the template of hybrid systems;
the goal being to avoid multiplying the concepts and the notation, by sticking
to a single template in which we define different classes of systems and other
concepts useful for this work.

Time-varying dynamical systems

The last class of hybrid systems in which we will be interested is the one
of time-varying dynamical systems. Let us start with continuous-time time-
varying dynamical systems. These systems are described by time-dependent
differential equations the form

ξ̇(t) .= d
dt ξ(t) = f(t, ξ(t)) for all t ∈ R≥0,
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where ξ : R≥0 → Rn and f : R×Rn → Rn is continuous in its first argument and
uniformly Lipschitz continuous in its second argument. As for the discrete time:
discrete-time time-varying dynamical systems are described by time-dependent
difference equations of the form

ξ+(t) .= ξ(t+ 1) = f(t, ξ(t)) for all t ∈ N,

where ξ : N→ Rn and f : N× Rn → Rn is continuous in its second argument.
Continuous-time and discrete-time time-varying dynamical systems can be

defined using the formalism of hybrid systems as follows.

Definition 1.9 (Continuous-time time-varying dynamical system). A continuous-
time time-varying dynamical system is an autonomous hybrid system HySys =
(Rn+1, X̂0, {0}, F,G) where X̂0 = Rn × {0}, F (x, t, 0) = {f(t, x)} × {1} for all
(x, t) ∈ Rn×R with f : R×Rn → Rn continuous in its first argument and uni-
formly Lipschitz continuous in its second argument, and G : Rn×R×{0}⇒ ∅
is the empty map.

Definition 1.10 (Discrete-time time-varying dynamical system). A discrete-
time time-varying dynamical system is an autonomous hybrid system (X̂, X̂0, {0}, F,G)
where X̂ = Rn+1 × [0, 1], X̂0 = Rn × {0} × {0}, F (x, t, τ, 0) = {0} × {0} × {1}
for all (x, t, τ) ∈ Rn×R× [0, 1], and G(x, t, 1, 0) = {f(t, x)}×{t+ 1}×{0} for
all (x, t) ∈ Rn × R with f : R × Rn → Rn continuous in its second argument
and G(x, t, τ, 0) = ∅ for all (x, t, τ) ∈ Rn × R× [0, 1).

Remark 1.4. See Remark 1.1 for the motivation of the name discrete-time time-
varying system.

Continuous-time and discrete-time time-varying dynamical systems are more
concisely described by specifying only the state space Rn and the map f .
Therefore, in the following, we will denote these systems simply by the ordered
pair (Rn, f) where f : R × Rn → Rn is continuous in its first argument
and uniformly Lipschitz continuous in its second argument (if the system is
continuous-time), or where f : N × Rn → Rn is continuous in its second
argument (if the system is discrete-time).

1.1.3 Stability and control of hybrid systems

Stability theory deals with the study of the convergence properties of the tra-
jectories of hybrid systems. Several notions of stability coexist, accounting for
different types of convergence; e.g., internal stability (convergence of the trajec-
tories to a point in the state space), set stability (convergence of the trajectories
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to a set in the state space), and output stability (convergence of the trajectories
after transformation by a function called the output map).

In particular, the notion of output stability is often instrumental for the
study of hybrid systems, as many applications involving these systems require
that only a subset of the state variables exhibit convergence properties.4 How-
ever, classical definitions of output stability require that the output space is a
metric space, so that the distance between any two outputs is defined. This
can be overkill when only convergence to a point or a set in the output space
is considered.

Therefore, in this thesis, we use a more general notion of stability, account-
ing for the convergence of the trajectories with respect to a cost function, which
can be any nonnegative function defined on the state space; see also Example
1.4 below. This definition allows for great flexibility in the notion of stability;
in particular, it includes the concepts of stability discussed above. On top of
this, it also allows to formulate global stability results taking into account the
geometry of the state space in a concise and meaningful way (e.g., using a cost
function that goes unbounded near the boundary of the state space).

Definition 1.11 (Cost function). Given a set X ⊆ Rn, a cost function on X

is any nonnegative scalar function C : X → R≥0.

Example 1.4. Examples of cost functions on X ⊆ Rn are x 7→ ‖x−a‖ (distance
to a point a ∈ X, to account for the convergence of the trajectories to the point
a), x 7→ infa∈A ‖x−a‖ (distance to a set A ⊆ X, to account for the convergence
of the trajectories to the set A), or x 7→ ‖Px‖ (where P is the projection on a
subset of the variables, to account for the convergence of these variables of the
system to zero). See also Figure 1.5 for an illustration.

Figure 1.5: Example of a cost function that goes un-
bounded near the boundary of X ⊆ R2 and is zero at a
single point a ∈ X.

The following notions, introduced by Hahn (1967), will be useful in the
definitions of the concepts of stability, and in other places of this work.

Definition 1.12 (Class-K function). A function α : R≥0 → R≥0 is said to be
of class K if it is continuous, strictly increasing and zero at zero.

4For instance, for switched systems, it is generally sufficient that only the continuous
variable ξ converges to zero while no convergence requirements are made on the switching
signal σ.
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Definition 1.13 (Class-KL function). A function β : R≥0 × R≥0 → R≥0 is
said to be of class KL if for every t ∈ R≥0, the function r 7→ β(r, t) is of
class K, and for every r ∈ R≥0, the function t 7→ β(r, t) is non-increasing and
satisfies limt→∞ β(r, t) = 0.

We also introduce the following definition, which will be useful to compare
stability results with different cost functions.

Definition 1.14 (K-equivalent functions). Let X be a set. Two functions
V1 : X → R≥0 and V2 : X → R≥0 are K-equivalent (or equivalent) if there are
two class-K functions α1 and α2 such that for all r ∈ X, V1(r) ≤ α1(V2(r))
and V2(r) ≤ α2(V1(r)).

It is readily seen that K-equivalence defines an equivalence relation on the
set of nonnegative functions defined on a given set.

Stability and feedback stabilization

First, we define the notion of stability, which applies to autonomous hybrid
systems and accounts for the convergence of the cost of the trajectories to zero.

Definition 1.15 (Stability). Consider an autonomous hybrid system HySys =
(X,X0, U, F,G) and a cost function C : X → R≥0. HySys is said to be asymp-
totically stable (or stable) with respect to C if all trajectories of HySys are
complete and there is a class-KL function β such that every trajectory φ of
HySys satisfies

C(φ(t)) ≤ β(C(φ(0−)), t) for all t ∈ R≥0.

Proposition 1.16. Consider an autonomous hybrid system HySys = (X,X0, U, F,G)
and two equivalent cost functions C1 : X → R≥0 and C2 : X → R≥0. Then,
HySys is stable with respect to C1 if and only if it is stable with respect to C2.

Proof. See Appendix A.1.1.

Then, we introduce the notions of feedback controller and feedback compo-
sition of hybrid systems.

Definition 1.17 (Controller). A feedback controller (or controller) for a hy-
brid system (X,X0, U, F,G) is an ordered pair (HySysc,K) where HySysc =
(Xc, Xc0, X, Fc, Gc) is a hybrid system with input space X and K : X×Xc ⇒ U

is the actuator map. The controller is said to be static if Xc is a singleton.
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Definition 1.18 (Feedback composition). Given a hybrid system HySys =
(X,X0, U, F,G) and a controller Cont = (HySysc,K), HySysc = (Xc, Xc0, X, Fc, Gc),
for HySys, the closed-loop system obtained from HySys and Cont (also called
feedback composition of HySys and Cont), denoted by HySys‖Cont, is the au-
tonomous hybrid system (Xf , Xf0, {0}, Ff , Gf) where Xf = X × Xc, Xf0 =
X0 × Xc0, and for � ∈ {F,G}, �f(x, xc, 0) =

⋃
u∈K(x,xc) �(x, u) × �c(xc, x)

for all (x, xc) ∈ X ×Xc.

See Figure 1.6 for an illustration.

Figure 1.6: Feedback composition of a hybrid system HySys and a controller Cont =
(HySysc,K). If the controller is static, then the actuator takes only φ(t) as input.

Feedback composition can be used, among others, to obtain stable closed-
loop systems from certain unstable hybrid systems, referred to as feedback
stabilizable systems.

Definition 1.19 (Stabilizability). Consider a hybrid system HySys = (X,X0, U, F,G)
and a cost function C : X → R≥0. HySys is said to be feedback stabilizable
(or stabilizable) with respect to C if there is a controller Cont = (HySysc,K),
HySysc = (Xc, Xc0, X, Fc, Gc), for HySys such that the closed-loop system HySys‖Cont
is stable with respect to the cost function Cf : X × Xc → R≥0 defined by
Cf(x, xc, 0) = C(x).

1.2 Smooth dynamical systems theory

Smooth dynamical systems arise as solutions of ordinary differential equations
or difference equations with smooth vector field or smooth transition map (see
Definitions 1.5 and 1.6 in Subsection 1.1.2). Smooth dynamical systems are
deterministic and their trajectories depend continuously on the initial condi-
tion. They can nevertheless exhibit very rich behaviors and be very difficult to
analyze. In this section, we review some of the tools for the analysis of these
systems. In particular, we will remind the notions of generator, invariant sets,
limit sets and Lyapunov functions for smooth dynamical systems. We will also
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discuss some more advanced topics, namely regarding the linearization and the
structural stability (also called robustness) of these systems.

The section is organized as follows. In Subsection 1.2.1, we remind the
notions of generator, invariant sets and limit sets of smooth dynamical systems.
In Subsection 1.2.2, we introduce the concept of Lyapunov functions for smooth
dynamical systems and review some of their properties that will be relevant for
this thesis. Finally, in Subsection 1.2.3, we review some concepts from the
linearization theory of smooth dynamical systems. In particular, we introduce
the concepts of prolonged systems, hyperbolicity and structural stability of
these systems.

References. The literature on ordinary differential equations and smooth
dynamical systems is vast. The topic covers several centuries of major theoret-
ical and practical advances (it goes back for instance to the works of Newton
on the motion of celestial bodies) and still continues to be an active area of re-
search; see, e.g., Katok and Hasselblatt (1995), Robinson (1999), Khalil (2002)
and Teschl (2012) for modern treatments. Our principal reference for this sec-
tion is Teschl (2012) covering most of the concepts and results discussed in this
section, and also Robinson (1999) for the definition and properties of hyperbolic
systems.

Notation. In this section, all considered hybrid systems are smooth dynam-
ical systems, and thus for the sake of brievety, we will refer to them simply
as dynamical systems. Also, we will consider both continuous-time systems
and discrete-time systems, and we will use the symbol T to denote the time
domain of the system, as it should be clear from the context whether T = R
(continuous-time systems) or T = Z (discrete-time systems). We remind that,
unless said otherwise, all considered trajectories of hybrid systems are assumed
to be maximal.

1.2.1 Generator, invariant sets and limit sets

Dynamical systems were introduced in Subsection 1.1.2. For a reminder, the
trajectories ξ : T≥0 → Rn of a dynamical system Sys = (Rn, f) satisfy ξ̇(t) =
f(ξ(t)) for all t ∈ R≥0 (if Sys is continuous-time) or ξ(t + 1) = f(ξ(t)) for all
t ∈ N (if Sys is discrete-time), where f : Rn → Rn is infinitely differentiable
(and Lipschitz continuous in the continuous-time case).

Dynamical systems have the property that the trajectories are complete.
Moreover, from any given initial point, there is a unique trajectory starting at
this point (see, e.g., Teschl, 2012, Theorem 2.17). This leads to the concept of
generator of the trajectories of a dynamical system.
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Definition 1.20 (Generator of a dynamical system). The generator of a dy-
namical system Sys = (Rn, f), denoted by χ(·, ·; Sys) (or χ when Sys is clear
from the context), is the function χ : T≥0 × Rn → Rn defined by t 7→ χ(t, x) is
the unique trajectory of Sys with χ(0, x) = x.

The generator satisfies the following properties, which sometimes consist in
the defining axioms of a dynamical system in the abstract theory of dynamical
systems (see, e.g., Sontag, 1998).

Proposition 1.21 (Properties of the generator). Consider a dynamical sys-
tem Sys = (Rn, f). The generator χ of Sys is infinitely differentiable in its
second argument and satisfies the following property (called semigroup axiom
by Sontag, 1998): for every t0, t1 ∈ T≥0, t1 ≥ t0, and x ∈ Rn, χ(t1, x) =
χ(t1 − t0, χ(t0, x)).

Proof. See, e.g., Teschl (2012, Theorems 2.10 and 6.1) for the case of continuous-
time systems. The case of discrete-time systems is similar.

Given a dynamical system Sys = (Rn, f), if for every t ∈ T≥0 and x ∈ Rn,
there is a unique y ∈ Rn such that χ(t, y) = x, and y depends on x in an
infinitely differentiable fashion, then we say that Sys is invertible. In this case,
we extend the definition of χ on T<0 ×X by letting for each (t, x) ∈ T<0 ×X,
χ(t, x) be the unique point in X satisfying χ(−t, χ(t, x)) = x. By construc-
tion, the extended generator χ : T × Rn → Rn also satisfies the properties of
Proposition 1.21.

Now, we introduce the concept of invariance for subsets of the state space
of dynamical systems; see also Figure 1.7 for an illustration.

Definition 1.22 (Set invariance). Consider a dynamical system Sys = (Rn, f)
and a set Λ ⊆ Rn. The set Λ is said to be forward invariant for Sys if for any
x ∈ Λ, χ(t, x) ∈ Λ for all t ∈ T≥0. If Sys is invertible, the set Λ is said to be
backward invariant for Sys if for any x ∈ Λ, χ(t, x) ∈ Λ for all t ∈ T≤0; and is
said to be invariant for Sys if it is forward and backward invariant.

The above invariance properties are closed under intersection and union.
This leads to the notions of minimal and maximal invariant sets.

Proposition 1.23 (Minimal and maximal invariant sets). Consider an (in-
vertible) dynamical system Sys = (Rn, f) and a set Λ ⊆ Rn. The union of all
(forward, backward) invariant sets for Sys included in Λ is itself a (forward,
backward) invariant set, called the maximal (forward, backward) invariant set
of Sys in Λ. The intersection of all (forward, backward) invariant sets for Sys
containing Λ is itself a (forward, backward) invariant set, called the minimal
(forward, backward) invariant set of Sys containing Λ.
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Figure 1.7: Invariant set. The set Λ (in
blue) is forward invariant for Sys if every
trajectory of Sys starting in Λ stays in Λ
for all t ≥ 0. In this image, the trajectory
starting from x0 accumulates on the set in
red, called the ω-limit set of Sys from x0

(see Definition 1.24).

Proof. See, e.g., Teschl (2012, Lemma 6.4) for the case of continuous-time
systems. The case of discrete-time systems is similar.

Limit sets are special types of invariant sets consisting in the sets of points
in the state space where the trajectories of a given dynamical system eventu-
ally accumulate. They appear thus naturally in the study of the asymptotic
properties of these systems (see, e.g., Subsections 1.2.2 and 2.3.3).

Definition 1.24 (ω-limit set). Consider a dynamical system Sys = (Rn, f)
and a point x ∈ Rn. The ω-limit set (or limit set) of Sys from x, denoted
by ω(x; Sys) (or ω(x) when Sys is clear from the context), is the set of all
points y ∈ Rn such that there is a sequence of times (tj)∞j=1 ⊆ T≥0 satisfying
limj→∞ tj =∞ and limj→∞ χ(tj , x) = y.

The following properties of limit sets are elementary but useful for the study
of the asymptotic behavior of dynamical systems.

Proposition 1.25 (Properties of limit sets). Consider a dynamical system
Sys = (Rn, f) and a point x ∈ Rn.

• The limit sets of Sys are closed and forward invariant. If Sys is invertible,
then its limit sets are also backward invariant (hence, invariant).

• If {χ(t, x) : t ∈ T≥0} (called the orbit of Sys from x) is contained in a
compact subset of Rn, then ω(x) is nonempty and compact; moreover, in
that case, χ(·, x) converges to ω(x), in the sense that limt→∞ infy∈ω(x) ‖χ(t, x)−
y‖ = 0.

Proof. See, e.g., Teschl (2012, Lemmas 6.5–6.7) for the case of continuous-time
systems. The case of discrete-time systems is similar.
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1.2.2 Lyapunov functions and Lyapunov theory

We start with the definition of a Lyapunov function. A Lyapunov function can
be seen as an “energy” function that decreases along the trajectories of the
system; a bit like a ball in a valley sees its mechanical energy decrease with
time, until it stops at the bottom of the valley (state at which its mechanical
energy is the lowest); see also Figure 1.8 for an illustration.

Definition 1.26 (Lyapunov function). Consider a dynamical system Sys =
(Rn, f). A Lyapunov function for Sys is a function V : Rn → R≥0 satisfying
that for all x ∈ Rn and t ∈ T≥0, V (χ(t, x)) ≤ V (x), and there is T ∈ T>0 and
a class-K function α such that for all x ∈ Rn, V (χ(T, x))−V (x) ≤ −α(V (x)).

Figure 1.8: Lyapunov function V for a dynamical sys-
tem Sys. The value of V (in green) along the trajectory
φ (in black) decreases as time evolves.

Just like a ball starting at rest in a valley will never go higher than its initial
height, sublevel sets of Lyapunov functions define forward invariant sets, in the
sense that the trajectories starting in such a sublevel set cannot escape from
it. This is known as the Krasovskii–LaSalle principle.

Proposition 1.27 (Krasovskii–LaSalle principle). Consider a dynamical sys-
tem Sys = (Rn, f) and let V be a Lyapunov function for Sys. Then, for any
c ∈ R, the sublevel sets {x ∈ Rn : V (x) ≤ c} and {x ∈ Rn : V (x) < c} are
forward invariant for Sys. Furthermore, V is zero on any limit set of Sys.

Proof. See, e.g., Teschl (2012, Theorem 6.15) for the case of continuous-time
systems. The case of discrete-time systems is similar.

Lyapunov functions appear naturally in the study of the asymptotic be-
havior of dynamical systems. Indeed, Propositions 1.27 and 1.25 imply that
the trajectories of the system either converge towards the exterior of the state
space, or they converge to a set of points on which V is zero (see also, e.g.,
Khalil, 2002, Theorem 4.4, for a proof with slightly different assumptions on
the Lyapunov function). The above argument can be further refined to con-
clude that the system is stable with respect to the cost function induced by the
Lyapunov function.

Proposition 1.28 (Stability from Lyapunov function). Consider a dynamical
system Sys = (Rn, f) and a cost function C : Rn → R≥0. Let V be a Lyapunov
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function for Sys and assume that V is equivalent to C. Then, Sys is stable with
respect to C.

Proof. See Appendix A.1.2.

In particular, if V is radially unbounded and zero only at the origin, then
the system is stable with respect to the classical cost x 7→ ‖x‖ (see, e.g., Khalil,
2002, Theorems 4.9 and 4.10, for a proof with slightly different assumptions on
the Lyapunov function).

Lyapunov functions have been an important field of research in dynamical
systems theory for some time now (see, e.g., Hahn, 1967, and Khalil, 2002, for
surveys). In particular, the questions of existence and computation of Lya-
punov functions for stable dynamical systems have received a lot of attention
from the systems and control community; under the name of converse Lyapunov
theorems and Lyapunov’s direct method respectively. We refer the reader to the
references above for surveys on converse Lyapunov theorems and Lyapunov’s
direct method.

1.2.3 Linearization theory

We start with the definition of the prolonged system, introduced by Crouch
and van der Schaft (1987).

Definition 1.29 (Prolonged system). Given a dynamical system Sys = (Rn, f),
the prolonged system (also called the linear extension) of Sys, denoted by
∂Sys, is the dynamical system defined by (X∂ , f∂) where X∂ = Rn × Rn and
f∂(x, v) =

(
f(x), ∂f∂x (x)v

)
for all (x, v) ∈ Rn × Rn.

In the above definition, ∂f
∂x : Rn → Rn×n stands for the derivative (also

called Jacobian matrix) of f . From the definition, the trajectories (ξ, δ) :
T≥0 → Rn × Rn of the prolonged system satisfy{

ξ̇(t) = f(ξ(t))
δ̇(t) = ∂f

∂x (ξ(t))δ(t)
(continuous-time),

{
ξ+(t) = f(ξ(t))
δ+(t) = ∂f

∂x (ξ(t))δ(t)
(discrete-time),

for all t ∈ T≥0.
The prolonged system accounts for the sensitivity of the trajectories of a dy-

namical system to the initial condition, defined as the derivative of the generator
χ with respect to its second argument; see also Figure 1.9 for an illustration.
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Proposition 1.30 (Sensitivity to initial condition). Consider a dynamical
system Sys = (Rn, f). Then, for any (x, v) ∈ Rn × Rn, the function t 7→(
χ(t, x), ∂χ∂x (t, x)v

)
is a trajectory of the prolonged system ∂Sys.

Proof. See, e.g., Teschl (2012, Theorem 2.10) for the case of continuous-time
systems. The case of discrete-time systems is similar.

Figure 1.9: Sensitivity of trajectories to
the initial condition. The displacement
of the initial condition x0 by a small δx
translates as the displacement of the state
at time t by ∂χ

∂x
(t, x0)δx.

The study of linearized dynamics was introduced by Lyapunov (1892) for
the analysis of the local stability of fixed points of dynamical systems. Indeed,
given a dynamical system Sys = (Rn, f) and a fixed point a ∈ Rn for Sys,
it holds that if the Jacobian matrix ∂f

∂x at a provides a stable linear system,
then a is locally stable, meaning that there is a neighborhood A of a that is
forward invariant for Sys and such that the system restricted to A is stable with
respect to the classical cost x 7→ ‖x−a‖ (see, e.g., Khalil, 2002, Theorem 4.13,
or Robinson, 1999, Theorems 5.5.1 and 5.6.1). This approach is sometimes
referred to as Lyapunov’s indirect method for the stability analysis of fixed
points of dynamical systems. Note that the above result can be generalized
for the analysis of the incremental stability (also called contraction analysis)
of dynamical systems, using the prolonged system (see, e.g., Lohmiller and
Slotine, 1998, and Forni and Sepulchre, 2014).

The prolonged system can also be used to analyze the global behavior of
the system, for instance to ensure the existence of simple attractors for the
system (see, e.g., Forni and Sepulchre, 2016, and Forni and Sepulchre, 2019) or
the structural stability of its invariant sets, as explained in the subsubsection
below. See also Section 2.3 for applications in the context of dominance analysis
of dynamical systems.

Hyperbolicity and structural stability

In the preamble of this thesis, we introduced the concept of hyperbolicity, which
describes the property that the linearized dynamics of a dynamical system can
be split into an unstable component and a stable component.
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In this sense, the property of hyperbolicity generalizes the notion of hy-
perbolic fixed point. Indeed, a hyperbolic fixed point of a dynamical system
Sys = (Rn, f) is a fixed point a of Sys such that the Jacobian matrix ∂f

∂x (a) at a
has no marginally stable eigenvalues. Hence, since the prolonged system ∂Sys
around a is described by the linear dynamical system with matrix ∂f

∂x (a), the
linearized dynamics of Sys around a can be split into components that are either
stable or unstable (and never marginally stable); see also Figure 1.10 for an
example. Hyperbolic fixed points have the property of being structurally stable
(aka. robust to model perturbations), meaning that the qualitative behavior of
the system around the fixed point is not affected by small perturbations of the
system: indeed, it is well known from bifurcation theory that a fixed point a of
a dynamical system can appear or disappear, or change its nature (stable vs.
unstable) only if the Jacobian matrix at a has a marginally stable eigenvalue
(see, e.g., Robinson, 1999, Theorem 5.6.4).

Figure 1.10: Hyperbolic fixed point of a continuous-time dynamical system Sys =
(R2, f). The point a = (1, π/2) is a fixed point for the system described on the right
of the picture. The Jacobian of f at a has two eigenvalues, 1 and −1, which are
not marginally stable. The Hartman–Grobman theorem implies that the trajectories
of the system near the hyperbolic fixed point are close to those of the linear system
given by the Jacobian of f at a (see, e.g., Teschl, 2012, Theorem 9.9).

The concept of hyperbolic fixed point generalizes to invariant sets of in-
vertible dynamical systems Sys = (Rn, f) as follows (see also Definition 1.31
below). For every point x in the invariant set, the state space of the linearized
system (i.e., Rn) can be split into two complementary subspaces, denoted by
Es(x) and Eu(x), called the stable and unstable subspaces at x. The func-
tion associating these subspaces to each point of the invariant set is sometimes
called a hyperbolic splitting, and it has the property of being invariant for the
prolonged system ∂Sys and satisfies that the linearized dynamics of Sys starting
from the subspace Es(x) (resp. Eu) converges exponentially to zero as t goes
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to ∞ (resp. −∞; remember that Sys is invertible). This is formalized in the
following definition.

Definition 1.31 (Hyperbolic invariant set). Consider an invertible dynamical
system Sys = (Rn, f) and an invariant set Λ ⊆ Rn for Sys. The set Λ is said
to be hyperbolic for Sys if there are two set-valued functions Es : Λ ⇒ Rn

and Eu : Λ ⇒ Rn such that (i) for every x ∈ Λ, Es(x) and Eu(x) are linear
subspaces satisfying Rn = Es(x) ⊕ Eu(x), (ii) Es and Eu are invariant under
the action of the prolonged system in the sense that for all x ∈ Λ and t ∈ T,
∂χ
∂x (t, x)E�(x) = E�(χ(t, x)) for � ∈ {u, s}, and (iii) there is λ < 0 and C ≥ 0
such that for all (x, v) ∈ Λ× Rn,

• if v ∈ Es(x), then ‖∂χ∂x (t, x)v‖ ≤ C‖v‖eλ|t| for all t ∈ T≥0;

• if v ∈ Eu(x), then ‖∂χ∂x (t, x)v‖ ≤ C‖v‖eλ|t| for all t ∈ T≤0.

Remark 1.5. The requirements (ii) and (iii) in Definition 1.31 imply that the
functions Es and Eu are unique and depend continuously on their argument
(see, e.g., Robinson, 1999, Remark 8.1.6). This implies that the dimensions of
Es and Eu are constant on every connected component of Λ.

The property of structural stability of hyperbolic fixed points extends to
hyperbolic invariant sets, as first noticed by Anosov (1967) and Smale (1967)
for the so-called Anosov systems (systems that are hyperbolic on their whole
domain) and generalized by Hirsch and Pugh (1970) to isolated hyperbolic
invariant sets.

Definition 1.32 (Isolated invariant set). Consider an invertible dynamical
system Sys = (Rn, f). A closed set Λ ⊆ Rn invariant for Sys is said to be
isolated if there is a neighborhood U of Λ such that Λ is the maximal invariant
set of Sys contained in U . Such a set U is called an isolating neighborhood for
Λ.

Proposition 1.33 (Structural stability of hyperbolic invariant sets). Consider
an invertible dynamical system Sys = (Rn, f), and let Λ ⊆ Rn be a hyperbolic
isolated invariant set for Sys, with isolating neighborhood U . Then, Λ is struc-
turally stable (also called robust to model perturbations) for Sys: this means
that there is ε > 0 such that any dynamical system Sys′ = (Rn, f ′), with f ′

ε-close to f in the C1(U)-topology5, has a nonempty maximal invariant set Λ′

in U and satisfies that f |Λ and f |Λ′ are topologically conjugate6.
5This means that supx∈U ‖f(x)− f ′(x)‖ ≤ ε and supx∈U ‖

∂f
∂x

(x)− ∂f ′

∂x
(x)‖ ≤ ε.

6This means that there is a homeomorphism (that is, a bijective bi-continuous function)
h : Λ→ Λ′ such that χ(t, x; Sys′)) = h−1(χ(t, h(x); Sys)) for all x ∈ Λ′ and t ∈ T.
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Proof. See, e.g., Robinson (1999, Theorem 10.7.4) for the case of discrete-
time systems. The case of continuous-time systems can be deduced by time
discretization.

As for hyperbolic fixed points, it can be shown that hyperbolicity is in gen-
eral not only a sufficient condition but also a necessary condition for structural
stability. Indeed, under some mild assumptions (e.g., Axiom A, or no-cycle con-
dition, etc.), the structurally stable dynamical systems are precisely the ones
that are hyperbolic on some distinguished sets (e.g., limit set, chain-recurrent
set, etc.; see, e.g., Robinson, 1999, Chapters 10 and 11).

First developed for invertible dynamical systems (as in Definition 1.31), hy-
perbolicity has rapidly become a cornerstone of dynamical systems theory and
found applications in many different areas, like chaos, ergodic theory, entropy,
etc. (see, e.g., Robinson, 1999, and Hasselblatt, 2017, for comprehensive sur-
veys of results related to hyperbolic dynamics). Hyperbolicity has also been
generalized in several directions, accounting for various classes of systems while
retaining the main features of hyperbolic dynamics: see, e.g., Hasselblatt and
Pesin (2006) (partial hyperbolicity), Barreira and Pesin (2006) (non-uniform
hyperbolicity), Berger and Rovella (2013) (non-invertible hyperbolic dynamical
systems), Colonius and Du (2001) (hyperbolic control systems).

1.3 Switched systems theory

Switched systems are hybrid systems described by a finite set of continuous
dynamics among which the system can switch over time (see Definitions 1.7
and 1.8 in Subsection 1.1.2). These systems arise naturally in the modeling of
phenomenons, processes or devices presenting sudden changes between different
modes of operation. By restricting the set of admissible transitions of the
system between the different modes, one obtains constrained switched systems.
This allows for instance to increase the expressiveness of these systems by
considering only the transitions that happen in practice; see, e.g., Example
1.3. Constrained switching can also be used as a design parameter to ensure
that the system satisfies some properties. The function describing the current
mode of the system is called the switching signal (see Subsection 1.1.2). The
restrictions on the transitions of the system between the different modes can
thus be enforced as constraints on the switching signal.

In this section, we discuss two types of such constraints on the switching
signal, namely switching with dwell time and switching constrained by a timed
automaton. We also review some of the tools for the analysis of switched
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systems. In particular, we discuss the notions of stability for switched lin-
ear systems and we introduce the concepts of multiple Lyapunov functions
and path-complete Lyapunov functions, which extend the theory of Lyapunov
functions to switched systems.

The section is organized as follows. In Subsection 1.3.1, we introduce the
notions of generator of switched systems, and we discuss different types of
constraints on the switching signal. In Subsection 1.3.2, we introduce switched
linear systems and discuss the notions of stability for these systems. In particu-
lar, we introduce the concept of joint spectral radius of switched linear systems
under arbitrary switching and discuss some of its properties that will be rel-
evant for this work. Finally, in Subsection 1.3.3, we introduce the concepts
of multiple and path-complete Lyapunov functions and review some of their
properties for the stability analysis of (constrained) switched linear systems.

References. As paradigmatic examples of hybrid systems, switched systems
have received a lot of attention in the literature; see, e.g., Liberzon (2003), Lin
and Antsaklis (2009), Jungers (2009) and Sun and Ge (2011) for introductions.
Our main references for this section are Liberzon (2003) and Sun and Ge (2011)
covering most of the concepts and results discussed in this section, and Jungers
(2009) for the definition and properties of the joint spectral radius.

Notation. We will consider both continuous-time systems and discrete-time
systems, and we will use the symbol T to denote the time domain of the system,
as it should be clear from the context whether T = R (continuous-time systems)
or T = Z (discrete-time systems). We remind that, unless said otherwise, all
considered trajectories of hybrid systems are assumed to be maximal.

1.3.1 Generator and switching signals

In Subsection 1.1.2, we saw that a switched system can be described by the
triple (Rn, U, {fi}i∈Σ) where Rn is the state space of the continuous variable,
U is the input space and for each i ∈ Σ, fi : Rn × U → Rn is a contin-
uous (even Lipschitz continuous in its first argument in the continuous-time
case) function, and possibly additional assumptions on the right-continuous,
piecewise constant7 switching signal. Therefore, given a switched system SwS,
we will use the notation SwS ∼ (Rn, U, {fi}i∈Σ) to mean that SwS has state
space Rn for the continuous variable, input space U , set of functions {fi}i∈Σ,
and possibly additional assumptions on the switching signals (typically spec-

7We saw in Subsection 1.1.2 that the switching signals of a continuous-time switched
system are right-continuous and piecewise constant. This also holds for discrete-time switched
systems since functions defined on a discrete set are trivially right-continuous and piecewise
constant.
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ified at the introduction of SwS). For a reminder, the complete trajectories
(ξ, σ) : T≥0 → Rn × Σ of a switched system SwS ∼ (Rn, U, {fi}i∈Σ) with in-
put u : T≥0 → Rn satisfy ξ̇(t) = fσ(t)(ξ(t), u(t)) for all t ∈ R≥0 (if SwS is
continuous-time) and ξ(t+1) = fσ(t)(ξ(t), u(t)) for all t ∈ N (if SwS is discrete-
time), where ξ : T≥0 → Rn is the continuous variable and σ : T≥0 → Σ is the
switching signal of the trajectory.

Definition 1.34 (Set of complete switching signals). Given a switched system
SwS, we denote by S(SwS) (or S if SwS is clear from the context) the set of
complete switching signals (i.e., switching signals corresponding to complete
trajectories) of SwS.

We restrict our attention to the set of complete switching signals since,
by definition of switched systems (see Definitions 1.7 and 1.8 in Subsection
1.1.2), the switching signals are the trajectories of an autonomous hybrid sub-
system. Hence, non-complete switching signals are in general not interesting
as it implies that the trajectory of the switched system stops only because the
switching signal cannot be continued.

The set of complete switching signals of a switched system has the following
shift-invariance property.

Proposition 1.35 (Forward shift-invariance of S). Consider a switched system
SwS with set of mode Σ. The set S of complete switching signals of SwS is
closed under forward time shift, meaning that for all σ ∈ S and t0 ∈ T≥0, the
signal σ′ : T≥0 → Σ defined by σ′(t) = σ(t+ t0) satisfies σ′ ∈ S.

Proof. Straightforward from the definition of the switching signal as the pro-
jection of the trajectory of a hybrid system.

The assumptions on the set of functions of a switched system SwS ∼
(Rn, U, {fi}i∈Σ) imply that for any input u ∈ U , any switching signal σ ∈ S
and any initial point x ∈ Rn, there is a unique function ξ : T≥0 → Rn such
that (ξ, σ) is a trajectory of SwS with input u and with ξ(0) = x. This leads
to the concept of generator of the trajectories of a switched system.

Definition 1.36 (Generator of a switched system). The generator of a switched
system SwS ∼ (Rn, U, {fi}i∈Σ), denoted by χ(·, ·, ·, ·, ·; SwS) (or χ when SwS
is clear from the context), is the function χ : T × Rn × S × U → Rn with
T = {(t1, t0) ∈ T≥0 × T≥0 : t1 ≥ t0}, defined by χ(t1, t0, x, σ, u) = ξ′(t1 − t0)
where (ξ′, σ′) : T≥0 → Rn ×Σ is the trajectory of SwS starting at x with input
u′ : T≥0 → U , defined by σ′(t) = σ(t+ t0) and u′(t) = u(t+ t0) for all t ∈ T≥0.
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Remark 1.6. If t0 = 0, we also use the shortened notation “χ(t, x, σ, u)” to
denote “χ(t, 0, x, σ, u)”. If SwS is autonomous, we use the shortened notation
“χ(t, t0, x, σ)” to denote “χ(t, t0, x, σ, u)” where u is the unique function in U .

The generator satisfies the following properties, which sometimes consist
in the defining axioms of a control system in the abstract theory of control
systems (see, e.g., Sontag, 1998).

Proposition 1.37 (Properties of the generator). Consider a switched system
SwS ∼ (Rn, U, {fi}i∈Σ). The generator χ of SwS is continuous in its third ar-
gument and satisfies the following property (called semigroup axiom by Sontag,
1998): for every t0, t1, t2 ∈ T≥0, t2 ≥ t1 ≥ t0, x ∈ Rn, σ ∈ S and u ∈ U , it
holds that χ(t2, t0, x, σ, u) = χ(t2, t1, χ(t1, t0, x, σ, u), σ, u).

Proof. See, e.g., Teschl (2012, Theorem 2.8) for a proof of the continuity with
respect to the third argument, in the case of continuous-time systems. The
case of discrete-time systems is similar. The proof of the second property is
direct.

Adding assumptions on the switching signals of switched systems allows to
increase their expressiveness to model a wide range of complex systems and
phenomenons. We discuss below different types of such assumptions that can
be made on the switching signal of switched systems.

Arbitrary switching

When there is no assumption on the switching signal except that it is right-
continuous and piecewise constant, we say that the switched system is under
arbitrary switching.

For continuous-time switched systems under arbitrary switching, the re-
quirement that the maximal trajectories are complete cannot be enforced in
the definition of the system as a hybrid system. Nevertheless, the complete
trajectories of a continuous-time switched system SwS ∼ (Rn, U, {fi}i∈Σ) un-
der arbitrary switching are connected to the trajectories of the associated dif-
ferential inclusion.

Definition 1.38. The differential inclusion associated to a continuous-time
switched system SwS ∼ (Rn, U, {fi}i∈Σ) under arbitrary switching is the hybrid
system HySys = (Rn, U, F,G) where F (x, u) = {fi(x, u)}i∈Σ and G : Rn×U ⇒
∅ is the empty map.

It holds that every trajectory of HySys with input u ∈ U is complete and
can be approximated locally by a trajectory of SwS with the same input (see
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also Sun and Ge, 2011, Subsection 2.3.1, for a stronger result—stated without
proof though—in the case of switched linear systems).

Proposition 1.39. Let SwS ∼ (Rn, U, {fi}i∈Σ) be a continuous-time switched
system under arbitrary switching and HySys be the associated differential in-
clusion. Let φ : R → Rn be a trajectory of HySys with input u ∈ U . Then, for
any ε > 0 and T ∈ R≥0, there is a complete trajectory (ξ, σ) of SwS with input
u such that for all t ∈ [0, T ], ‖φ(t)− ξ(t)‖ ≤ ε.

Proof (sketch). The proof follows from the fact that any L1 function can be
approximated arbitrarily well by a right-continuous, piecewise constant func-
tion in the L1 topology (see, e.g., Friedman, 1982, Problem 3.2.2). The details
are omitted since the study of differential inclusions is not the objective of this
thesis.

Furthermore, although the requirement that the maximal trajectories are
complete cannot be explicitly enforced for continuous-time switched systems
under arbitrary switching, it will be naturally satisfied when some other as-
sumptions, which can be expressed in the formalism of hybrid systems, are
made on the switching signal. We think for instance to slow-switching as-
sumptions, such as dwell-time or average dwell-time assumptions, which are
introduced below.

Remark 1.7. While it is interesting to see which types of assumptions on the
switching signal can be expressed in the formalism of hybrid systems to appre-
ciate the scope and flexibility of this formalism, and to keep a consistent and
limited set of notations through this work, this should not be an imperative in
itself and should not be a limitation for the theoretical and practical study of
switched systems.

Dwell-time switching and constrained switching

The concept of dwell time was introduced by Morse (1996) to describe switching
signals that require a minimal amount of time between two switches. This
concept was later generalized by Hespanha and Morse (1999), under the name
of average dwell time, to account for the property that the number of switches
in a bounded interval grows at most linearly with the length of the interval.
Both concepts have become standard in the study of switched systems (see,
e.g., Liberzon, 2003, Section 3.2, and Goebel et al., 2012, Section 2.4).

Definition 1.40 (Dwell time and average dwell time). Consider a finite set Σ
and a right-continuous, piecewise constant function σ : R→ Σ. For t1, t0 ∈ R,
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t1 ≥ t0, let Nσ(t1, t0) be the number of discontinuity points of σ in [t0, t1). Let
τa > 0 and N◦ ≥ 0.

• We say that σ has average dwell time τa (with parameter N◦) if for any
t1, t0 ∈ R, t1 ≥ t0, it holds that Nσ(t1, t0) ≤ N◦ + t1−t0

τa
.

• We say that σ has absolute dwell time (or dwell time) τa if it has average
dwell τa with parameter N◦ = 1 (this is equivalent to saying that there is
at least τa units of time between any two discontinuities of σ).

A function σ : E → Σ, with E ⊆ R, is said to have average dwell time τa (with
parameter N◦) (resp. absolute dwell time τa) if there is a right-continuous,
piecewise constant extension of σ on R with average dwell time τa and with
parameter N◦ (resp. absolute dwell time τa). For t1, t0 ∈ R, t1 ≥ t0, we let
Nσ(t1, t0) = min {Nσ̂(t1, t0) : σ̂ is a right-continuous, piecewise constant extension
of σ on R}.

Definition 1.41 (Switched system with dwell time and average dwell time).
Consider a switched system SwS, and let τa > 0 and N◦ ≥ 0.

• We way that SwS has average dwell time τa (with parameter N◦) if all
its switching signals have average dwell time τa with parameter N◦.

• We say that SwS has absolute dwell time (or dwell time) τa if all its
switching signals have dwell time τa.

See Figure 1.11 for an illustration.

Figure 1.11: Top: Switch-
ing signal σ with set of modes
Σ = {1, 2, 3}, and with absolute
dwell time τa. Bottom: Number of
switches of σ in the interval [0, t).
The number of switches is always
smaller than t/τa since σ has ab-
solute (and thus average) dwell
time τa.

Remark 1.8. Interestingly, the condition that a switched system has an absolute
dwell time or an average dwell time can be expressed in the formalism of hybrid
systems (see, e.g., Goebel et al., 2012, Section 2.4).
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On top of slow-switching assumptions (like absolute dwell-time and average
dwell-time assumptions), it is sometimes useful to restrict also the transitions
of the system between different modes. This allows for instance to use switched
systems as abstractions of complex systems while retaining the main features
of the original system (see, e.g., Philippe, 2017, and Section 2.3). The set of
admissible transitions between modes can also be used as a design parameter
to ensure that the switched system satisfies some properties (see, e.g., Philippe,
2017, and Gomes et al., 2018).

To describe the set of admissible transitions and dwell times between tran-
sitions, we use a timed automaton, which is a directed graph with edges labeled
by symbols from a finite alphabet (typically the set of modes of the switched
system) and by “dwell time sets” which are subsets of R≥0; see also Figure 1.12
for an illustration.

Definition 1.42 (Timed automaton). A timed automaton is a triplet (Q,Σ,Θ)
where Q is a finite set, called the set of states, Σ is a finite set, called the
alphabet, and Θ ⊆ Q×Q× Σ× 2R≥0 is a finite set of timed transitions.

Figure 1.12: Timed automaton with two states Q = {a, b}
and two transitions Θ = {(a, b, 2, [0, 1]), (b, a, 1, [3,∞))}.
This automaton accepts every switching signal that does
not stay longer than 1 (unit of time) in mode 2 and stays
at least 3 (units of time) in mode 1 (see Definition 1.43).

Remark 1.9. The term “timed automaton” is used here in a sense different than
its usual meaning in automata theory (see, e.g., Mitra, 2021, Section 4.3.6).
Classical timed automata are directed graphs together with a set of clocks, and
each edge of the graph is associated with a set of clock constraints (specifying
when the edge can be taken) and a set of resets (specifying which clocks are
reset to zero when the edge is taken). The timed automata considered here
correspond to classical timed automata with a single clock and with reset of
this clock for each edge of the graph.

For a transition θ = (q1, q2, i, E) ∈ Θ, we denote its source q1 by s(θ), its
target q2 by t(θ), its mode i by i(θ), and its set of durations E by d(θ). A path
of length J , with J ∈ N∪{∞}, in a timed automaton (Q,Σ,Θ) is any sequence
(θj)J−1

j=0 ⊆ Θ satisfying that t(θj) = s(θj+1) for all j ∈ {0, . . . , J − 2}.

Definition 1.43 (Admissible signal for a timed automaton). Consider a timed
automaton Aut = (Q,Σ,Θ). A function σ : E → Σ, with E ⊆ R, is said to be
admissible for Aut (or accepted by Aut) if σ has an extension σ̂ on R satisfying
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that for any T0, T1 ∈ R, T1 ≥ T0, there is a finite sequence of times (τj)J+1
j=0 ⊆ R,

T0 = τ0 < τ1 < . . . < τJ+1 = T1, and a path (θj)J−1
j=0 in Aut such that (i) for all

j ∈ {0, . . . , J}, σ̂ is constant on [τj , τj+1), and (ii) for all j ∈ {1, . . . , J − 1},
σ̂(τj) = i(θj) and τj+1 − τj ∈ d(θj).

Definition 1.44 (Constrained switched system). Consider a switched system
SwS with set of modes Σ and a timed automaton Aut = (Q,Σ,Θ). The system
SwS is said to be constrained by Aut if all its switching signals are admissible
for Aut.

It is not difficult to see that constrained switched systems can be defined
as hybrid systems. Also, note that constrained switched systems are more
general than switched systems with absolute dwell time since the assumption
that the system has absolute dwell time τa can be enforced by requiring that
Θ ⊆ Q×Q×Σ× [τa,∞). Similarly, discrete-time switched systems can be seen
as continuous-time switched systems constrained by a timed automaton with
Θ ⊆ Q×Q× Σ× {1}.

State-dependent switching and controlled switching

The switched systems considered above assume that the switching mechanism
is autonomous in the sense that the switching signal does not depend on the
continuous variable nor on the input. Other classes of switched systems can
be considered by adding an explicit dependence of the switching signal on
the continuous variable and on the input. These systems can in general be
expressed in the formalism of hybrid systems as well. In fact, the switched
systems whose switching signal depends only on the continuous variable and/or
on the input function can also be addressed in the setting of discontinuous
control systems, but it is often easier to think about them as switched systems
with state-dependent or controlled switching signal (see, e.g., Sun and Ge, 2011,
Chapters 3 and 4).

In this thesis, we will mainly focus on switched systems with autonomous
switching mechanisms, but we will also discuss some applications of our re-
sults for switched systems under state-dependent and controlled switching in
Subsection 3.3.4 (see Example 3.6) and in Section 3.5. Further discussion on
the theory and applications of switched systems with state-dependent and con-
trolled switching can be found in Liberzon (2003) and Sun and Ge (2011).

1.3.2 Stability theory of switched linear systems

In this subsection, we restrict our attention to switched linear systems.
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Definition 1.45 (Switched linear system). A switched system SwS ∼ (Rn, U, {fi}i∈Σ)
is said to be a switched linear system if U = Rm and for all i ∈ Σ, there is
Ai ∈ Rn×n and Bi ∈ Rn×m such that fi(x, u) = Aix + Biu for all (x, u) ∈
Rn × Rm.

Switched linear systems can be more concisely described by specifying only
the state space Rn, the input space Rm and the matrices Ai and Bi for each
i ∈ Σ. Thus, following the notation of the Subsection 1.3.1, we will write SwS ∼
(Rn,Rm, {Ai}i∈Σ, {Bi}i∈Σ) to mean that SwS is a switched linear system with
state space Rn, input space Rm, set of matrices {Ai}i∈Σ and {Bi}i∈Σ, and
possibly additional assumptions on the switching signal (typically specified at
the introduction of SwS). If SwS is autonomous, then we simply write SwS ∼
(Rn, {Ai}i∈Σ).

The generator of a switched linear system is linear in the initial state and
the input function.

Proposition 1.46 (Linearity of the generator). Consider a switched linear
system SwS ∼ (Rn,Rm, {Ai}i∈Σ, {Bi}i∈Σ). The generator χ of SwS is linear
in its third and fifth arguments, meaning that for all t0, t1 ∈ T≥0, t1 ≥ t0,
σ ∈ S, x1, x2 ∈ Rn, u1, u2 ∈ U and µ ∈ R, χ(t1, t0, µx1 + x2, σ, µu1 + u2) =
µχ(t1, t0, x1, σ, u1) + χ(t1, t0, x2, σ, u2).

Proof. See, e.g., Antsaklis and Michel (2006, Eq. 14.4 and 15.14 in Chapter
1).

The linearity of the generator leads to the concept of fundamental matrix
solution of autonomous switched linear systems.

Definition 1.47 (Fundamental matrix solution). Consider an autonomous
switched linear system SwS ∼ (Rn, {Ai}i∈Σ) with generator χ : T × Rn × S →
Rn. The fundamental matrix solution of SwS, denoted by χ̊(·, ·, ·; SwS) (or χ̊
when SwS is clear from the context), is the function χ̊ : T ×S → Rn×n defined
by χ̊(t1, t0, σ) is the unique matrix such that for all x ∈ Rn, χ̊(t1, t0, σ)x =
χ(t1, t0, x, σ).

If SwS is discrete-time, the fundamental matrix solution has the follow-
ing closed-form expression: χ̊(t1, t0, σ) = Aσ(t1−1)Aσ(t1−2) · · ·Aσ(t0). Simi-
larly, if SwS is continuous-time, then it can be expressed as χ̊(t1, t0, σ) =
eAσ(τJ )(τJ+1−τJ )eAσ(τJ−1)(τJ−τJ−1) · · · eAσ(τ0)(τ1−τ0), where τ1 ≤ τ2 ≤ . . . ≤ τJ

are the discontinuity points of σ in the interval [t0, t1), and τ0 = t0 and
τJ+1 = t1.
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Stability notions for switched linear systems

We refine the notion of stability for switched linear systems.

Definition 1.48 (Stability of switched linear systems). Consider an autonomous
switched linear system SwS ∼ (Rn, {Ai}i∈Σ).

• We say that SwS is globally asymptotically stable (or stable, or GAS)
if there is a class-KL function β such that for every x ∈ Rn, σ ∈ S and
t ∈ T≥0, ‖χ(t, x, σ)‖ ≤ β(‖x‖, t);

• We say that SwS is globally exponentially stable (or exponentially stable,
or GES) if it is GAS with function β defined by β(r, t) = Cre−λt for all
r, t ≥ 0 and for some C ≥ 0 and λ > 0.

The difference with the definition of stability for hybrid systems (see Def-
inition 1.19 in Subsection 1.1.3) is that in Definition 1.48, the uniform con-
vergence property is required only for complete trajectories. If the system has
only complete trajectories, then the two definitions coincide. This is the case
for instance for switched linear systems with dwell time or average dwell time,
and for discrete-time switched linear systems under arbitrary switching. For
continuous-time switched linear systems under arbitrary switching, the above
notion of stability coincides with the one for hybrid systems applied on the as-
sociated differential inclusion (see Definition 1.38), as explained in Proposition
1.51 below.

For switched linear systems, the notions of stability and exponential stabil-
ity are equivalent.

Proposition 1.49. An autonomous switched linear system is GES if and only
if it is GAS.

Proof. The proof relies on the linearity of the generator and on the shift-
invariance of S (Proposition 1.35); see, e.g., Sun and Ge (2011, Proposition
2.13).

Stability under arbitrary switching

The stability analysis of switched linear systems under arbitrary switching has
received a great deal of attention in the literature because of its pervasiveness
in theoretical and practical problems (see, e.g., Jungers, 2009). Of particu-
lar relevance for this question are the concepts of Lyapunov exponent, named
after Lyapunov’s indirect method, and its cousin concepts of joint spectral ra-
dius, introduced by Rota and Strang (1960), and generalized spectral radius,
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introduced by Daubechies and Lagarias (1992), which account for the maximal
rate of exponential growth of the trajectories of switched linear systems under
arbitrary switching.

Definition 1.50 (Joint spectral radius and generalized spectral radius). Con-
sider an autonomous switched linear system SwS ∼ (Rn, {Ai}i∈Σ) under arbi-
trary switching. The Lyapunov exponent (or joint spectral radius8) of SwS,
denoted by %̂(SwS), is defined by

%̂(SwS) = lim
T→∞

1
T

log(sup {‖χ̊(T, 0, σ)‖ : σ ∈ S})

(the limit exists by Fekete’s lemma; see, e.g., Jungers, 2009, Lemma 1.1). The
generalized spectral radius9 of SwS, denoted by %̌(SwS), is defined by

%̌(SwS) = lim sup
T→∞

1
T

log(sup {%(χ̊(T, 0, σ)) : σ ∈ S}),

where %(A) stands for the spectral radius of A ∈ Rn×n.

The joint spectral radius is a measure of the stability of the system in the
following sense.

Proposition 1.51 (Joint spectral radius and stability). Consider an autonomous
switched linear system SwS ∼ (Rn, {Ai}i∈Σ) under arbitrary switching. The
following are equivalent:

1. %̂(SwS) < 0;

2. SwS is GES;

3. For all x ∈ Rn and σ ∈ Σ, it holds that limt→∞ χ(t, x, σ) = 0.

If SwS is continuous-time, then any (and thus all) of the above statements is
equivalent to any (and thus all) of the following statements:

4. HySys is GES;

5. Any trajectory φ : R≥0 → Rn of HySys satisfies limt→∞ φ(t) = 0;

where HySys is the differential inclusion associated to SwS (see Definition 1.38).

Proof. See Appendix A.1.3.10

8The joint spectral radius is generally defined for discrete-time switched linear systems
as e%̂(SwS) (see, e.g., Jungers, 2009), but here for the simplicity of notation, we use the same
definition for continuous-time and discrete-time systems.

9Same comment as for the joint spectral radius.
10Surprisingly, we did not find a convincing proof of this result for the case of continuous-

time systems in the literature. Therefore, we present a proof of it in the appendix.
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In fact, it follows from the previous proposition that the notions of joint
spectral radius and generalized spectral radius coincide. This result is known
as the joint spectral radius theorem and was first proved by Berger and Wang
(1992) for discrete-time switched linear systems.

Proposition 1.52 (Joint spectral radius theorem). Consider an autonomous
switched linear system SwS ∼ (Rn, {Ai}i∈Σ) under arbitrary switching. It holds
that %̂(SwS) = %̌(SwS).

Proof. See Berger and Wang (1992) for the original proof in the case of discrete-
time systems; see also Elsner (1995, Theorem 1) for a simplified proof (also in
the case of discrete-time systems). The case of continuous-time systems is
similar.

Stable switched linear systems under arbitrary switching admit a Lyapunov
function, sometimes called a common Lyapunov function since it is a Lyapunov
function for each individual mode. Moreover, due to the linearity of the system,
the common Lyapunov function can be chosen to be a norm in Rn (see, e.g.,
Jungers, 2009, Proposition 1.4, or Sun and Ge, 2011, Theorem 2.15). How-
ever, even though such a common Lyapunov norm is guaranteed to exist for
stable switched linear systems under arbitrary switching, its computation can
be challenging due to the complexity of its expression (see, e.g., Jungers, 2009,
Section 2.3, and Sun and Ge, 2011, Section 2.4). Moreover, the framework of
common Lyapunov functions does not allow to study the stability of switched
linear systems with slow-switching conditions or with constrained switching sig-
nals. Therefore, we introduce below the theory of multiple and path-complete
Lyapunov functions, addressing these issues.

1.3.3 Multiple Lyapunov functions and path-complete Lya-
punov theory

Multiple Lyapunov functions were introduced by Branicky (1998) as a tool
for the stability analysis of switched and hybrid systems with state-dependent
or controlled switching. They were later generalized to account for switched
systems under slow- and/or fast-switching assumptions11 (see, e.g., Liberzon,
2003, Section 2.3, and Zhang and Gao, 2010).

In a nutshell, a multiple Lyapunov function is a set of Lyapunov functions,
typically one or more per mode of the system, with a minimal rate of decrease

11Essentially, the slow-switching assumptions require that the system dwells sufficiently
long in “stable” modes, and the fast-switching assumptions require that it does not dwell to
long in “unstable” modes.
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(which can be negative if the mode is unstable) along the trajectories of the
associated mode; see Example 1.5 for an illustration. The value of the Lya-
punov function depends thus on the state and on the mode of the system, and
needs not necessarily decrease at the switching times. However, if the multiple
Lyapunov function decreases on the long term (e.g., by imposing slow- and/or
fast-switching conditions), then the system is stable.

Multiple Lyapunov functions were extensively studied, with a special focus
on the computational aspects, in the context of discrete-time or constrained
switched systems, under the name of path-complete Lyapunov functions (see,
e.g., Ahmadi et al., 2014, and Philippe, 2017).

Definition 1.53 (Path-complete Lyapunov function). Consider an autonomous
switched system SwS ∼ (Rn, {fi}i∈Σ). A path-complete Lyapunov function for
SwS is an ordered pair (Aut, {Vq}q∈Q) where Aut = (Q,Σ,Θ) is a timed automa-
ton accepting every switching signal σ ∈ S, and {Vq}q∈Q is a set of functions
from Rn to R≥0 that are K-equivalent to ‖·‖ : Rn → R, such that there is
a class-K function α satisfying that for every transition θ ∈ Θ, x ∈ Rn and
τ ∈ d(θ), Vt(θ)(χ(τ, x; fi(θ))) − Vs(θ)(x) ≤ −α(Vs(θ)(x)), where χ(·, ·; fi) is the
generator of the dynamical system associated to the mode i.

Example 1.5. Consider a continuous-time switched linear system SwS ∼ (R1, {fi}i∈Σ)
with two modes: f1(x) = −x and f2(x) = 2x; and assume that SwS has dwell
time 3 (units of time) for mode 1 and cannot stay longer than 1 (unit of time)
in mode 2. Then, the timed automaton and the quadratic functions depicted
in Figure 1.13 provide a path-complete Lyapunov function for SwS. Indeed,
for the transition (a, b, 2, [0, 1]), it holds that for any x ∈ R and τ ∈ [0, 1],
|χ(τ, x; f2)| ≤ e2|x|, so that Vb(χ(τ, x; f2)) ≤ e4x2 < 60x2 = Va(x). As for
the transition (b, a, 2, [3,∞)), it holds that for any x ∈ R and τ ∈ [3,∞),
|χ(τ, x; f1)| ≤ e−3|x|, so that Va(χ(τ, x; f1)) ≤ 60e−6x2 < x2 = Vb(x).

Figure 1.13: A path-complete Lyapunov function
for SwS in Example 1.5, consisting in a timed au-
tomaton (same as in Figure 1.12) together with
quadratic functions associated to each state of the
automaton.

The existence of a path-complete Lyapunov function ensures stability of the
system.

Proposition 1.54 (Stability from path-complete Lyapunov function). Con-
sider a switched system SwS and assume that there is a path-complete Lyapunov
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function for SwS. Then, SwS is stable with respect to the cost C : Rn ×Σ→ R
defined by C(x, σ) = ‖x‖.

Proof. See, e.g., Ahmadi et al. (2014, Theorem 2.4) for the case of discrete-time
switched linear systems. The general case is similar.

The framework of multiple Lyapunov functions can also be used to study
the stability of switched systems with average dwell time.

Proposition 1.55. Consider an autonomous switched system SwS ∼ (Rn, {fi}i∈Σ).
Let Aut = (Q,Σ,Θ) be a timed automaton accepting any right-continuous,
piecewise constant function from T≥0 to Σ, and {Vq}q∈Q be a set of func-
tions from Rn to R≥0 that are K-equivalent to ‖·‖ : Rn → R. Assume that
there is λ > 0 such that for all θ ∈ Θ, Vs(θ)(χ(t, x;Ai(θ))) ≤ e−λtVs(θ)(x)
for all x ∈ Rn and t ∈ T≥0, and there is µ > 0 such that for all θ ∈ Θ,
Vs(θ)(x) ≤ µVt(θ)(x) for all x ∈ Rn. Also, assume that SwS has average
dwell time τa with τa > log(µ)/λ. Then, SwS is stable with respect to the
cost C : Rn × Σ→ R defined by C(x, σ) = ‖x‖.

Proof. See, e.g., Liberzon (2003, Theorem 3.2) for the case of continuous-time
systems. The case of discrete-time systems is similar.

In particular, it follows that any switched linear system with stable indi-
vidual modes is stable if it has a large enough average dwell time (see, e.g.,
Liberzon, 2003, Subsection 3.2.2).

1.4 Abstractions of dynamical systems

The approach of abstraction consists in representing a dynamical or hybrid
system by a finite system, called a symbolic model. The analysis and control
of the original system can then be achieved from the study of the symbolic
model, provided that the latter provides a sufficiently accurate representation
of the original system (a property formalized thanks to the notion of simula-
tion relation). The algorithmic theory of abstraction generally comprises two
aspects: the construction of the symbolic model, and the analysis of the sym-
bolic model, typically using techniques from graph and automata theory (the
frontier between the two aspects can sometimes be fuzzy, for instance in the
case of adaptive algorithms).

In this section, we explain how to compute accurate abstractions of smooth
dynamical systems and how to use the resulting symbolic model to deduce
several properties of the original system, namely regarding the location of its
invariant sets. These techniques will be used in Section 2.3 for the analysis of
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p-dominance and hyperbolicity of nonlinear smooth dynamical systems. Let us
mention that a common limitation of the techniques of abstraction are their
poor scalability with respect to the dimension of the system (called the curse
of dimensionality); and although no complexity analysis is provided, the tech-
niques presented in this section are no exception to it.

The section is organized as follows. In Subsection 1.4.1, we define the
concepts of symbolic model and simulation relation. In Subsection 1.4.2, we
describe an algorithm to construct accurate symbolic models based on uniform
grid discretization of the state space and the sensitivity matrix of the system.
Finally, in Subsection 1.4.3, we explain how to locate the invariant sets of
dynamical systems based on their symbolic models.

References. The techniques of abstraction and formal verification for the
analysis and design of dynamical and hybrid systems have received a lot of
attention from the control community in recent years, with great theoretical
and practical advances; see, e.g., Osipenko (2007), Tabuada (2009), Lee and
Seshia (2017) and Mitra (2021) for introductions. Some of these techniques
are implemented in state-of-the-art software tools, such as Pessoa, CoSyMA
or SCOTS, for the abstraction and symbolic control, and CAPD, Flow* or
JuliaReach, for the reachability analysis. Our main references for this section
are Osipenko (2007) for the definition of symbolic models and their use to locate
the invariant sets of dynamical systems, and Tabuada (2009) for the definition
of transition systems and simulation relations.

Notation. In this section, all considered hybrid systems are smooth dynam-
ical systems, and thus for the sake of brievety, we will refer to them simply as
dynamical systems. Also, we will consider both continuous-time systems and
discrete-time systems, and we will use the symbol T to denote the time domain
of the system, as it should be clear from the context whether T = R (continuous-
time systems) or T = Z (discrete-time systems). The Minkowski sum of A ⊆ Rn

and B ⊆ Rn (or {x} ⊆ Rn) is denoted by A + B (or A + x). If A ⊆ Rn and
M ∈ Rn×n, then MA is the image of A by M , i.e., MA = {Mx : x ∈ A}.
Finally, the Hadamard (or component-wise) product of x ∈ Rn and y ∈ Rn is
denoted by x� y.

1.4.1 Symbolic models and simulation relations

We introduce below the definition of a symbolic model of a dynamical system.
First, we remind the definition of a directed graph.

Definition 1.56 (Directed graph). A directed graph is an ordered pair (Q,E)
where Q is a finite set called the set of nodes, and E ⊆ Q×Q is called the set
of edges.
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A symbolic model can be seen as a directed graph, for which each node of
the graph is associated to a region of the state space and the edges of the graph
represent the possible transitions of the system from one region to another.

Definition 1.57 (Symbolic model). Consider a dynamical system Sys = (Rn, f)
and let T ∈ T>0 be a time step. A symbolic model of Sys with time step T

is an ordered pair ({Oq}q∈Q, E), where Q is a finite set, Oq ⊆ Rn for each
q ∈ Q, and E ⊆ Q × Q is a set of edges satisfying that for every q1, q2 ∈ Q,
{χ(T, x) : x ∈ Oq1} ∩Oq2 6= ∅ implies that (q1, q2) ∈ E.

See Figure 1.14 for an illustration.

Figure 1.14: Symbolic model of a dynamical sys-
tem. The image of the region O1 is depicted in
red. Since the image of O1 intersects the regions
O2, O3, O4 and O5, the set of edges of the sym-
bolic model contains at least the edges (1, 2), (1, 3),
(1, 4) and (1, 5).

The notion of symbolic model closely connects with the one of simulation
relation between two transition systems.

Definition 1.58 (Transition system). A transition system is an ordered pair
(X,G) where X is a set, called the state space, and G : X ⇒ X is a set-valued
map, called the transition map.

Definition 1.59 (Simulation relation). Consider two transition systems Trans =
(X,G) and Trans′ = (X ′, G′). A simulation relation from Trans to Trans′

(meaning that Trans′ simulates Trans) is a set-valued map R : X ⇒ X ′ such
that domR = X12 and for every x1 ∈ X, x2 ∈ G(x1) and x′1 ∈ R(x1), there is
x′2 ∈ R(x2) such that x′2 ∈ G′(x′1).

The connection between transition systems, simulation relations and sym-
bolic models is as follows. Given a dynamical system Sys = (Rn, f), a set
Λ ⊆ Rn forward invariant for Sys and a time step T ∈ T>0, we define the
associated transition system by Trans = (Λ, G) where G : Λ ⇒ Λ is de-
fined by G(x) = {χ(T, x)}. Similarly, a directed graph (Q,E) can be seen
as the transition system Trans′ = (Q,G′) where G′ : Q ⇒ Q is defined by
G′(q1) = {q2 ∈ Q : (q1, q2) ∈ E}.

Proposition 1.60. Let Sys, Λ, T and Trans be as above. Let ({Oq}q∈Q, E)
be a symbolic model for Sys with time step T and assume that Λ ⊆

⋃
q∈QOq.

12As a reminder, this means that R(x) 6= ∅ for all x ∈ X.
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Let Trans′ be as above. Then, the set-valued map R : Λ ⇒ Q, defined by
R(x) = {q ∈ Q : x ∈ Oq}, is a simulation relation from Trans to Trans′.

Proof. Straightforward from the definitions of symbolic models and simulation
relations.

1.4.2 Construction of symbolic models

The construction of symbolic models for a given dynamical system can be
approached in a two-step fashion, namely by (i) defining the regions Oq of the
state space for each q ∈ Q, and (ii) computing the set of edges E capturing the
transitions of the system between the different regions.

For the step (i), a popular approach (mainly due to the simplicity of its
implementation) consists in defining the regions Oq as rectangular cells aligned
according to a uniform grid. This is the approach that we follow in this work.

To describe this approach, we first introduce the notion of hyper-rectangle.

Definition 1.61 (Hyper-rectangle). Let x1, x2 ∈ Rn. The hyper-rectangle
spanned by x1 and x2, denoted as [x1, x2], is defined by [x1, x2] = {x ∈ Rn :
x− x1 ∈ (R≥0)n, x2 − x ∈ (R≥0)n}.

Definition 1.62 (Uniform grid discretization). Given a bounded subset Ω ⊆ Rn

and a discretization step h ∈ (R>0)n, we define the uniform grid discretization
of Ω with step h, denoted by Grid(Ω, h), as the set of all subsets O ⊆ Rn of the
form O = h� z + [− 1

2h,
1
2h] where z ∈ Zn and O ∩ Ω 6= ∅.

Since Ω is bounded, it holds that Grid(Ω, h) in Definition 1.62 is finite and
thus we can index its elements as Grid(Ω, h) = {Oq}q∈Q where Q = {1, . . . , N}.

The step (ii) in the process of constructing the symbolic model then amounts
to compute a set of edges that captures the transitions of the system between
the regions {Oq}q∈Q. This can be done for instance by computing, for each
q ∈ Q, an over-approximation Yq of the set {χ(T, x) : x ∈ Oq}, where T ∈ T>0

is the time step and χ is the generator of the system, and letting E be the set of
ordered pairs (q1, q2) ⊆ Q×Q such that Yq1∩Oq2 6= ∅. Various approaches have
been proposed in the literature to compute the over-approximations {Yq}q∈Q;
see, e.g., Reißig (2011) (polyhedral over-approximations), Chen et al. (2013)
(Taylor model flowpipes), Reißig et al. (2017) (hyper-rectangle over-approximations
using a growth bound function), and Gruenbacher et al. (2020) (ellipsoidal over-
approximations using interval matrices).

In this thesis, we use a technique based on the sensitivity matrix ∂χ
∂x to

compute the over-approximations {Yq}q∈Q.13 The underlying idea is to use
13See also Proposition 1.30 in Subsection 1.2.3 for the properties of the sensitivity matrix.
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the sensitivity matrix to compute, for each q ∈ Q, a first-order approximation
of the set {χ(T, x) : x ∈ Oq} and then inflate the first-order approximation
to get an over-approximation. This technique connects for instance with the
one in Gruenbacher et al. (2020); the difference is that we rely on continuity
assumptions on the sensitivity matrix, instead of interval matrices, to inflate
the first-order approximation.

Our technique for the computation of the over-approximations works as
follows. Let {Oq}q∈Q be the regions obtained from a uniform discretization
grid Grid(Ω, h). For the simplicity of notation, we assume that h is isotropic,
meaning that h = [r, . . . , r]T for some r > 0, so that the regions {Oq}q∈Q are
hyper-cubic. This assumption can be made without loss of generality by using
a rescaling of the axis if necessary.

Let T ∈ T>0 be the time step and χ be the generator of the system. It
is assumed that ∂χ

∂x (T, ·) is uniformly Lipschitz continuous with respect to the
matrix and vector ∞-norms.14

Assumption 1.63. There is L ≥ 0 such that for every x1, x2 ∈ Rn, ‖∂χ∂x (T, x1)−
∂χ
∂x (T, x2)‖∞ ≤ L‖x1−x2‖∞, where ‖·‖∞ stands for the matrix and vector ∞-
norms.

An over-approximation of the reachable set from any hyper-cubic region
can then be obtained as follows.

Proposition 1.64 (Over-approximation of reachable sets from hyper-cubes).
Consider a dynamical system Sys = (Rn, f) and a time step T ∈ T>0. Let
Assumption 1.63 hold with Lipschitz constant L ≥ 0. Then, for any x0 ∈ Rn

and r0 ≥ 0, it holds that

{χ(T, x) : x ∈ x0 + [−r0, r0]n} ⊆ χ(T, x0) + ∂χ

∂x
(T, x0)[−r0, r0]n + L

2 [−r2
0, r

2
0]n.

Proof. See Appendix A.1.4.

See Figure 1.15 for an illustration.
It follows from Proposition 1.64 the following sufficient condition to en-

sure that the reachable set from a given hyper-cubic region does not intersect
another given hyper-cubic region.

The motivation to use the sensitivity matrix to compute the over-approximations is that this
matrix will also be used in other analysis techniques based on the computed symbolic model,
namely, for the study of p-dominance and hyperbolicity of nonlinear dynamical systems (see
Section 2.3).

14For the purpose of computing symbolic models, it is sufficient to assume that ∂χ
∂x

(T, ·)
is uniformly Lipschitz on

⋃
Grid(Ω, h), but here, for the simplicity of notation, we assume

that it is uniformly Lipschitz on Rn.
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Figure 1.15: Over-approximation of the image of the region O1 using the technique
of Proposition 1.64. The image of O1 is depicted in light red (see also Figure 1.14).
The quadrilateral contour in bold red is the first-order approximation of the image
of O1, obtained by computing the linear image of the rectangle O1 by the sensitivity
matrix of the system at the center of O1. The surrounding polygonal contour in thin
red is the inflation of the first-order approximation using the Lipschitz constant of
the system, providing an over-approximation of the image of O1.

Corollary 1.65. Consider a dynamical system Sys = (Rn, f) and a time step
T ∈ T>0. Let Assumption 1.63 hold with Lipschitz constant L ≥ 0. Then, for
any x0, x1 ∈ Rn and r0, r1 ≥ 0, it holds that {χ(T, x) : x ∈ x0 + [−r0, r0]n} ∩
(x1 + [−r1, r1]n) = ∅ if

x1 − χ(T, x0) /∈ ∂χ

∂x
(T, x0)[−r0, r0]n +

[
− r1 −

L

2 r
2
0, r1 + L

2 r
2
0

]n
. (1.3)

Proof. See Appendix A.1.5.

The membership problem (1.3) can be decided by computing a represen-
tation of the right-hand side of (1.3) as a system of linear inequalities (called
a half-space representation or H-representation; see, e.g., Legat, 2020, Subsec-
tion 1.3.1), and verifying that the left-hand side of (1.3) satisfies these linear
inequalities. For low-dimensional systems, computing a half-space representa-
tion of the right-hand side can be achieved in reasonable time. However, in
higher dimensions, it can be advantageous to compute the half-space represen-
tation of an over-approximation of right-hand side to reduce the computation
time; the price to pay being to increase the conservatism of the criterion for
{χ(T, x) : x ∈ x0 +[−r0, r0]n}∩(x1 +[−r1, r1]n) = ∅. This is the approach that
we used in our implementation of methods to compute abstractions of nonlin-
ear dynamical systems15; the details are omitted here since the computation of
symbolic models is not the main objective of this thesis.

15See https://github.com/guberger/Dominance.jl/blob/main/src/symbolic_model_
from_system.jl.

https://github.com/guberger/Dominance.jl/blob/main/src/symbolic_model_from_system.jl
https://github.com/guberger/Dominance.jl/blob/main/src/symbolic_model_from_system.jl
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1.4.3 System analysis from symbolic models

Symbolic models can be used to address a wide range of problems in systems
and control theory. They can be used for instance for the stability or safety
analysis of dynamical systems, and for the controller design of dynamical sys-
tems with input (see, e.g., Tabuada, 2009). In this thesis, we will use symbolic
models for the study of p-dominance and hyperbolicity of nonlinear dynamical
systems (see Section 2.3). This will require among others to locate the maximal
invariant set of such systems, which can be done as explained below.

To do this, we first introduce the notion of essential graphs, which are
directed graphs in which each node has an incoming edge and an outgoing
edge.

Definition 1.66 (Essential graph). A directed graph (Q,E) is said to be es-
sential if for every q ∈ Q, there is q+ ∈ Q such that (q, q+) ∈ E and there is
q− ∈ Q such that (q−, q) ∈ E.

It is easily seen that the union of two essential graphs is essential. Hence,
given a directed graph Gp, we define the maximal essential subgraph of Gp as
the union of all essential subgraphs of Gp.

This leads to the following characterization of the maximal invariant sets
of dynamical systems based on their symbolic models; see also Figure 1.16 for
an illustration.

Proposition 1.67 (Symbolic models and maximal invariant sets). Consider
an invertible dynamical system Sys = (Rn, f), a subset Ω ⊆ Rn and time step
T ∈ T>0. Let ({Oq}q∈Q, E) be a symbolic model of Sys with time step T and
with Ω =

⋃
q∈QOq. Let Λ be the maximal invariant set of Sys included in

{χ(t, x) : t ∈ [0, T )∩T, x ∈ Ω}. Let (Q′, E′) be the maximal essential subgraph
of (Q,E). Then, it holds that Λ ⊆ {χ(t, x) : t ∈ [0, T ) ∩ T, x ∈ Oq, q ∈ Q′}.

Proof. See, e.g., Osipenko (2007, Theorem 44) for the case of discrete-time
systems and with time step T = 1. The case of continuous-time systems and
T 6= 1 is similar.

Moreover, under mild assumptions on the construction of the symbolic mod-
els (which are satisfied for instance by the construction given in Subsection
1.4.2), the set {χ(t, x) : t ∈ [0, T )∩T, x ∈ Oq, q ∈ Q′} in Proposition 1.67 con-
verges to A when the diameter of the regions {Oq}q∈Q of the symbolic model
tends to zero (see, e.g., Osipenko, 2007, Theorems 42 and 44).
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Figure 1.16: Left: Dynamical system whose trajectories converge from outside to-
wards the inside of a ring and have a clockwise circular motion. The system has
a maximal invariant set represented by the red line. Right: Symbolic model of the
dynamical system using curved rectangular regions. The external (inner and outer)
regions have edges (in green) only towards the regions in the middle strip (in light
red). The middle strip is thus the maximal essential subgraph of the symbolic model,
and it contains the maximal invariant set of the system.

1.5 Networked systems

Networked systems are systems, in which the different agents (plants, sensors,
actuators, controllers, etc.) are spatially distributed and communicate through
a shared, band-limited, digital communication network. The design and con-
trol of networked systems entails dealing with the non-idealities of the com-
munication channel, such as noise, limited bandwidth, random delays, packet
dropouts, etc. This can pose many challenges for the control theorist and mo-
tivated the development of a new paradigm in systems theory, where control
and communication issues are integrated.

In this thesis, we will focus on the challenges posed by the quantization and
the limited information flow imposed by the digital communication network.
Indeed, due to the digital nature of the network, all data must be quantized
before transmission, resulting in quantization error that can have large nega-
tive effects on the observability or controllability of the system. Furthermore,
in applications, the capacity of the network is often limited by cost, power,
physical and/or security constraints. Consequently, a major challenge in the
design of such systems is to determine the minimal communication data rate
that is needed to achieve a given control objective.

The quantization process is achieved by means of “devices” called coders–
decoders, which are modeled as hybrid systems. The data rate of a coder–
decoder is defined as the averaged number of bits transmitted per unit of time
from the coder to the decoder. Furthermore, the question of data rate require-
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ment for networked systems also connects with the notion of topological entropy
of dynamical systems. This quantity, introduced in the late 60’s and now ubiq-
uitous in dynamical systems theory, measures the growth rate of the smallest
number of functions necessary to approximate the trajectories of the system
with arbitrary finite accuracy on bounded time intervals (the growth rate is
with respect to the length of the time interval). We introduce this notion in
the context of hybrid systems and we explain its connection with the minimal
data rate for state estimation of these systems.

The section is organized as follows. In Subsection 1.5.1, we introduce the
concepts of coder–decoder and minimal data rate for state estimation and sta-
bilization of hybrid systems. In Subsection 1.5.2, we introduce the notion of
topological entropy for hybrid systems, and we explain its connection with the
minimal data rate for state estimation of hybrid systems.

References. The study of networked systems and control problems under
quantization and data-rate constraints has attracted a lot of attention in re-
cent years; see, e.g., Hespanha et al. (2007), Nair et al. (2007), Matveev and
Savkin (2009) and Kawan (2013) for introductions. Our main reference for
this section is Matveev and Savkin (2009). Let us also mention that several
variants of the concept of topological entropy have been proposed in the liter-
ature to address further aspects of networked systems; see, e.g., Liberzon and
Mitra (2018) (exponentially decreasing estimation error), Colonius et al. (2013)
(feedback invariance and feedback stabilization), Colonius (2012) (exponential
stabilization); Hagihara and Nair (2013) (systems with output), etc.; but will
not be discussed in this thesis.

Notation. The restriction of a function f : A → B to a set A′ ⊆ A is
denoted by f |A′ . For the sake of simplicity of notation, we will assume that
all maximal trajectories (referred to as trajectories) of the considered hybrid
systems are complete.

1.5.1 Coder, decoder and minimal data rate

We introduce below the concept of coder–decoder for the state estimation and
stabilization of hybrid systems. The coder is a device that, given the past
observation of the system, sends a symbol to the decoder. Based on the past
received symbols, the decoder outputs an estimation of the current state of the
system, or generates an input to stabilize the system. Some information about
the state of the system are also considered as universal knowledge (meaning
that it is known by the decoder without this information being sent by the
coder). This information is delivered by a universal output map, which is a
set-valued function H : X ⇒ Y where Y is the universal output set (if there is
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no universal information, then the universal output set is a singleton).16

In this thesis, we focus on coders–decoders that communicate at periodic
time instants. To describe them, we introduce the concept of hybrid systems
that have a periodic “sample and hold” output with respect to some output
function.

Definition 1.68 (Sample-and-hold output). Consider a hybrid system HySys =
(X,X0, U, F,G), a function Υ : X → Y and a period T ∈ R>0. We say
that HySys has T -sample-and-hold output with respect to Υ if every trajec-
tory φ : R → X of HySys satisfies that for all k ∈ N and t ∈ [kT, (k + 1)T ),
Υ(φ(t)) = Υ(φ(kT )).

In other words, HySys has T -sample-and-hold output with respect to Υ if
any trajectory of HySys is mapped by Υ to a function that is piecewise constant
and changes only at periodic time instants (namely at multiples of T ).

Using the above, we define the concept of coder–decoder. The coder and
the decoder are in fact themselves represented as hybrid systems.

Definition 1.69 (Coder–decoder). Consider a hybrid system HySys = (X,X0, U, F,G)
and a universal output map H : X ⇒ Y . A coder–decoder for HySys with uni-
versal output map H (or just “for HySys” if H is clear from the context) is a
quintuple (Tt,HySysc,Υ,HySysd,K) where

• Tt ∈ R>0 is the transmission period;

• HySysc = (Xc, Xc0, X, Fc, Gc) is a hybrid system, called the coder;

• Υ : Xc → Yt is a function, called the transmission map, mapping the
state of the coder to a symbol from the symbol set Yt, and HySysc has
Tt-sample-and-hold output with respect to Υ;

• HySysd = (Xd, Xd0, Yt×Y, Fd, Gd) is a hybrid system, called the decoder;

• K : Xd ⇒ X × U is a set-valued function, called the observer–actuator
map, mapping the state of the decoder to a subset of the state space and
input space of HySys.

If Tt is clear from the context, we describe the coder–decoder simply with
(HySysc,Υ,HySysd,K).

The above definition deserves the following explanations. The coder HySysc
takes as input the current state of HySys (we say that it observes or measures the

16The letter “H” is a calligraphic “H”, since “H” is generally used to denote the output
map of a system.
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state of HySys), and based on this observation, it updates its own current state.
The transmission map Υ (which can be seen as being part of the coder) outputs
a symbol depending on the current state of HySysc. It is assumed that the value
of the symbol changes only at periodic time instants (this generally requires
that some variable of HySysc behaves as a sample-and-hold). The decoder
HySysd takes as inputs the symbol sent by the coder via the transmission map
and the observation of the current state of HySys via the universal output
map H. Based on these inputs, it updates its own current state. Finally, the
observer–actuator map K (which can be seen as being part of the decoder)
outputs a pair (x̂, u), where x̂ is meant to be an estimation of the current state
of HySys (in the case of a “state estimation” problem) and u is meant to be a
control input for HySys (in the case of a “stabilization” problem).

We use coders–decoders for the observation and control of hybrid-systems
over digital communication channels. This raises the following two questions:
How can we use a coder–decoder to observe or control a hybrid system? And
which requirements on the communication channel do we need for the coder–
decoder to work properly? The first question leads to the notion of feedback
composition of a hybrid system with a coder–decoder, introduced below and
which extends the notion of feedback composition of a hybrid system and a
controller (see Definition 1.18 in Subsection 1.1.3); see also Figure 1.17 for an
illustration. The second question leads to the notion of communication data
rate of a coder–decoder, introduced afterwards.

Definition 1.70 (Feedback composition with a coder–decoder). Consider a
hybrid system HySys = (X,X0, U, F,G) and a coder–decoder CoDec = (HySysc,Υ,
HySysd,K), HySysc = (Xc, Xc0, X, Fc, Gc), HySysd = (Xd, Xd0, Yt×Y, Fd, Gd),
for HySys with universal output map H : X ⇒ Y . The feedback composition of
HySys and CoDec (via H), denoted by HySys‖HCoDec (or HySys‖CoDec if H is
clear from the context), is the autonomous hybrid system (Xf , Xf0, {0}, Ff , Gf)
where Xf = X × Xc × Xd, Xf0 = X0 × Xc0 × Xd0, and for � ∈ {F,G},
�f(x, xc, xd, 0) =

⋃
(x̂,u)∈K(xd) �(x, u) × �c(xc, x) ×

⋃
y∈H(x) �d(xd,Υ(xc), y)

for all (x, xc, xd) ∈ X ×Xc ×Xd.

Thus, in the context of a feedback composition, the pair (HySysc,Υ) can
be seen as a sequence of functions (Ψc

k)k∈N that outputs at each time t = kTt,
with k ∈ N, a symbol e(k) ∈ Yt based on the past observation of the system:

e(k) ∈ Ψc
k(φ|(−∞,kTt]), (1.4)

where Ψc
k : X(−∞,kTt] ⇒ Yt is the coder function at step k ∈ N and φ : R→ X

is the trajectory of HySys. Similarly, the pair (HySysd,K) can be seen as a
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Figure 1.17: Feedback composition of a hybrid system HySys = (X,X0, U, F,G)
and a coder–decoder CoDec = (HySysc,Υ,HySysd,K), HySysc = (Xc, Xc0, X, Fc, Gc),
HySysd = (Xd, Xd0, Yt×Y, Fd, Gd), for HySys with universal output map H : X ⇒ Y .

sequence of functions (Ψd
k)k∈N that, given the past received symbols and the

past observation of the universal output of the system, generates an estimate
φ̂(t) ∈ X of the state of HySys and an input u(t) ∈ U for HySys:

(φ̂(t), u(t)) ∈ Ψd
k(e(0), . . . , e(k), η|(−∞,t]), for all t ∈ [kTt, (k + 1)Tt),

(1.5)
where Ψd

k : (Yt)k+1 ×
⋃
t∈[kTt,(k+1)Tt) Yt

(−∞,t] ⇒ X ×U is the decoder function
at step k ∈ N and η : R → Y is an observation of φ via H, i.e., η(t) ∈ H(φ(t))
for all t ∈ R.
Remark 1.10. The description of the coder–decoder via a coder and a decoder
function, as in (1.4)–(1.5), is useful for its conciseness. However, this descrip-
tion is weaker than the one in Definition 1.69 since it does not require that Ψc

and Ψd can be implemented as hybrid systems. Therefore, when we describe a
coder–decoder via coder and decoder functions, it is important to keep in mind
that these functions must be implementable as hybrid systems.

The feedback composition of a hybrid system with a coder–decoder can be
used to estimate the state of the system or to stabilize it.

Definition 1.71 (State estimation from a coder–decoder). Consider an au-
tonomous hybrid system HySys = (X,X0, U, F,G) and a cost function C : X ×
X → R≥0. Let CoDec = (HySysc,Υ,HySysd,K), HySysc = (Xc, Xc0, X, Fc, Gc),
HySysd = (Xd, Xd0, Yt×Y, Fd, Gd), be a coder–decoder for HySys with universal
output map H : X ⇒ Y . Let ε > 0. We say that CoDec observes HySys with ac-
curacy ε (or ε-observes HySys) with respect to C (via H) if the feedback composi-
tion HySys‖HCoDec satisfies that for all t ∈ R≥0, sup(x̂,ū)∈K(φd(t)) C(φ(t), x̂) ≤
ε, where φf

.= (φ, φc, φd) : R≥0 → X×Xc×Xd is any trajectory of HySys‖HCoDec
and ū is the unique element in U .

Definition 1.72 (Stabilization by a coder–decoder). Consider a hybrid sys-
tem HySys = (X,X0, U, F,G) and a cost function C : X → R≥0. Let CoDec =
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(HySysc,Υ,HySysd,K), HySysc = (Xc, Xc0, X, Fc, Gc), HySysd = (Xd, Xd0, Yt×
Y, Fd, Gd), be a coder–decoder for HySys with universal output map H : X ⇒ Y .
We say that CoDec stabilizes HySys with respect to C (via H) if the feed-
back composition HySys‖HCoDec is stable with respect to the cost function
Cf : X ×Xc ×Xd → R≥0 defined by Cf(x, xc, xd) = C(x).

Finally, we define the data rate of a coder–decoder, which accounts for the
number of bits per unit of time that is needed to describe to output of the
transmission map.

Definition 1.73 (Data rate of a coder–decoder). Let CoDec be a coder–decoder
with period Tt and symbol set Yt. The data rate of CoDec, denoted by R(CoDec),
is defined as

R(CoDec) = dlog2 |Yt|e
Tt

where d·e is the ceil function and |Yt| is the cardinality of Yt.

The data rate of a coder–decoder accounts for the channel capacity required
for the communication between the coder and the decoder. Different coders–
decoders, with different data rates, can be used for the state estimation or
stabilization of a same hybrid system. Thus, given a hybrid system, one may
wonder what is the minimal channel capacity required for state estimation or
stabilization. This leads to the notions of minimal data rate for state estimation
and stabilization of a hybrid system.

Definition 1.74 (Minimal data rate for state estimation). Consider an au-
tonomous hybrid system HySys = (X,X0, U, F,G), a cost function C : X×X →
R≥0 and a universal output map H : X ⇒ Y . The minimal17 data rate for state
estimation of HySys with respect to C (and via H), denoted by Rest(HySys,C,H),
is defined as

Rest(HySys,C,H) = sup
ε>0

inf
CoDec

R(CoDec),

where the infimum is over all coders–decoders CoDec that ε-observe HySys with
respect to C (via H).

Definition 1.75 (Minimal data rate for stabilization). Consider a hybrid sys-
tem HySys = (X,X0, U, F,G), a cost function C : X → R≥0 and a universal
output map H : X ⇒ Y . The minimal18 data rate for stabilization of HySys
with respect to C (and via H), denoted by Rstab(HySys,C,H), is defined as

Rstab(HySys,C,H) = inf
CoDec

R(CoDec),

17A more accurate name would be “infimal data rate”, but the terminology “minimal data
rate” has become standard in the literature.

18Same comment as in Definition 1.74.
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where the infimum is over all coders–decoders CoDec that stabilize HySys with
respect to C (via H).

Note that the data rate of the coder–decoder only gives a lower bound on the
channel capacity. Other aspects must also be taken into account in the imple-
mentation of the communication protocol. For instance: How are the symbols
encoded and how are they sent? How do we account for possible delays and
dropouts during the transmission? In this thesis, we mainly focus on the ques-
tion of the minimal amount of information that one needs to observe or control
hybrid systems, so that the notion of date rate plays an instrumental role in
our analysis (see Chapter 3 on the quantized control of hybrid systems). How-
ever, we are also interested in the practical implementation of coders–decoders
achieving optimal data rate bounds, and thus the description of such optimal
coders–decoders will involve the description of the communication protocol and
the assumptions on the communication channel.

1.5.2 Topological entropy

The notion of topological entropy, introduced by Adler et al. (1965), Dinaburg
(1970) and Bowen (1971), accounts for the growth rate of the smallest number
of functions necessary to approximate the trajectories of the system with arbi-
trary finite accuracy on bounded time intervals (with respect to the length of
the interval). It can also be seen as the growth rate of the number of trajec-
tories that are distinguishable with arbitrary finite accuracy on bounded time
intervals. To formalize this, we first introduce the notions of spanning set and
separated set. See also Figure 1.18 for an illustration.

Definition 1.76 (Spanning set). Consider an autonomous hybrid system HySys =
(X,X0, U, F,G) and a cost function C : X×X → R≥0. Let ε > 0 and T ∈ R≥0.
A set E of functions from [0, T ) to X (i.e., E ⊆ X [0,T )) is said to be an (ε, T )-
spanning set for HySys with respect to C if for every trajectory φ of HySys,
there is φ̂ ∈ E such that for all t ∈ [0, T ), C(φ(t), φ̂(t)) ≤ ε. The smallest
cardinality of an (ε, T )-spanning set for HySys with respect to C is denoted by
sspan(ε, T ; HySys,C) (or sspan(ε, T ) if HySys and C are clear from the context).

Definition 1.77 (Separated set). Consider an autonomous hybrid system HySys =
(X,X0, U, F,G) and a cost function C : X×X → R≥0. Let ε > 0 and T ∈ R≥0.
A set F of functions from [0, T ) to X (i.e., F ⊆ X [0,T )) is said to be an
(ε, T )-separated set for HySys with respect to C if each function in F is a (non-
complete) trajectory of HySys and for any distinct φ1, φ2 ∈ F , there is t ∈ [0, T )
such that C(φ1(t), φ2(t)) > ε. The largest cardinality of an (ε, T )-separated set
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for HySys with respect to C is denoted by ssep(ε, T ; HySys,C) (or ssep(ε, T ) if
HySys and C are clear from the context).

In other words, two trajectories φ1 and φ2 are (ε, T )-separated if supt∈[0,T ) ‖φ1(t)−
φ2(t)‖ > ε.

Figure 1.18: (ε, 4)-spanning set E (in
blue) for a hybrid system HySys. Each
trajectory φ (e.g., in red) of HySys is
in the ε-tube around some function φ̂

of E for all time t ∈ [0, 4).
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Now, we introduce the concept of topological entropy.

Definition 1.78 (Topological entropy). Consider an autonomous hybrid sys-
tem HySys = (X,X0, U, F,G) and a cost function C : X × X → R≥0. The
topological entropy of HySys with respect to C, denoted by htop(HySys,C) (or
htop(HySys) if C is clear from the context), is defined as

htop(HySys,C) = sup
ε>0

lim sup
T→∞

1
T

log2 sspan(ε, T ; HySys,C).

Example 1.6. Consider the continuous-time dynamical system Sys = (R, f),
with f(x) = x and with initial set X0 = [0, 1], and consider the cost function
C(x) = |x|. For any ε > 0 and T ∈ R≥0, one can show (see, e.g., Example 3.1
in Subsection 3.2.1 for a similar problem) that

(ε−1eT − 1)/2 ≤ sspan(ε, T ) ≤ ε−1eT + 1.

Hence, for ε > 0 fixed, it holds that lim supT→∞ 1
T log2 sspan(ε, T ) = log2(e).

Since the latter is independent from ε, we find that htop(Sys) = log2(e). The
property that the limit superior does not depend on ε is typical for linear
systems; for nonlinear systems, the limit superior may be increasing when
ε→ 0 but in general it is nevertheless bounded so that the topological entropy
is still finite.

The following properties of the topological entropy are elementary but useful
in the analysis of the topological entropy and its link with the minimal data
rate for state observation.
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Proposition 1.79 (Topological entropy and separated sets). Consider an
autonomous hybrid system HySys = (X,X0, U, F,G) and a cost function C :
X ×X → R≥0. It holds that

htop(HySys,C) ≤ sup
ε>0

lim sup
T→∞

1
T

log2 ssep(ε, T ; HySys,C).

Moreover, if C satisfies the weak triangle inequality19, then the above inequality
is an equality.

Proof. See, e.g., Matveev and Savkin (2009, Lemma 2.3.8) for a proof of the
first item with the cost (x1, x2) 7→ ‖x1 − x2‖∞. The case of a general cost
function is identical.

The topological entropy is a lower bound on the minimal data rate for
state estimation of hybrid systems. Furthermore, if the initial set is forward
invariant, then the topological entropy is also equal to the minimal data rate
for state estimation. The reason for this is that given an accuracy ε > 0 and
a time horizon T ∈ T>0, one can use a “catalogue” of sspan(ε;T ) functions
that approximate the state of the system with accuracy ε on the time interval
[0, T ) and thus send about log2 sspan(ε;T ) bits of information to estimate the
state of the system with accuracy ε until time T . Now, since the initial set is
forward invariant, the process can be repeated for all subsequent time epochs of
duration T . In the end, one will thus need to send about log2 sspan(ε;T ) bits of
information every T units of time, thereby ending up with a data rate of about
1
T log2 sspan(ε;T ); when T → ∞, the data rate converges to the topological
entropy.

Proposition 1.80 (Topological entropy and minimal data rate for state esti-
mation). Consider an autonomous hybrid system HySys = (X,X0, U, F,G) and
a cost function C : X×X → R≥0. Assume that H is the empty map H : X ⇒ ∅.
It holds that Rest(HySys,C,H) ≥ htop(HySys,C). Moreover, if X0 = X, then
Rest(HySys,C,H) = htop(HySys,C).

Proof. See, e.g., Matveev and Pogromsky (2016, Theorem 8) for a proof with
the cost (x1, x2) 7→ ‖x1 − x2‖. The case of a general cost function is along the
same lines, and left to the reader.

19This means that there is a class-K function α such that for any x1, x2, x3 ∈ X, C(x1, x3) ≤
α(C(x1, x2) + C(x2, x3)).





Chapter 2

Dominance analysis of
hybrid systems

In the first chapter, we introduced the definitions and concepts related to the
analysis and control of hybrid systems. In this chapter, we present the first
part of our contributions, which deals with the study of the concept of domi-
nance for switched linear systems and smooth dynamical systems. We will see
that this concept connects with several other concepts in systems and control
theory, such as positivity, hyperbolicity (introduced in Subsection 1.2.3) and
topological entropy (introduced in Subsection 1.5.2 and thoroughly studied for
switched linear systems in the next chapter).

2.1 Introduction and literature review

The system property of having a separation of their (linearized) dynamics into
a dominant component and a dominated component has proved instrumental in
various areas of systems and control theory. To illustrate this and to introduce
the topic, let us start with an overview of system classes satisfying this property
and their applications; this will also be the opportunity to review the relevant
literature.

Positive systems are linear systems that leave a solid convex pointed cone
invariant; that is, linear systems for which there is a conic (and convex, with
nonempty interior and containing no bi-infinite line) region of the state space
such that the trajectories of the system starting in that region stay in it for all
positive times. A classical example of such systems are linear systems whose
matrix has only positive entries (in the discrete-time case) or only positive off-
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diagonal entries (in the continuous-time case). Indeed, for these systems, it
holds that the trajectories starting in the nonnegative orthant stay in it for
ever; see Figure 2.1 for an illustration. Positive systems appear naturally in a
wide range of applications, such as economics, biology, Markov chains, opinion
dynamics, etc. Therefore, they have been an important topic of research for
some time now; see, e.g., Luenberger (1979), Berman et al. (1989), Kaczorek
(2002) and Farina and Rinaldi (2000) for surveys. It was soon realized that the
property of cone invariance significantly restricts the behavior of the system:
namely, these systems have a single dominant eigenvector (called “Perron–
Frobenius eigenvector”) which is a 1-dimensional attractor for the system (see,
e.g., Vandergraft, 1968). Consequently, positive systems allow for a simplified
analysis and control of their dynamics; see, e.g., Luenberger (1979), Farina and
Rinaldi (2000), Rantzer (2015) and references therein.

Figure 2.1: Positive continuous-time linear system. The
trajectories starting in the positive orthant (in green) stay
in it for all t ≥ 0.

x(1)

x(2)

The concept of positive system has been generalized in several directions:
namely, positive time-varying systems, i.e., linear time-varying systems leaving
a solid convex pointed cone invariant (see, e.g., Parlett, 1970, and Pituk and
Pötzsche, 2019); monotone systems, i.e., smooth dynamical systems whose pro-
longed dynamics leaves a solid convex pointed cone invariant (see, e.g., Smith,
1995, Angeli and Sontag, 2003, and Hirsch and Smith, 2006); and more re-
cently, path-complete positive switched linear systems (Forni et al., 2017) and
differentially positive systems (Forni and Sepulchre, 2016) which further extend
the property of cone invariance by moving from a single cone to a family of
convex pointed cones. These generalizations enjoy similar properties as posi-
tive systems: in particular, their asymptotic behavior lies in a 1-dimensional
object. This property is also known as weak ergodicity in the case of linear sys-
tems (e.g., positive time-varying systems or path-complete positive switched
linear systems), and translates by the fact that the normalized trajectories of
the system are incrementally stable, meaning that the normalized trajectories
converge to each other, independently of their initial condition; see Figure 2.2
for an illustration. This fundamental property has been used in a large number
of contexts, e.g., for the analysis of Markov chains (see, e.g., Seneta, 1981),
population dynamics (see, e.g., Parlett, 1970, and Golubitsky et al., 1975), or
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communication networks (see, e.g., Shorten et al., 2006).

Figure 2.2: Weak ergodicity. The normalized trajectories of positive time-varying
linear systems or path-complete positive switched linear systems, starting from dif-
ferent initial conditions, converge to each other as t → ∞. This can also be seen as
the incremental stability property of the system in the projective space.

Recently, the concept of p-dominance was introduced by Forni and Sepul-
chre (2019) to generalize the approach of positive or monotone systems to
study dynamical systems whose linearized dynamics can be split into a p-
dimensional dominant component and a complementary (n − p)-dimensional
stable component (with n the dimension of the system). In particular, they
study continuous-time dynamical systems whose linearized dynamics leaves a
quadratic p-cone invariant. In this sense, the property of p-dominance extends
the classical notion of positivity by introducing cones that are compatible with
p-dimensional asymptotic behavior. For instance, it is shown that this prop-
erty implies that the system has an asymptotic behavior that is essentially the
one of a p-dimensional system; this allows to study complex phenomenons like
multi-stability or limit cycles for high-dimensional dynamical systems. The use
of quadratic p-cones allows to encode the invariance property of the cone as the
feasibility of a set of matrix inequalities, leading to efficient methods for the
computation of an invariant quadratic p-cone for p-dominance. Note that this
property has also been used in the context of positivity, to compute invariant
convex pointed quadratic cones; see, e.g., Hildebrand (2007) and Grussler and
Rantzer (2014).

The property of having a separation of the dynamics also appears in the
notions of partial hyperbolicity and exponential dichotomy (see, e.g., Brin and
Pesin, 1974, and Barreira and Valls, 2008), describing dynamical systems whose
linearized dynamics can be split into two components: a p-dimensional domi-
nant component growing exponentially faster than a complementary (n − p)-
dimensional dominated component (with n the dimension of the system). The
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separation of the dynamics is described using the concept of dominated splitting
(introduced by Mañé, 1987, in its celebrated work on the stability conjecture).
Partially hyperbolic systems have received a lot of attention in the literature,
namely for their applications in the study of global properties of dynamical
systems, such as chaos, topological entropy, structural stability, etc. (see, e.g.,
Brin and Pesin, 1974, Hirsch et al., 1977, Barreira and Valls, 2008, and Pesin,
2004; see also Subsection 1.2.3 for the definition and properties of hyperbolic
systems).

In this thesis, we extend the concepts of p-dominance and dominated split-
tings to discrete-time switched linear systems and discrete-time smooth dynam-
ical systems. This allows us to provide mathematical and algorithmic frame-
works to study the property of having a separation of the (linearized) dynamics
for these paradigmatic classes of (hybrid) systems.

Dominance and dominated splittings for discrete-time switched lin-
ear systems

First, we focus on discrete-time switched linear systems. Thriving on ideas
from path-complete Lyapunov theory (see Subsection 1.3.3), we extend the
property of p-dominance by moving from a single quadratic p-cone to a family
of quadratic p-cones whose invariance properties are driven by an automaton
capturing the admissible switches of the system. The goal is to increase the
expressiveness of the property of p-dominance while preserving the feature of
a separation of the dynamics. In particular, we show that this notion of p-
dominance provides a necessary and sufficient condition for the system to have
a dominated p-splitting, that is, for its dynamics to be decomposable into a
p-dimensional dominant dynamics growing exponentially faster than a comple-
mentary (n−p)-dimensional dominated dynamics (with n the dimension of the
system).1

We also provide an algorithmic framework for the verification of the prop-
erty of p-dominance for discrete-time switched linear systems. For that, we
leverage the algorithmic approach used in Forni and Sepulchre (2019) (relying
on matrix inequalities to encode the invariance properties of the quadratic p-
cones) and, with the help of advanced results from linear algebra and automata

1Let us mention that the notions of p-dominance and dominated splitting considered here
are slightly more general than the ones in Forni and Sepulchre (2019), in that we do not
require the dominated dynamics to be stable. The goal is to capture a larger class of systems
(though at the cost of deriving weaker general properties of these p-dominant systems), but
we also discuss and characterize the case where the dominated dynamics is stable (see also
Remark 2.1 in Subsection 2.2.2). For the sake of avoiding unnecessarily heavy terminology,
we keep the term p-dominance to refer to this more general concept of dominance.
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theory, we extend it for the computation of families of quadratic p-cones whose
invariance properties are driven by an automaton.

Dominance and dominated splittings for discrete-time smooth dy-
namical systems

Secondly, we introduce the notion of p-dominance for discrete-time smooth
dynamical systems. As for p-dominant continuous-time smooth dynamical sys-
tems (Forni and Sepulchre, 2019), the approach is differential: the criterion
of p-dominance is formulated on the prolonged system and accounts for the
fact that the associated linear system, which can be seen as a switched lin-
ear system with an infinite set of modes, is p-dominant. Thriving on results
from dominance analysis of switched linear systems, we show that p-dominant
discrete-time smooth dynamical systems admit a dominated p-splitting, mean-
ing that their linearized dynamics can be decomposed into a p-dimensional
dominant dynamics growing exponentially faster than a complementary (n−p)-
dimensional dominated dynamics (with n the dimension of the system); this
allows to study behaviors like partial hyperbolicity or exponential dichotomy
for these systems.

Furthermore, thriving on the algorithmic framework for the verification of
p-dominance for switched linear systems and on the technique of abstraction for
dynamical systems (see Subsection 1.4.1)—allowing to abstract the prolonged
system as a switched linear system with an infinite set of modes—, we provide
an algorithmic framework for the verification of the property of p-dominance
for discrete-time smooth dynamical systems.

Applications: incremental stability, hyperbolicity, quantized control,
etc.

Finally, we present several applications, supported by numerical examples,
of the theory of p-dominance for discrete-time switched linear systems and
discrete-time smooth dynamical systems. Namely, we show that the theory of
p-dominant switched linear systems can be used to analyze the convergence
of the trajectories of such systems to a low-dimensional time-varying attractor
(incremental stability in the projective space; see above), and present appli-
cations in population dynamics. It can also be used to obtain bounds on the
topological entropy of these systems (which will be useful in the next chap-
ter, on the quantized control of switched linear systems). As for discrete-time
smooth dynamical systems, we show that the theory of p-dominance can be
used for the formal verification of the property of hyperbolicity (introduced
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in Subsection 1.2.3) and to obtain bounds on the topological entropy of these
systems (used in quantized control as well).

The results presented in this chapter have been reported in

• Guillaume O Berger, Fulvio Forni, and Raphaël M Jungers. Path-complete
p-dominant switching linear systems. In 2018 IEEE 57th IEEE Confer-
ence on Decision and Control (CDC), pages 6446–6451. IEEE, 2018. doi:
10.1109/CDC.2018.8619703.

• Guillaume O Berger and Raphaël M Jungers. A converse Lyapunov
theorem for p-dominant switched linear systems. In 2019 18th Euro-
pean Control Conference (ECC), pages 1263–1268. IEEE, 2019. doi:
10.23919/ECC.2019.8795923.

• Guillaume O Berger and Raphaël M Jungers. Formal methods for com-
puting hyperbolic invariant sets for nonlinear systems. IEEE Control
Systems Letters, 4(1):235–240, 2020c. doi: 10.1109/LCSYS.2019.2923923.

• Guillaume O Berger and Raphaël M Jungers. p-dominant switched linear
systems. Automatica, 132:109801, 2021b. doi: 10.1016/j.automatica.2021.
109801.

The algorithms presented in this chapter are implemented in the Julia pack-
age: https://github.com/guberger/Dominance.jl. This package was used
among others to produce the figures and to analyze the numerical examples
presented in this chapter.

2.2 Dominance analysis of switched linear sys-
tems

In this section, we introduce the concept of p-dominance for discrete-time
switched linear systems. As explained in Section 2.1, we combine ideas from
p-dominance of continuous-time smooth dynamical systems and from path-
complete Lyapunov theory to formulate a criterion of p-dominance based on a
family of quadratic p-cones whose contraction properties are driven by an au-
tomaton accepting every switching signal of the system. We show that discrete-
time switched linear systems are p-dominant if and only if they admit a domi-
nated p-splitting, that is, if and only if their dynamics can be decomposed into
a p-dimensional dominant component and an (n − p)-dimensional dominated
component (with n the dimension of the system) for every switching signal. We
also provide an algorithmic framework for the verification of the property of

https://doi.org/10.1109/CDC.2018.8619703
https://doi.org/10.23919/ECC.2019.8795923
https://doi.org/10.1109/LCSYS.2019.2923923
https://doi.org/10.1016/j.automatica.2021.109801
https://doi.org/10.1016/j.automatica.2021.109801
https://github.com/guberger/Dominance.jl
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p-dominance of these systems. Finally, we discuss some applications of the the-
ory of p-dominant discrete-time switched linear systems, namely for the study
of population dynamics and for the estimation of the topological entropy of
these systems.

The section is organized as follows. In Subsection 2.2.2, we introduce the
main concepts related to p-dominance of discrete-time switched linear systems
and the characterization of their asymptotic behavior. In Subsection 2.2.3,
we describe the algorithmic framework for the verification of p-dominance of
discrete-time switched linear systems. Finally, numerical examples and exam-
ples of application are presented in Subsection 2.2.4.

Notation. In this section, all considered switched linear systems are discrete-
time switched linear systems, and thus for the sake of brievety, we will refer to
them simply as switched linear systems. For A ⊆ Rn, intA denotes the interior
of A. If A ⊆ Rn and M ∈ Rn×n, then MA is the image of A by M , i.e.,
MA = {Mx : x ∈ A}. The set of symmetric matrices in Rn×n is denoted by
Sn×n. For P,Q ∈ Sn×n, we write P � Q (resp. P � Q) if P − Q is positive
definite (semidefinite).

2.2.1 Warm-up: p-dominant LTI systems

We start our analysis with the classical case2 of linear time-invariant (LTI)
systems. Therefore, let us consider a LTI system3 Sys = (Rn, A), where A ∈
Rn×n. For a reminder, the trajectories ξ : N→ Rn of Sys satisfy ξ(t+1) = Aξ(t)
for all t ∈ N. In this section and in the rest of this chapter, p is a fixed integer
between 0 and n, called the degree of dominance.

First, let us remind the definition of inertia of a symmetric matrix.

Definition 2.1 (Inertia of a symmetric matrix). Let P ∈ Sn×n and k ∈
{0, . . . , n}. The matrix P is said to have inertia (k, 0, n−k) if it has k negative
eigenvalues and n − k positive eigenvalues. The set of matrices of Sn×n with
inertia (k, 0, n− k) is denoted by Sn×nk .

This allows us to define the notion of p-dominant LTI system.

Definition 2.2 (p-dominant LTI system). A LTI system Sys = (Rn, A) is said
to be p-dominant (or dominant with degree p) if there is γ > 0 and a matrix

2The results presented for the LTI case are merely reformulations of commonly known
results, in order to introduce the fundamental concepts that will be used in the study of
p-dominance for switched linear systems.

3Thus, in our notation, LTI systems are understood as dynamical systems (see Definition
1.6 in Subsection 1.1.2). Alternatively, they could be described as switched linear systems
with one mode, but this would make the notation a bit longer, namely Sys = (Rn, {A}).
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P ∈ Sn×np such that
ATPA− γ2P ≺ 0. (2.1)

The parameter γ in Definition 2.2 is called a separation rate (or simply rate)
of p-dominance of Sys. The reason for this name is made clear in the following
proposition:

Proposition 2.3. A LTI system Sys = (Rn, A) is p-dominant with rate γ > 0
if and only it satisfies any (and thus all) of the following conditions:

1. The matrix A has p eigenvalues with modulus |λi| > γ, and n− p eigen-
values with modulus |λi| < γ;

2. There is a splitting of the state space Rn = Es⊕Eu, where Es is a linear
subspace of dimension n− p and Eu is a linear subspace of dimension p

satisfying that (i) AEs ⊆ Es and AEu = Eu, and (ii) there is C ≥ 1 and
µ ∈ (0, 1) such that

• for every x ∈ Es and t ∈ N, ‖Atx‖ ≤
√
Cµt γt‖x‖;

• for every x ∈ Eu and t ∈ N, ‖Atx‖ ≥ 1√
Cµt

γt‖x‖.

Proof. See Appendix A.2.2.

Condition 2 in Proposition 2.3 implies that for any x1 ∈ Es and x2 ∈
Eu \ {0},

‖Atx1‖
‖Atx2‖

≤ ‖x1‖
‖x2‖

Cµt for all t ∈ N. (2.2)

Therefore, the pair (Es, Eu) in Condition 2 in Proposition 2.3 is called a
dominated splitting as it ensures a decomposition of the dynamics of the sys-
tem into a p-dimensional dominant component and a complementary (n− p)-
dimensional dominated component. In the case of LTI systems, Es and Eu are
the eigenspaces associated to the n− p eigenvalues with modulus < γ, and the
p eigenvalues with modulus > γ respectively. Moreover, by Proposition 2.3, the
rate γ gives a maximal and minimal rate of growth of the trajectories starting
in Es and Eu, respectively.

Remark 2.1. Let us mention that the notion of p-dominance considered in
Forni and Sepulchre (2019) assumes that the dominated dynamics is stable. In
this case, the asymptotic behavior of the system is dictated by the dominant
dynamics only; this allows to derive even stronger results on the properties of
the system. In this thesis, we consider a more general notion of p-dominance,
requiring only that the dominant dynamics grows exponentially faster than the
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dominated dynamics; the goal being to capture a larger class of systems. But
we also discuss and characterize the case where the dominated dynamics is
stable (see Theorem 2.15 in Subsection 2.2.2; in the case of LTI systems, this
is equivalent to requiring that γ < 1 in Definition 2.2), which is instrumental
for instance for the characterization of hyperbolicity and for applications in
quantized control.

Letting V : Rn → R be defined by V (x) = xTPx, the dissipation inequality
(2.1) can be read as follows: for every trajectory ξ : N → Rn of Sys, it holds
that V (ξ(t+ 1)) ≤ γ2V (ξ(t))− ε‖ξ(t)‖2 for all t ∈ N and for some ε > 0. This
implies that the quadratic p-cone defined as the nonpositive sublevel set of V is
contracted by the system. This property is formalized in Proposition 2.5 below;
first, let us introduce the notion of quadratic cone associated to a symmetric
matrix.

Definition 2.4 (Quadratic p-cone). Let P ∈ Sn×np . The quadratic p-cone
(or cone) associated to P , denoted by K(P ), is defined as K(P ) = {x ∈ Rn :
xTPx ≤ 0}.

See Figure 2.3 for an illustration. It is easily seen that K(P ) is a cone,
meaning that for any α ∈ R≥0, αK(P ) ⊆ K(P ). The prefix “p” accounts for
the fact that the largest dimension of a linear subspace contained in K(P ) is
p. The above allows to formulate the following geometric characterization of
p-dominant LTI systems, equivalent to (2.1).

P1 =

[
−0.5

0.25

]a

P2 =



−1

−1
2




b

Figure 2.3: a: Level sets of V : R2 → R : x 7→ xTP1x. K(P1) is the quadratic 1-cone
(P1 ∈ S2×2

1 ) represented by the region in blue. b: Level sets of V : R3 → R : x 7→
xTP2x. K(P2) is the quadratic 2-cone (P2 ∈ S3×3

2 ) consisting in the nonconvex region
that contains the negative level sets of V , i.e., K(P2) is the whole space except the
two “ice-cream cones” delimited by the surface in blue.
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Proposition 2.5. A LTI system Sys = (Rn, A) is p-dominant if and only if
there is P ∈ Sn×np such that the associated quadratic p-cone K(P ) is contracted
into itself by Sys, that is,

A(K(P ) \ {0}) ⊆ intK(P ). (2.3)

Proof. See Appendix A.2.3.

The above concepts and results are illustrated in the example below. In
particular, the eigenvalue plots, depicted in Figure 2.4-a, will be instrumental
in the analysis and computation of p-dominance for switched linear systems
(see Subsections 2.2.3 and 2.2.4).

Example 2.1. Consider the LTI system Sys = (R2, A) with A =
[
α α−1
0 1

]
and

α = 0.2. The eigenvalues of A satisfy |λ1| > γ > |λ2| with γ = 0.6; see Figure
2.4-a. Thus, Sys is 1-dominant with rate γ (Proposition 2.3). It follows that
(2.1) holds with some P ∈ S2×2

1 . The quadratic 1-cone K(P ) associated to such
a P is represented in Figure 2.4-b. We observe that K(P ) is contracted into
itself by A, as predicted by Proposition 2.5.

Figure 2.4: a: Eigenvalues
of A (see Example 2.1). b:
Quadratic 1-cone K(P ) and
its image by A.

Remark 2.2. For related results to the geometric characterization of p-dominance
(Proposition 2.5), see, e.g., Stern and Wolkowicz (1991) where it is shown that
a LTI system admits a pointed invariant ellipsoidal cone if and only if it has
a positive eigenvalue strictly larger in modulus than any other eigenvalue; this
is thus a particular case of 1-dominance where the dominant eigenvector is
positive, translated by the fact that the associated cone is pointed (unlike
quadratic 1-cones which consist in two “ice-cream cones”). Important classes
of LTI systems satisfying the eigenvalue separation property of p-dominance in-
clude relaxation systems (see, e.g., Willems, 1976, and Pates et al., 2019), and
totally positive systems (see, e.g., Margaliot and Sontag, 2019, Grussler and
Sepulchre, 2020, and Grussler et al., 2021); indeed, for these systems, it holds
that λ1 > λ2 > . . . > λn ≥ 0, where λ1, . . . , λn are the eigenvalues of A (see,
e.g., Willems, 1976, Theorem 4, and Margaliot and Sontag, 2019, Theorem 1).
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In the next subsection, we extend the notion of p-dominance to switched lin-
ear systems. Our goal is to characterize such systems that have a p-dimensional
asymptotic behavior; a property formalized with a condition similar to the dom-
ination relation (2.2) (see Theorem 2.11 in the next subsection). Unlike LTI
systems, this property cannot be deduced from an eigenvalue decomposition of
the system. For this reason, the definition of p-dominant switched linear sys-
tems relies on dissipation inequalities involving symmetric matrices, like (2.1).

2.2.2 p-dominant switched linear systems

In this subsection, we extend the property of p-dominance to switched lin-
ear systems. Therefore, let us consider a switched linear system4 SwS ∼
(Rn, {Ai}i∈Σ). For a reminder, the trajectories (ξ, σ) : N → Rn × Σ of SwS
satisfy ξ(t + 1) = Aσ(t)ξ(t) for all t ∈ N, where ξ : N → Rn is the continuous
variable and σ : N→ Σ is the switching signal of the trajectory, which specifies
the mode i ∈ Σ of SwS at each time t ∈ N. In applications, it is sometimes
useful to restrict the set of admissible switching signals (see, e.g., Section 2.1).
The set of admissible complete switching signals of SwS is denoted by S(SwS),
or S if SwS is clear from the context (see Definition 1.34 in Subsection 1.3.1).

Definition of path-complete p-dominance

In Subsection 1.3.3, we introduced the concept of path-complete Lyapunov
functions for the stability analysis of continuous-time and discrete-time switched
systems (see Definition 1.53). The definition of a path-complete Lyapunov func-
tion relies on a timed automaton accepting every switching signal of the system
and on a set of “energy” functions whose decrease properties with respect to the
system are dictated by the timed automaton. We will use a similar approach
for the definition of the property of path-complete p-dominance for switched
linear systems.

Since we restrict our attention to discrete-time systems, we will use timed
automata whose time set is equal {1} and thus refer to them simply as “au-
tomata”. For the sake of completeness, we remind below the relevant notions
related to timed automata, in this specific case.

Definition 2.6 (Automaton). An automaton is a triplet (Q,Σ,Θ) where Q is
a finite set, called the set of states, Σ is a finite set, called the alphabet, and
Θ ⊆ Q× Σ×Q is a finite set of transitions.

4We refer the reader to Section 1.3 for the notation and definitions related to switched
systems.
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For a transition θ = (q1, i, q2) ∈ Θ, we denote its source q1 by s(θ), its target
q2 by t(θ), and its mode i by i(θ). A path of length T , where T ∈ N∪{∞}, in an
automaton (Q,Σ,Θ) is any sequence (θt)T−1

t=0 ⊆ Θ satisfying that t(θt) = s(θt+1)
for all t ∈ {0, . . . , T − 2}.

Definition 2.7 (Admissible signal for an automaton). Consider an automaton
Aut = (Q,Σ,Θ). A function σ : N → Σ is said to be admissible for Aut (or
accepted by Aut) if there is a path (θt)∞t=0 in Aut satisfying that for all t ∈ N,
σ(t) = i(θt).

The notions of automaton and accepted signals are illustrated in Figure 2.5.

a

{1, 2}

Aut1 a b

2

1

1 2

Aut2

a b

1

2

1 2

Aut3 a b

1

2

Aut4

Figure 2.5: Four automata with Σ = {1, 2}, and Q = {a} (for Aut1) or Q = {a, b}
(for Aut2, Aut3 and Aut4). The transitions are represented by the edges (i.e., q1 i→ q2

if and only if (q1, i, q2) ∈ Θ). Aut1, Aut2 and Aut3 accept every switching signal
σ : N→ Σ, while Aut4 accepts only the switching signals σ : N→ Σ that are a strict
alternation of “1” and “2”.

The property of path-complete p-dominance, introduced below, extends the
approach of cone invariance, used in the analysis of p-dominant LTI systems, by
considering a set of quadratic p-cones whose contraction properties are driven
by an automaton accepting every switching signal of the system. As for the
LTI case, the quadratic p-cones are represented by symmetric matrices Pq with
fixed inertia and the contraction properties are captured by matrix inequalities,
similar to (2.1), depending on the transitions of the automaton and on a set of
positive rates (one rate per transition).

Definition 2.8 (p-dominant switched linear system). Consider a switched
linear system SwS ∼ (Rn, {Ai}i∈Σ). We say that SwS is path-complete p-
dominant (or p-dominant) if there is an automaton Aut = (Q,Σ,Θ) accepting
every switching signal σ ∈ S, a set of rates {γθ}θ∈Θ ⊆ R>0 and a set of matri-
ces {Pq}q∈Q ⊆ Sn×np such that for every θ ∈ Θ,

AT
i(θ)Pt(θ)Ai(θ) − γ

2
θ Ps(θ) ≺ 0. (2.4)

See Examples 2.2 and 2.3 below for illustrations.
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Remark 2.3. Note that for a given automaton and a given set of rates, there
is at most one value of p for which the system is p-dominant; see Proposition
2.19 in Subsection 2.2.3. However, depending on the automaton and the set of
rates, the system can be p-dominant for different values of p.

As mentioned above, the dissipation inequalities (2.4) capture the fact that
the quadratic p-cones {K(Pq)}q∈Q are contracted by the system along the tran-
sitions of Aut; see Figure 2.6 for an illustration. This leads to the following
equivalent characterization of p-dominant switched linear systems.

Proposition 2.9. A switched linear system SwS = (Rn, {Ai}i∈Σ) is p-dominant
if and only if there is an automaton Aut = (Q,Σ,Θ) accepting every switching
signal σ ∈ S and a set of matrices {Pq}q∈Q ⊆ Sn×np such that the associated
quadratic p-cones {K(Pq)}q∈Q are contracted into each other by SwS along the
transitions of Aut, that is, for all θ ∈ Θ,

Ai(θ)(K(Ps(θ)) \ {0}) ⊆ intK(Pt(θ)). (2.5)

Proof. Same as for Proposition 2.5.

The examples below illustrate the concept of p-dominant switched linear
systems and the contraction property of Proposition 2.9.

Example 2.2. Consider the switched linear system SwS = (R2, {Ai}i∈Σ) under
arbitrary switching, with Σ = {1, 2}, A1 =

[ 1 0
1−α α

]
, A2 =

[
α α−1
0 1

]
and α =

0.1; which may occur for instance in the modeling of opinion dynamics with
antagonistic interactions and switching topologies (see, e.g., Meng et al., 2016).
This system is 1-dominant with the automaton Aut2 presented in Figure 2.5
and with the set of rates {γθ}θ∈Θ given by γθ = 0.32 for all θ ∈ Θ. This means
that there are Pa, Pb ∈ S2×2

1 satisfying (2.4) with this automaton and this set of
rates. The quadratic 1-cones associated to Pa and Pb are represented in Figure
2.6. We observe that the cones satisfy the cone contraction property (2.5).

The selection of the value of the rates in Example 2.2 will be discussed in
Example 2.5, after we have presented a set of constraints that must be satisfied
by the set of rates (see Proposition 2.19 in Subsection 2.2.3). The verification
of p-dominance of the system with this set of rates was achieved by using the
algorithm described in Corollary 2.18; see Subsection 2.2.3 on the algorithmic
aspects of p-dominance analysis for details.

Example 2.3. Consider the switched linear system SwS ∼ (R2, {Ai}i∈Σ) with
Σ = {1, 2}, A1 = [ 2

4 ] and A2 =
[

1
1
8

]
. Assume that the switching signals

of SwS are constrained to be a strict alternation of “1” and “2”. Then, the
automaton Aut4 in Figure 2.5 accepts every switching signal σ ∈ S. We show
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Figure 2.6: Quadratic 1-cones K(Pa)
and K(Pb) and their images by A1 and
A2 (see Example 2.2).

that the system is 1-dominant with this automaton and some set of rates.
Indeed, consider the symmetric matrices Pa =

[−1
8
]

and Pb =
[
− 1

2
1
4

]
, which

both belong to S2×2
1 , and the set of rates {γθ}θ∈Θ given by γθ = 1 for all

θ ∈ Θ. Then, the matrix inequality (2.4) is satisfied for every θ ∈ Θ. Indeed,
for θ = (a, 1, b), we get AT

1Pb A1 − Pa =
[−2

4
]
−
[−1

8
]

=
[−1

−4
]
, and for

θ = (b, 2, a), we get AT
2Pa A2 − Pb =

[
−1

1
8

]
−
[
− 1

2
1
4

]
=
[
− 1

2
− 1

8

]
.

Asymptotic behavior of p-dominant switched linear systems

In this subsection, we show that p-dominant switched linear systems inherit
the dynamical properties of p-dominant LTI systems, in the sense that their
dynamics can be split into a dominant component and a dominated compo-
nent. The difference with the LTI case is that for switched linear systems,
the subspaces describing the decomposition of the dynamics are not fixed any-
more, but may vary with time. To formalize this, we introduce the notion of
time-varying splitting.

Definition 2.10 (Time-varying splitting of Rn). A time-varying splitting (or
splitting) of Rn is an ordered pair (Es, Eu), where Es : N⇒ Rn and Eu : N⇒
Rn are set-valued functions such that for all t ∈ N, Es(t) and Eu(t) are linear
subspaces satisfying Rn = Es(t)⊕Eu(t). We say that (Es, Eu) is a p-splitting
if Eu(t) has dimension p (⇔ Es(t) has dimension n− p) for all t ∈ N.

The following theorem is the first main result of this section. It generalizes
the dominated splitting feature (2.2) to p-dominant switched linear systems,
and also states the converse result, i.e., that any switched linear system admit-
ting a dominated p-splitting is p-dominant.

Theorem 2.11. Consider a switched linear system SwS ∼ (Rn, {Ai}i∈Σ). The
following are equivalent:

1. SwS is p-dominant;
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2. There is C ≥ 1, µ ∈ (0, 1), and for every switching signal σ ∈ S,
there is a p-splitting (Es

σ, E
u
σ) satisfying (i) Aσ(t)E

s
σ(t) ⊆ Es

σ(t + 1) and
Aσ(t)E

u
σ(t) = Eu

σ(t+1) for all t ∈ N, and (ii) for every t0, t1 ∈ N, t1 ≥ t0,
x1 ∈ Es

σ(t0) and x2 ∈ Eu
σ(t0) \ {0},

‖χ(t1, t0, x1, σ)‖
‖χ(t1, t0, x2, σ)‖ ≤

‖x1‖
‖x2‖

Cµt1−t0 , (2.6)

where χ(·, ·, ·, σ) is the generator5 of the trajectories of SwS with switch-
ing signal σ.

Proof. See Appendix A.2.4.

The ordered pair (Es
σ, E

u
σ) in Item 2 in Theorem 2.11 is called a dominated

p-splitting for SwS with switching signal σ. The interpretation of (2.6) is that
for every trajectory (ξ, σ) : N→ Rn×Σ of SwS, the component of ξ(t) in Es

σ(t)
becomes negligible compared to the component of ξ(t) in Eu

σ(t) as t→∞.
The dominated splitting property is particularly relevant when we look at

the system as a switched linear system acting on the Grassmannian manifold;
that is, instead of looking at the action of the system on points in the state
space, we consider its action on subspaces of a fixed dimension in the state
space (with an appropriate metric to measure the distance between subspaces).
Indeed, in this case, the existence of a dominated p-splitting translates as the
incremental stability of the system on the Grassmannian manifold, meaning
that for every switching signal of the system and for any two p-dimensional
subspaces U1 and U2 that are close enough to each other, the images of U1 and
U2 by the system are also p-dimensional subspaces and the distance between
them converges exponentially to zero. We refer the reader to Colonius and
Kliemann (2014) for a discussion of linear systems acting on the Grassmannian
manifold; see also Ghosh and Martin (2002) for the particular case where the
subspaces have dimension 1, referred to as dynamical systems in the projective
or homogeneous space. See also Rüffer et al. (2013) for the notion of incremental
stability.

The incremental stability property is illustrated in Figure 2.7 with the
1-dominant switched linear system of Example 2.2 and with a 2-dominant
switched linear system, whose trajectories are radially scaled to the unit sphere:

• The 1-dominant behavior of the first system is captured by the conver-
gence of the normalized trajectories of the system, for any given switching
signal σ ∈ S and for different initial conditions, to two opposite “attract-
ing trajectories” as time goes to ∞.

5For a reminder, see Definition 1.36 in Section 1.3.
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• The 2-dominant behavior of the second system is captured by the conver-
gence of the normalized trajectories of the system, for any given switch-
ing signal σ ∈ S and for different initial conditions, to a time-varying
2-dimensional subspace as time goes to ∞.

Unlike stable switched linear systems, which all converge to a unique equilib-
rium, p-dominant switched linear systems allow for richer behaviors.

a

b

Figure 2.7: a: Normalized trajectories of the 1-dominant switched linear system from
Example 2.2, starting from different initial conditions and for a random switching
signal σ. b: Normalized trajectories of a 2-dominant switched linear system starting
from different initial conditions and for a random switching signal σ. Each dot rep-
resents the projection on the unit sphere of a trajectory ξ : N → R3 with switching
signal σ at times t = 0, 1, . . . , 5.

A straightforward consequence of the equivalence of Items 1 and 2 in Theo-
rem 2.11 is that the property of having a dominated invariant splitting (Es

σ, E
u
σ)

for all σ ∈ S is robust to small system perturbations. The robustness property is
instrumental for numerical analysis, and also shows that the property of having
a low-dimensional dominant behavior does not occur with probability zero for
switched linear systems.
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Corollary 2.12. The property of Item 2 in Theorem 2.11 is robust to small
perturbations of the matrices {Ai}i∈Σ.

Proof. The property of being p-dominant is clearly robust to system pertur-
bations, as for any small enough perturbation of the matrices {Ai}i∈Σ, the
dissipation inequalities (2.4) will still be satisfied, with the same automaton,
the same set of rates {γθ}θ∈Θ and the same matrices {Pq}q∈Q. Hence, from the
equivalence of Items 1 and 2 in Theorem 2.11, we get the desired result.

An interesting situation is when the system has a stable dominated behavior.
This means that the system converges to zero on the dominated component of
the splitting, so that the asymptotic behavior of the system is dictated by the
dominant component only. In order to characterize switched linear systems
with such a property, we first introduce the notion of cycle-stable automaton.
For that, let us remind the notion of cycle in an automaton.

Definition 2.13. A cycle in an automaton Aut = (Q,Σ,Θ) is a finite path
(θt)T−1

t=0 ⊆ Θ in Aut such that t(θT−1) = s(θ0) and for all t0, t1 ∈ {0, . . . , T−1},
t0 6= t1, s(θt0) 6= s(θt1).

A cycle-stable automaton is then defined as an automaton for which all cy-
cles have an average rate product smaller than one (see Definition 2.14 below).
This notion appears for instance in the maximum cycle mean problem in graph
theory; see, e.g., Karp (1978); see also Ahmadi and Parrilo (2012) for applica-
tions in switched systems analysis, or Tomar et al. (2020) for applications in
quantized control.

Definition 2.14 (Cycle-stable automaton). Consider an automaton Aut =
(Q,Σ,Θ) and a set of rates {γθ}θ∈Θ ⊆ R>0. We say that Aut is cycle-stable
with respect to {γθ}θ∈Θ if every cycle (θt)T−1

t=0 in Aut satisfies γθ0 . . . γθT−1 ≤ 1.

Using the above, we obtain the following characterization of p-dominant
switched linear systems with stable dominated behavior.

Theorem 2.15. Consider a switched linear system SwS ∼ (Rn, {Ai}i∈Σ). The
following are equivalent:

1. SwS is p-dominant with some automaton Aut = (Q,Σ,Θ) and some set of
rates {γθ}θ∈Θ ⊆ R>0 such that Aut is cycle-stable with respect to {γθ}θ∈Θ.

2. SwS satisfies the property of Item 2 in Theorem 2.11 and there is D ≥ 1
and ρ ∈ (0, 1) such that for every switching signal σ ∈ S, t0, t1 ∈ N,
t1 ≥ t0, and every x1 ∈ Es

σ(t0),

‖χ(t1, t0, x1, σ)‖ ≤ ‖x1‖Dρt1−t0 .
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where χ(·, ·, ·, σ) is the generator of the trajectories of SwS with switching
signal σ.

Proof. See Appendix A.2.5.

The property of a stable dominated behavior will be instrumental for in-
stance in the study of p-dominant smooth dynamical systems (see Section 2.3).
It will also be useful to perform dimensionality reduction in the computation
of the topological entropy of switched linear systems (see Subsection 2.2.4, and
Corollary 3.26 in Subsection 3.3.2).

Summarizing, we introduced the concept of path-complete p-dominance for
switched linear systems, and we showed that this concept was key for the the-
oretical analysis of switched linear systems with a low-dimensional dominant
behavior, a property made precise thanks to the notion of dominated splitting
(see Theorems 2.11 and 2.15). In Subsection 2.2.3, we will address the question
of the algorithmic verification of the property of path-complete p-dominance.
Before this, in the next subsubsection, we discuss the connections of our ap-
proach with other works in the literature.

Discussion and connections with the literature

Our work connects with several other concepts in control and systems theory.
For instance, the use of a family of quadratic forms whose decay properties are
dictated by an automaton is inspired from path-complete Lyapunov functions
introduced in the context of stability analysis of switched systems (see, e.g.,
Ahmadi et al., 2014, Angeli et al., 2017, and Philippe et al., 2019), and from
path-complete positivity which extends the property of positivity by moving
from a single cone to a family of convex cones whose contraction properties are
driven by an automaton (see, e.g., Forni et al., 2017). Another important con-
cept in our analysis is the one of dominated splitting, which was first introduced
in the context of partial hyperbolicity and exponential dichotomy theory (a gen-
eralization of the celebrated works of Smale and Anosov on the horseshoe map;
see, e.g., Brin and Pesin, 1974, Hirsch et al., 1977, Pesin, 2004, and Barreira
and Valls, 2008). Dominated splittings also received attention in the study of
some classes of switched linear systems (see, e.g., Bochi and Gourmelon, 2009,
Barreira and Valls, 2009, Avila et al., 2010, and Brundu and Zennaro, 2019).
An important tool in these works is the one of invariant multicone. In fact,
the proof of the converse theorem for p-dominance (2⇒ 1 in Theorem 2.11) is
partially grounded in the proof of Bochi and Gourmelon (2009, Theorem B),
which shows that a switched linear system under arbitrary switching and with
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invertible matrices admits a dominated splitting for every switching signal if
and only if it admits a contracting multicone. Our work extends this result to
switched linear systems with constrained switching signal and involving singu-
lar matrices and to sets of quadratic p-cones whose contraction properties are
driven by an automaton. Another difference with these references is that little
attention is given to the algorithmic decidability of the geometric property,
whereas our approach is meant to be translated into a practical algorithm for
the computation of the quadratic p-cones, as explained in the next subsection.

2.2.3 Algorithmic verification of p-dominance of switched
linear systems

In this subsection, we consider the following computational problem: “for a
given dominance degree p and a given switched linear system, how can we
compute an automaton, a set of rates and a set of symmetric matrices allowing
to certify that the system is p-dominant, or conclude that the system is not
p-dominant?”

The subsection is organized as follows. First, we describe an algorithm to
compute a set of symmetric matrices satisfying the conditions of p-dominance
when the automaton and the set of rates are given, or conclude that the system
is not p-dominant with this automaton and this set of rates. Then, we address
the problem of finding a suitable automaton and a suitable set of rates. Finally,
we discuss the use and the complexity of the overall algorithmic framework.

Computation of the symmetric matrices

Consider a switched linear system SwS ∼ (Rn, {Ai}i∈Σ) and an automaton
Aut = (Q,Σ,Θ) accepting every switching signal of SwS. Let {γθ}θ∈Θ be a
set of positive rates. Then, according to Definition 2.8, verifying that SwS is
p-dominant with Aut and {γθ}θ∈Θ can be addressed by solving the following
optimization problem: with variables {Pq}q∈Q ⊆ Sn×n and ε ∈ R,

max ε (2.7a)
s.t. AT

i(θ)Pt(θ)Ai(θ) − γ
2
θ Ps(θ) � −εI ∀ θ ∈ Θ, (2.7b)

−I � Pq � I ∀ q ∈ Q, (2.7c)
Pq ∈ Sn×np ∀ q ∈ Q. (2.7d)

The subproblem (2.7a)–(2.7c) is a semidefinite optimization problem. Semidef-
inite programming has become a standard tool in control theory (see, e.g., Boyd
et al., 1994) and many different solvers are available to solve these problems in
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polynomial time; see, e.g., Nesterov and Nemirovskii (1994), Ben-Tal and Ne-
mirovski (2001) and Boyd and Vandenberghe (2004). On the other hand, the
constraints (2.7d) on the inertia of the matrices {Pq}q∈Q are not semidefinite
constraints (they are actually nonconvex). However, as we will see below, this
set of constraints can in fact be dropped without any impact on the outcome
of the decision problem “is SwS p-dominant with Aut and {γθ}θ∈Θ?”. This
statement is formalized in Corollary 2.18 below; to simplify its presentation,
let us make the following standing assumption on the automaton Aut.

Assumption 2.16. We assume that Aut = (Q,Σ,Θ) is essential, meaning that
for every q ∈ Q there is (q+, i+) ∈ Q×Σ such that (q, i+, q+) ∈ Θ and there is
(q−, i−) ∈ Q× Σ such that (q−, i−, q) ∈ Θ.

Remark 2.4. The notion of essential automaton extends the one of essential
graph introduced in the context of abstraction of dynamical systems (see Defi-
nition 1.66 in Subsection 1.4.3). Assumption 2.16 can be made without loss of
generality (see, e.g., Lind and Marcus, 1995, Proposition 2.2.10), provided that
the set of admissible switching signals of the system is backward shift-invariant,
meaning that for any σ ∈ S and t0 ∈ N, there is σ′ ∈ S such that for all t ∈ N,
σ(t) = σ′(t+ t0). The shift-invariance property reflects the fact that the set of
admissible switching signals does not depend on the specific instant at which
the system starts, and thus is generally satisfied in applications.

The following theorem is the second main result of this section. It states
that either there is no solution of (2.7a)–(2.7c) with ε > 0 and with matrices
{Pq}q∈Q having the same inertia, or all solutions of (2.7a)–(2.7c) with ε > 0
satisfy that all matrices {Pq}q∈Q have the same inertia.

Theorem 2.17. Consider a set of matrices {Ai}i∈Σ ⊆ Rn×n, an automaton
(Q,Σ,Θ) and a set of rates {γθ}θ∈Θ ⊆ R>0. Let Assumption 2.16 hold. Assume
there is a feasible solution ({Pq}q∈Q, ε) of (2.7b)–(2.7c) satisfying ε > 0 and
{Pq}q∈Q ⊆ Sn×nk for some k ∈ {0, . . . , n}. Then, it holds that every feasible
solution ({Pq′}q∈Q, ε′) of (2.7b)–(2.7c) with ε′ > 0 satisfies that {Pq′}q∈Q ⊆
Sn×nk .

Proof. See Appendix A.2.6.

Hence, to verify that SwS is p-dominant with Aut and the rates {γθ}θ∈Θ, it
suffices to solve the semidefinite optimization problem (2.7a)–(2.7c).

Corollary 2.18. Consider a switched linear system SwS ∼ (Rn, {Ai}i∈Σ), an
automaton Aut = (Q,Σ,Θ) accepting every σ ∈ S, and a set of rates {γθ}θ∈Θ ⊆
R>0. Let Assumption 2.16 hold. Then, any optimal solution ({Pq?}, ε?) of
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(2.7a)–(2.7c) satisfies that ε? > 0 and {Pq?}q∈Q ⊆ Sn×np if and only if SwS is
p-dominant with Aut and {γθ}θ∈Θ.

Proof. The “only if” direction is clear: if the optimal solution ({Pq?}, ε?) sat-
isfies the assertions of the corollary, then (2.4) holds with {Pq?}q∈Q and thus
the system is p-dominant with Aut and {γθ}θ∈Θ.

The “if” direction is also straightforward: if the system is p-dominant with
Aut and {γθ}θ∈Θ, then (2.7a)–(2.7c) has a feasible solution with ε > 0 and
with {Pq}q∈Q ⊆ Sn×np . It follows that any optimal solution ({Pq?}, ε?) satisfies
ε? > 0, and by Theorem 2.17, it holds that {Pq?}q∈Q ⊆ Sn×np .

Corollary 2.18 shows that, if the automaton and the set of rates are given,
then the verification of p-dominance for a given switched linear system can be
reduced to a semidefinite optimization problem, given by (2.7a)–(2.7c), and
thus can be solved efficiently (see the after-next subsubsection for a discussion
of the complexity). However, nothing is said about the way of finding this
automaton and the associated rates. This question is discussed in the next
subsubsection.

Constraints on the automaton and the set of rates

The determination of an automaton and a set of rates satisfying the conditions
of p-dominance can be challenging in general. We discuss the complexity of
finding them and propose heuristics for this problem in the next subsubsection.
Before that, in the present subsubsection, we present necessary conditions (or
constraints) that must be satisfied by the automaton and the set of rates so
that they can possibly satisfy the conditions of p-dominance. The advantage of
these constraints is that they are easy to compute, while their utility is twofold:
(i) they can be used to reduce the “search space” for the automaton and the
set of rates, by restricting our attention to those that satisfy the constraints,
and (ii) they can be used to conclude that a system is not p-dominant if we
can show that no automaton or set of rates satisfies the constraints.

The constraints on the automaton and the set of rates are described in the
following proposition.

Proposition 2.19. Consider a switched linear system SwS ∼ (Rn, {Ai}i∈Σ)
and assume that SwS is p-dominant with an automaton Aut = (Q,Σ,Θ), a set
of rates {γθ}θ∈Θ ⊆ R>0 and a set of matrices {Pq}q∈Q ⊆ Sn×np . Let (θt)T−1

t=0
be a cycle in Aut, and let Ā = Ai(θT−1) · · ·Ai(θ0) and γ̄ = γθ0 · · · γθT−1 . Then,
it holds that

1. The matrix Ā has p eigenvalues with modulus |λi| > γ̄ and n − p eigen-
values with modulus |λi| < γ̄;
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2. The eigenspace associated to the p eigenvalues of Ā with modulus |λi| >
γ̄ is contained in K(Ps(θ0)), and the eigenspace associated to the n − p
eigenvalues of Ā with modulus |λi| < γ̄ is contained in Rn \ intK(Ps(θ0)).

Proof. These constraints follow in fact from the observation that any cycle in
Aut defines a p-dominant LTI system (see also Proposition 2.3 in Subsection
2.2.1). See Appendix A.2.7 for details.

Condition 1 above is particularly useful to reduce the search space for the
rates if the automaton is given. Condition 2 is useful to exclude automata that
cannot satisfy the dissipation inequalities (2.4) for any set of rates.

This is illustrated in the two examples below. In particular, Example 2.4
explains how the rates were selected in Example 2.2, and Example 2.5 shows
that the switched linear system of Example 2.2 cannot be 1-dominant with
respect to a single quadratic 1-cone, i.e., with an automaton with a single
node.

Example 2.4. In Example 2.2, we used the set of rates {γθ}θ∈Θ defined by
γθ = 0.32 for all θ ∈ Θ to show that SwS is 1-dominant with the automaton
Aut2 in Figure 2.5. These values of the rates were somehow the most natural
choice regarding the constraints obtained from Condition 1 in Proposition 2.19
when p is fixed to 1:

• The rate γa1a, associated to the loop a 1→ a, must satisfy λ1(A1) = 1 >
γa1a > λ2(A1) = 0.1. In the example, we have used the geometric mean
of the bounds: γa1a = γ̃ :=

√
0.1. Similarly, we have used γb2b = γ̃ for

the rate associated to b 2→ b.

• By looking at the cycle a 2→ b 1→ a, we get that the associated rates must
satisfy |λ1(A1A2)| ≈ 0.6 > γa2bγb2a > |λ2(A1A2)| ≈ 0.017. In the exam-
ple, we have used γa2b = γb1a = 4

√
0.6 · 0.017 (which in this example can

be shown to be equal to γ̃).

See also Figure 2.8-a for a representation of the above quantities. Note that
these rates are not the only ones satisfying the constraints of Proposition 2.19
and that the 1-dominance of the system with this automaton and this set of
rates was not guaranteed a priori, but it happened to be the case for this
example.

When α increases, the eigenvalues of A1A2 (and A2A1) get closer to each
other; see Figure 2.8-c. For α < 3−2

√
2 ≈ 0.1716, SwS is still 1-dominant with

the same automaton as above and with the rates chosen in the same way as
above. However, the contraction property (2.5) gets more “fragile”, in the sense
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that the images of K(Pa) and K(Pb) get closer to the boundary of the cones; see
Figure 2.8-d. In fact, when α ≥ 3−2

√
2, SwS is not path-complete 1-dominant

anymore since the matrix A1A2 has two complex conjugated eigenvalues (hence
with the same modulus), and thus it does not satisfy Condition 1 in Proposition
2.19, for any set of rates.
Example 2.5. From Condition 2 in Proposition 2.19, it follows that the system
of Example 2.2 cannot be 1-dominant with the automaton Aut1 in Figure 2.5
(for any set of rates). Indeed, if it was the case, then the cone K(Pa) would
contain the dominant eigenvectors of A1 and A2. Because K(Pa) consists of two
convex components, this would imply that K(Pa) also contains the eigenvectors
associated to λ2 = α of A1 or A2 (indeed, one can readily check in Figure 2.8-
b that any quadratic 1-cone containing the two dominant eigenspaces (solid
lines) will also contain one of the dominated eigenspaces (dashed lines)), a
contradiction with Condition 2 in Proposition 2.19.

Figure 2.8: a: Eigenval-
ues of A1, A2, A1A2 and
A2A1 (see Example 2.2).
b: Eigenvectors of A1 and
A2, associated to λ1 = 1
and λ2 = α. c–d: A1

and A2 are as in Example
2.2 with α = 0.1715.
c: Eigenvalues of A1,
A2, A1A2 and A2A1. d:
Quadratic 1-cones K(Pa)
and K(Pb) and their im-
ages by A1 and A2 (the
color code is the same as
in Figure 2.6).

Complexity and comparison with the literature

For a given automaton and a given set of rates, the verification of p-
dominance with this automaton and this set of rates can be computed effi-
ciently by using Corollary 2.18 and interior-point algorithms to solve the associ-
ated semidefinite optimization problem; the complexity is in O(|Q|2|Θ|1.5n6.5),
where |Q| and |Θ| are the number of nodes and the number of transitions in
the automaton, and n is the dimension of the system (see, e.g., Ben-Tal and
Nemirovski, 2001, Section 6.6.3).
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On the other hand, finding a suitable automaton, or concluding that none
exists, can be challenging in general. The following systematic approach for
finding a suitable automaton (if one exists) can be used:

1. Consider an automaton capturing the sequences of modes of length T of
the system (using for instance De Bruijn automata; see, e.g., Gross et al.,
2014);

2. For such an automaton, try to find a set of rates and symmetric matri-
ces satisfying the conditions of p-dominance (using for instance Bilinear
Matrix Inequalities solvers);

3. If no such set of rates and symmetric matrices can be found, then increase
the value of T and go back to step 1.

The proof of 2 ⇒ 1 in Theorem 2.11 (see Appendix A.2.4) ensures that if the
system is p-dominant, then the above approach will always find an automaton
and a set of rates with which the system is p-dominant. However, this approach
is highly inefficient; the reason is that the size of the automata constructed in
this way increases very rapidly in general, and Bilinear Matrix Inequalities
solvers are known to scale very poorly with the dimension of the problem
(which depends on the size of the automaton). Consequently, this approach
was not used in the numerical examples we considered (see Subsection 2.2.4),
due to its lack of practical applicability. Another comment is also in order:
the above approach is guaranteed (thanks to Theorem 2.11) to find a suitable
automaton and a suitable set of rates if the system is p-dominant, however
there is no criterion for deciding when to stop to looking for an automaton,
so that if the system is not p-dominant, then the above procedure will never
stop. The above algorithm is thus semi-complete, meaning that it finds a
suitable automaton in finite time for systems that are p-dominant, but never
terminates for systems that are not p-dominant. If one wants to show that
a system is not p-dominant, they may use the constraints described in the
previous subsubsection, but those are not guaranteed in general to be able to
show that the system is not p-dominant.

Remark 2.5. Heuristics and more sophisticated optimization approaches can
be used to search for a suitable automaton for p-dominance verification. We
think for instance to Counter-Example Guided Abstraction Refinement (CE-
GAR) techniques, which are used for instance to find Lyapunov functions and
automata for the stability analysis of switched linear systems; see e.g., Mitra
(2021, Section 8.7) and the references therein. In a nutshell, the idea of CE-
GAR is to used a candidate automaton, set of rates and/or set of matrices,
and to check whether p-dominance can be proved with this automaton/set of
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rates/set of matrices. If this is not the case, there should be a witness (called
a counter-example) of the infeasibility. The idea is then to used this counter-
example to improve the automaton/set of rates/set of matrices in order to be
able to show that the system is p-dominant.

These rather deceptive results must be contrasted with the following two
observations. The first one is that the problem of p-dominance verification is a
difficult problem in itself, as it supersedes the problem of stability of switched
linear systems (corresponding to 0-dominance with rates smaller than one),
which is known to be undecidable (see, e.g., Jungers, 2009, Section 2.2). Thus,
one may not hope to have a complete, let alone efficient, algorithm for the
verification of p-dominance of switched linear systems in general.

The second one is that, despite these negative theoretical results, it appears
that in many practical situations, a suitable automaton can be easily guessed
from the structure of the problem and from Condition 2 in Proposition 2.19.
Similarly, the search space for the rates can be considerably reduced by using
the symmetry of the problem (present in many applications) and Condition 1
in Proposition 2.19. As a consequence, finding the automaton and the rates
was not a serious limitation in the various numerical examples presented in the
thesis.

Finally, for some specific applications, the rates and the automaton can be
assumed to be fixed or can be obtained in an easier way. This is the case for
instance for the study of the property of hyperbolicity for smooth dynamical
systems (see Subsection 2.3.3). Indeed, for this application, the rates can be
assumed to be equal to one and the automaton can be obtained by computing
abstractions of the system (the latter is not necessarily easy—especially when
the dimension grows—, but at least it has the advantage of having several
toolboxes available for this problem). Another situation where finding the
automaton and the set of rates can be simplified is for applications in quantized
control. Indeed, if one wants to obtain upper bounds on the topological entropy
of a switched linear system, then at the cost of possibly adding conservatism
to the obtained bounds, they can fix the automaton and assume that the rates
are uniform (i.e., all have the same value). Indeed, by tuning the common
value of the rates and using the algorithm for the verification of p-dominance
when the automaton and the rates are given, one can find values of p for
which the system is p-dominant with this automaton and these rates, and from
that, derive bounds on the topological entropy of the system; see the second
subsubsection of Subsection 2.2.4 and the second subsubsection of Subsection
2.3.3 for details on how these bounds are obtained.

In the next subsection, we present numerical examples and examples of ap-
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plications of the theory of p-dominance and the associated algorithmic frame-
work. Before that, we would like to briefly review the literature on computa-
tional questions related to dominance analysis.

The verification of the property of having a dominated 1-splitting has been
studied by Forni et al. (2017) and Brundu and Zennaro (2019). The first one
presents an algorithm for constructing a common convex cone that is contracted
by the system. However, the restriction to a single common cone adds conser-
vatism to the approach, so that it is not possible to capture every switched
linear system with a dominated 1-splitting. The second one describes an algo-
rithm for computing an invariant multicone for switched linear systems, with
invertible matrices, that have a dominated 1-splitting. However, the computed
multicone is not strictly invariant, so that it does not allow to deduce that the
system admits a dominated 1-splitting.6 Closer to our work, the question of
algorithmic verification of the property of p-dominance (with general p) was ad-
dressed by Forni and Sepulchre (2019), for continuous-time dynamical systems
that have a common quadratic p-cone contracted by the prolonged system. The
concept of path-complete p-dominance introduced above extends this property
to discrete-time switched linear systems and to families of quadratic p-cones
whose contraction properties are dictated by an automaton.

2.2.4 Numerical examples and applications

In this subsection, we present some examples of application of the theory of
path-complete p-dominance for switched linear systems developed in the pre-
vious subsections. Further examples, involving nonlinear dynamical systems,
will be presented in Subsection 2.3.3 after we presented how this theory can be
used for the analysis of “p-dominant nonlinear dynamical systems” (see Section
2.3).

6Let us also mention that the approach used in Forni et al. (2017) and Brundu and
Zennaro (2019) for the computation of the cone/multicone—which relies on polyhedral set
methods, thriving on the fact that the involved sets can be described as the finite union of
disjoint convex polyhedral cones—is hardly generalizable to the verification of p-dominance
with p ≥ 2. Indeed, cones that are compatible with p-dimensional dominant behavior are in
general not representable as the finite union of convex cones.
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1-dominance and population dynamics

Consider the switched linear system SwS ∼ (R6, {Ai}i∈Σ) under arbitrary
switching, with Σ = {1, 2} and

A1 =



0.1 0.2 0.2 0 0 0
0.95 0 0 0.27 0 0

0 0.9 0 0 0.255 0
0 0 0 0.21 0.63 0.49
0 0 0 0.63 0 0
0 0 0 0 0.595 0


,

A2 =



0.07 0.14 0.14 0 0 0
0.665 0 0 0 0 0

0 0.63 0 0 0 0
0 0 0 0.3 0.9 0.7

0.285 0 0 0.9 0 0
0 0.27 0 0 0.85 0


.

This system, adapted from Schmidbauer et al. (2012, Eq. 4), may appear for
instance in the study of aged-structured populations with migration between
the populations. In this example, the 1st, 2nd and 3rd (resp. 4th, 5th and 6th)
components of the trajectories of the system, represent the number of individu-
als in each of the three age classes of some urban (resp. rural) population. Each
population evolves according to the Leslie model (see, e.g., Farina and Rinaldi,
2000, Chapter 13, and Schmidbauer et al., 2012), and there is migration either
from villages to cities (A1) or from cities to villages (A2).7

A central question in the study of population dynamics is whether the
asymptotic composition of the population depends on the initial condition; see,
e.g., Farina and Rinaldi (2000), Golubitsky et al. (1975), Tuljapurkar (1982),
Schmidbauer and Rösch (1995) or Schmidbauer et al. (2012). The population
composition at time t ∈ N is represented by the normalized vector ξ(t)/‖ξ(t)‖1,
where ξ : N→ R6 is the trajectory of SwS for some switching signal σ, and ‖·‖1
is the 1-norm. Using dominance analysis, we will show that for any switching
signal σ ∈ S, the population composition is ultimately independent of its initial
condition, meaning that for any two x1, x2 ∈ (R≥0)6 \ {0},

lim
t→∞

∣∣∣∣ χ(t, x1, σ)
‖χ(t, x1, σ)‖1

− χ(t, x2, σ)
‖χ(t, x2, σ)‖1

∣∣∣∣ = 0.

7This is where our model differs from Schmidbauer et al. (2012): instead of having a single
matrix that encodes at the same time the migrations from villages to cities and from cities to
villages, we have decomposed this matrix in two matrices, A1 and A2, to get a switched linear
system, and we assume that system switches between the two modes (e.g., as a consequence
of external factors, like climate, conjuncture, etc.).
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To do this, we consider the automaton Aut1 in Figure 2.5 (which accepts
every σ ∈ S), together with the set of rates γa1a = 0.79 and γa2a = 0.95 (these
rates were selected with the same technique as in Example 2.4). Using the
algorithm described in Subsection 2.2.3, we can show that the system is 1-
dominant with this automaton and this set of rates. Thus, from Theorem 2.11,
we may conclude that the normalized trajectories of the system converge to
the same normalized trajectory. In other words, for any switching signal, the
asymptotic composition of the population is independent of its initial condition;
this is illustrated in Figure 2.9, where a random switching signal was chosen,
and we observe that the trajectories, starting from different initial conditions,
have ultimately the same population composition.

Remark 2.6. Note that the automaton Aut1 and the above set of rates are
not the only ones satisfying the constraints (2.4) of p-dominance and, even if
the system has a 1-dimensional asymptotic behavior, it was not guaranteed
a priori that the system is 1-dominant with this automaton and this set of
rates. If it had not been the case, then one would have needed to search for
more complex automata (such as Aut2 or Aut3 in Figure 2.5 for instance). This
would have increased the complexity of the problem, but not the conclusion on
the asymptotic behavior of the system.

Figure 2.9: Normalized trajectories of SwS, starting from different initial conditions
and for a random switching signal σ ∈ S. The trajectories are normalized such that∑

i
ξ(i)(t) = 1. We observe that all normalized trajectories converge to the same

normalized trajectory as t goes to ∞.

The property that the normalized trajectories, for a same switching signal,
converge to each other independently of their initial condition is known as the
property of incremental stability of the normalized system ξ+ = Aσξ/‖Aσξ‖
(see also the discussion below Theorem 2.11). Different approaches have been
proposed in the literature to verify the incremental stability property of dy-
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namical and switched systems; see, e.g., Lohmiller and Slotine (1998), Angeli
(2002) and Forni and Sepulchre (2014). These approaches, also called con-
traction analysis, generally amount to construct a Lyapunov function for the
prolonged system (see Definition 1.29 in Subsection 1.2.3), which describes the
evolution of the sensitivity of the system to the initial condition (see Propo-
sition 1.30 in Subsection 1.2.3). For the above system, the sensitivity matrix,
denoted here by δξ(t), of the trajectory at time t with respect to the initial
condition satisfies δξ+ =

[
Aσ
‖Aσξ‖ −

(Aσξ)(Aσξ)T

‖Aσξ‖3

]
δξ. It thus amounts to find a

Lyapunov function for a linear system whose transition matrix depends on x

(the state of the trajectory), so that there is an infinite number of such matri-
ces. By contrast, the approach proposed above, relying on dominance analysis,
uses the switched linear system as it is, so that the number of matrices is finite.

p-dominance and bounds on the topological entropy

In Subsection 1.5.2, we introduced the concept of topological entropy for hybrid
systems. In Chapter 3, we will see that this quantity is instrumental for the
study of networked switched linear systems. In this subsubsection, we show
that the theory of p-dominance can be used to derive bounds on the topological
entropy of switched linear systems.

To illustrate this, consider the switched linear system SwS ∼ (R3, {Ai}i∈Σ)
under arbitrary switching, with Σ = {1, 2, 3},

A1 =

 2 −0.3 −0.3
0 0.7 0
0 0 0.7

 , A2 =

 0.7 0 0
−0.3 2 0.3

0 0 0.7

 , A3 =

 0.7 0 0
0 0.7 0
−0.3 0.3 2

 .
This system can be shown to be 1-dominant with the automaton Aut = (Q,Σ,Θ)
and the set of rates {γθ}θ∈Θ depicted in Figure 2.10-a. The automaton was ob-
tained by using the symmetry of the system,8 and the set of rates was derived
by making several guesses and using Condition 1 in Proposition 2.19 to reduce
the “search space” for the rates. The 1-dominance of SwS with this automaton
and set of rates was verified thanks to Corollary 2.18; for the interested reader,
the associated quadratic 1-cones are depicted in Figure 2.10-b,c,d.

Let σ : N → Σ be a switching signal for SwS and let (θt)∞t=0 ⊆ Θ be a
path in Aut such that σ(t) = i(θt) for all t ∈ N. We will see in Subsection
3.2.3 (Theorem 3.11) that the topological entropy, denoted by htop(SwS;σ), of

8However, by using Condition 2 in Proposition 2.19, it can be shown that SwS is not
1-dominant with the trivial automaton (that is, the automaton with only one node), for any
set of rates. SwS is thus another example of switched linear system under arbitrary switching
that requires a non-trivial automaton to be 1-dominant (see also Example 2.5).
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Figure 2.10: a: Automaton
and set of rates for which SwS
is 1-dominant. b–d: Quadratic
1-cones associated to the ma-
trices {Pq}q∈Q ⊆ Sn×n1 com-
puted thanks to Corollary
2.18 to show 1-dominance of
SwS with the automaton and
the set of rates in a.

a

bc
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the linear time-varying system associated to SwS with switching signal σ is
bounded by

lim sup
T→∞

1
T

max {0, log2(γθ0 · · · γθT−1)} ≤ htop(SwS;σ) ≤

2 lim sup
T→∞

1
T

max {0, log2(γθ0 · · · γθT−1)}+ log2(e) %̂(SwS),

where %̂(SwS) is the joint spectral radius of SwS (see Definition 1.50 in Subsec-
tion 1.3.2). This gives the following interval for the value of htop(SwS;σ):

htop(SwS;σ) ∈ [log2(1.1), 2 log2(1.2) + log2(2)] ≈ [0.138, 1.526].

These bounds can be compared for instance with the bounds in Yang et al.
(2020, Theorem 1) which provide htop(SwS;σ) ∈ [0, 3].

2.3 Dominance analysis of smooth dynamical
systems

In the previous section, we introduced the concept of p-dominance for discrete-
time switched linear systems. In this section, we leverage this approach for
the study of discrete-time smooth dynamical systems whose linearized dynam-
ics can be decomposed into a p-dimensional dominant component and a com-
plementary (n − p) dominated component (with n the dimension of the sys-
tem). Thriving on the algorithmic framework for the analysis of p-dominance
of discrete-time switched linear systems and on the technique of abstraction
of dynamical systems, we provide an algorithmic framework for the study of



2.3. DOMINANCE ANALYSIS OF SMOOTH DYNAMICAL SYSTEMS 99

p-dominance for discrete-time smooth dynamical systems. Finally, we discuss
two applications of the theory of p-dominance for discrete-time smooth dynam-
ical systems, namely regarding the verification of the property of hyperbolicity
and the estimation of the topological entropy of these systems.

The section is organized as follows. In Subsection 2.3.1, we introduce the
notion of p-dominance for discrete-time smooth dynamical systems. In Subsec-
tion 2.3.2, we present the algorithmic framework for the study of the property
of p-dominance for these systems. Finally, in Subsection 2.3.3, we discuss some
applications, supported by numerical examples, of the above theory and algo-
rithmic framework.

Notation. In this section, all considered dynamical systems are discrete-
time smooth dynamical systems, and thus for the sake of brievety, we will refer
to them simply as dynamical systems. If A and B are sets, we write A b B if
A ⊆ 2B . The Minkowski sum of A ⊆ Rd and B ⊆ Rd (or {x} ⊆ Rd) is denoted
by A+ B (or A+ x), and the convex hull of A is denoted by convA. The set
of symmetric matrices in Rn×n is denoted by Sn×n. For P,Q ∈ Sn×n, we write
P � Q (P � Q) if P −Q is positive (semi)definite.

2.3.1 p-dominant smooth dynamical systems

The notion of p-dominant dynamical system draws on the one of path-complete
p-dominant switched linear system, introduced in the previous section. For a
reminder, the trajectories ξ : N → Rn of a dynamical system Sys = (Rn, f)
satisfy ξ(t + 1) = f(ξ(t)) for all t ∈ N; the generator9 of Sys is denoted by
χ(·, ·; Sys) (or χ if Sys is clear from the context); and the derivative of f is
denoted by ∂f

∂x . The sensitivity of the trajectories to the initial condition,
defined by ∂χ

∂x , satisfies the linear system
∂χ

∂x
(t+ 1, x) = ∂f

∂x
(χ(t, x))∂χ

∂x
(t, x) for all t ∈ N and x ∈ Rn

(see Proposition 1.30 in Subsection 1.2.3). The system describing the evolution
of ∂χ

∂x can thus be seen as a switched linear system with an infinite number of
matrices, given by {∂f∂x (x)}x∈Rn , and with switching signal given by the trajec-
tory of the system; in other words, “Aσ(t)” is replaced by “∂f∂x (χ(t, x))”. The
idea is to apply the tools developed within the framework of dominance analy-
sis for switched linear systems, to study the existence of dominated splittings
for the linearized dynamics of Sys, that is, for the dynamics of the sensitivity
matrix ∂χ

∂x .
Since we are now considering switched linear systems with an infinite num-

ber of matrices, we resort to automata whose transitions are associated to sets
9For a reminder, see Definition 1.20 in Subsection 1.2.1.
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of matrices instead of single matrices. Therefore, we define the notion of ad-
missible sequences of matrices with respect to an automaton and an associated
set of sets of matrices.

Definition 2.20 (Admissible sequence of matrices for an automaton and sets
of matrices). Consider an automaton Aut = (Q,Σ,Θ), and for each i ∈ Σ, let
Ai ⊆ Rn×n. A function Â : N → Rn×n is said to be admissible for Aut and
{Ai}i∈Σ (or accepted by Aut and {Ai}i∈Σ) if there is a path (θt)∞t=0 in Aut
satisfying that for all t ∈ N, Â(t) ∈ Ai(θt).

This allows us to define the notion of p-dominant dynamical system. As in
Section 2.2, p is a fixed integer between 0 and n, called the degree of dominance.
Let us remind that a matrix P ∈ Sn×n is said to have inertia (k, 0, n− k) if it
has k negative eigenvalues and n− k positive eigenvalues. The set of matrices
of Sn×n with inertia (k, 0, n − k) is denoted by Sn×nk (see Definition 2.1 in
Subsection 2.2.1).

Definition 2.21 (p-dominant dynamical system). Consider a dynamical sys-
tem Sys = (Rn, f) and a set Λ ⊆ Rn forward invariant for Sys. We say that Sys
is p-dominant on Λ if there is an automaton Aut = (Q,Σ,Θ), a set of sets of
matrices {Ai}i∈Σ b Rn×n, a set of rates {γθ}θ∈Θ ⊆ R>0 and a set of matrices
{Pq}q∈Q ⊆ Sn×np such that

1. for every x ∈ Λ, the matrix sequence Âx : N→ Rn×n, defined by Âx(t) =
∂f
∂x (χ(t, x)), is admissible for Aut and {Ai}i∈Σ;

2. for every θ ∈ Θ and A ∈ Ai(θ),

ATPt(θ)A − γ2
θ Ps(θ) ≺ 0. (2.8)

We present below a numerical example of a 2-dominant dynamical system
to illustrate the above concepts.

Example 2.6 (2-dominant dynamical system). Consider the nonlinear dynami-
cal system10 Sys = (R3, f) defined by

ξ(1)(t+ 1) = ξ(1)(t) + 0.3ξ(2)(t),
ξ(2)(t+ 1) = 0.3 sin(ξ(1)(t))− 0.15ξ(1)(t) + 0.7ξ(2)(t) + 0.03ξ(3)(t),
ξ(3)(t+ 1) = −1.5ξ(1)(t) + 0.925ξ(3)(t).

10This system is a discrete-time version of the Duffing oscillator actuated by a DC motor;
adapted from Forni and Sepulchre (2019, Subsection 4.C).
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We will show that Sys is 2-dominant on R3. Therefore, note that the derivative
of f at x ∈ Rn, which satisfies

∂f

∂x
(x) =

 1.0 0.3 0.0
0.3 cos(x(1))− 0.15 0.7 0.03

−1.5 0.0 0.925

 ,
depends on x only via cos(x(1)). Thus, we consider the following four sets of
matrices:

Ai =
{
∂f
∂x (x) : x ∈ R3and cos(x(1)) ∈ Ii

}
⊆ R3×3, for each i ∈ Σ .= {1, 2, 3, 4},

where I1 = [−1,− 1
2 ], I2 = [− 1

2 , 0], I3 = [0, 1
2 ], I4 = [ 1

2 , 1]. By construction, it
holds that for every x ∈ R3, ∂f

∂x (x) ∈
⋃
i∈ΣAi. Now, consider the automaton

Aut = (Q,Σ,Θ) depicted in Figure 2.11-a. It is readily checked that this
automaton accepts every switching signal σ : N → Σ. Thus, it holds that any
matrix sequence Â : N →

⋃
i∈ΣAi is admissible for Aut and {Ai}i∈Σ, so that

Aut and {Ai}i∈Σ satisfy Condition 1 in the definition of p-dominance for Sys
(Definition 2.21).

To show that Sys is 2-dominant with Aut and {Ai}i∈Σ, we use the set of
rates {γθ}θ∈Θ given by γθ = γ̃ := 0.83 for all θ ∈ Θ. This set of rates was
derived by making several guesses and using a condition similar to the one in
Proposition 2.19 (see Proposition 2.26 in the next subsection); see also Figure
2.11-b for an illustration. It can be shown that Condition 2 in Definition 2.21
holds with Aut, {Ai}i∈Σ, the above set of rates {γθ}θ∈Θ and some set of matrices
{Pq}q∈Q ⊆ S3×3

2 . In other words the system is 2-dominant. For the interested
reader, let us mention that the set of matrices {Pq}q∈Q was computed using
the algorithm described in the next subsection (see Theorems 2.23 and 2.24);
the quadratic 2-cones associated to the matrices {Pq}q∈Q are represented in
Figure 2.11-c.

Example 2.7 (Example 2.6 continued). The 2-dominance of Sys in Example
2.6 translates by the fact that the asymptotic behavior of Sys is at most 2-
dimensional, in the sense that the ω-limit set (see Definition 1.24 in Subsection
1.2.1) of any bounded trajectory of Sys is contained in a 2-dimensional manifold.
In fact, this follows from the following observation.

Proposition 2.22. With Sys and {Pq}q∈Q as above, if x1, x2 are two points in
the ω-limit set of some bounded trajectory ξ : N → R3 of Sys, then x1 − x2

belongs to
⋃
q∈QK(Pq).

Proof. The proof relies on the fact that the automaton is cycle-stable (see
Definition 2.14 in Subsection 2.2.2) and on the fact that there is a common 2-
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a b

c d
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Figure 2.11: a: Automaton used to analyze the 2-dominance of Sys (the transitions
are labeled according to the legend on the right). b: The blue dots represent the
eigenvalues of ∂f

∂x
(x) for 6 randomly selected points x ∈ R3. By Proposition 2.26,

the value of γ̃ must lie in the green strip. The dashed circle corresponds to the
value γ̃ = 0.83. c: Quadratic 2-cones associated to the matrices {Pq}q∈Q. d: Two
trajectories of Sys (in blue and orange). The quadratic 2-cone associated to Pc (in
green) centered at 2 different points of the ω-limit set of the trajectory in blue does
not intersect this ω-limit set, as predicted by Proposition 2.22.

dimensional subspace included in K(Pq) for all q ∈ Q. See Berger and Jungers
(2021b, Proposition 17) for details.

To illustrate the above, we have represented in Figure 2.11-d two trajectories
of Sys, starting from different initial conditions. We verify that the ω-limit set
of each trajectory is at most 2-dimensional.

Remark 2.7. The result presented in Example 2.7 is quite specific to the case
of a system being (n − 1)-dominant with a cycle-stable automaton (implying
that the dominated component of the linearized dynamics is stable; see also
Theorem 2.15 in Subsection 2.2.2). A similar result can be obtained for p-
dominant systems using the celebrated formula of Ledrappier (1981), stating
that the Haussdorff dimension of any compact invariant set of a dynamical
system Sys = (Rn, f) is bounded by m where m ∈ N is any integer such that
the product of the m largest singular values of ∂χ

∂x (T, x) is smaller than 1 for
all x ∈ Rn and for some T ∈ N>0. The theory of dominance, by studying
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dominated splittings of the dynamics, provides algorithmic tools to answer this
kind of questions; for the sake of brievety, the details are omitted here (see also
the proof of Proposition 2.28 in Appendix A.2.10).

This concludes the example illustrating the concept of p-dominance for non-
linear dynamical systems. In the next subsection, we discuss the algorithmic
aspects of the verification of p-dominance. Then, in Subsection 2.3.3, we present
two applications of the theory of p-dominance for dynamical systems, namely
regarding the verification of the property of hyperbolicity (see also Subsection
1.2.3) and the estimation of the topological entropy (see also Subsection 1.5.2)
of these systems.

2.3.2 Algorithmic verification of p-dominance of smooth
dynamical systems

In this subsection, we describe an algorithmic framework for the verification of
p-dominance of dynamical systems. This framework draws on the algorithm
for the verification of p-dominance for switched linear systems, described in
Subsection 2.2.3, and on the technique of abstraction of dynamical systems,
introduced in Section 1.4. The subsection is organized as follows. First, we
present an algorithm to compute, if it exists, a set of symmetric matrices sat-
isfying the second condition in the definition of p-dominance for dynamical
systems (Definition 2.21) when the automaton Aut, the set of sets of matrices
{Ai}i∈Σ and the set of rates {γθ}θ∈Θ are given. This algorithm extends the one
presented in Subsection 2.2.3 for the verification of p-dominance of switched
linear systems by considering automata whose edges are associated to sets of
matrices instead of single matrices. Then, we explain how to build an automa-
ton Aut and a set of sets of matrices {Ai}i∈Σ satisfying the first condition in
the definition of p-dominance for dynamical systems. For this step, we use
the approach of abstraction of dynamical systems introduced in Section 1.4.
Finally, we discuss the complexity of the overall algorithmic framework.

Computation of the symmetric matrices

Consider an automaton Aut = (Q,Σ,Θ), a set of sets of matrices {Ai}i∈Σ b

Rn×n and a set of rates {γθ}θ∈Θ ⊆ R>0. Computing a set of matrices {Pq}q∈Q ⊆
Sn×np satisfying Condition 2 in Definition 2.21 can be addressed by solving the
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following optimization problem: with variables {Pq}q∈Q ⊆ Sn×n and ε ∈ R,

max ε (2.9a)
s.t. ATPt(θ)A− γ2

θ Ps(θ) � −εI ∀ θ ∈ Θ, A ∈ Ai(θ), (2.9b)
−I � Pq � I ∀ q ∈ Q, (2.9c)
Pq ∈ Sn×np ∀ q ∈ Q. (2.9d)

The constraint (2.9b) contains an infinite number of semidefinite constraints;
we explain below how the problem can be modified to have a finite number of
constraints. But, before that, let us mention that as for the case of switched
linear systems, the constraints (2.9d) on the inertia of the matrices {Pq}q∈Q
can be dropped without any impact on the outcome of the decision problem
“is there a set of matrices {Pq}q∈Q ⊆ Sn×np satisfying the second condition in
Definition 2.21?” This statement is formalized in the theorem below.

Theorem 2.23. Consider an automaton Aut = (Q,Σ,Θ), a set of sets of
matrices {Ai}i∈Σ b Rn×n and a set of rates {γθ}θ∈Θ ⊆ R>0. Let Assumption
2.16 hold (Aut is essential). Then, any optimal solution ({Pq?}, ε?) of (2.9a)–
(2.9c) satisfies that ε? > 0 and {Pq?}q∈Q ⊆ Sn×np if and only if there is a set of
matrices {Pq}q∈Q ⊆ Sn×np satisfying Condition 2 in Definition 2.21 with Aut,
{Ai}i∈Σ and {γθ}θ∈Θ.

Proof. The proof is identical to the proof of Corollary 2.18.

Based on the above, we now restrict our attention to the subproblem (2.9a)–
(2.9c). This problem is a semidefinite optimization problem, but (2.9b) contains
an infinite number of semidefinite constraints. However, we will see that the
problem can be tightened (i.e., modified with stronger constraints) to obtain a
semidefinite optimization problem with a finite number of constraints. To do
this, we assume that for each i ∈ Σ, the matrix set Ai can be enclosed in a
convex set of the form

Ai ⊆ Ac
i + conv {Ah

i,1, . . . , A
h
i,Ni}+ riB, for each i ∈ Σ, (2.10)

where Ac
i , A

h
i,1, . . . , A

h
i,Ni
∈ Rn×n and ri ≥ 0 for all i ∈ Σ, and B = {A ∈ Rn×n :

‖A‖ ≤ 1}.
Using these convex enclosures (2.10), we define the following semidefinite

optimization problem: with variables {Pq}q∈Q ⊆ Sn×n, {Eq}q∈Q ⊆ Sn×n,
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{δq}q∈Q ⊆ [0, 1], η ∈ R≥0 and ε ∈ R,

max ε (2.11a)
s.t. Ac

i(θ)
TPt(θ)A

c
i(θ) +Ac

i(θ)
TPt(θ)A

h
i(θ),j +Ah

i(θ),j
TPt(θ)A

c
i(θ)

+Ah
i(θ),j

TEt(θ)A
h
i(θ),j − γ

2
θ Ps(θ) + ηI � −εI ∀ θ ∈ Θ, j ∈ {1, . . . , Ni(θ)},

(2.11b)

η ≥ r2
i(θ)δt(θ) + 2ri(θ)‖Pt(θ)(Ac

i(θ) +Ah
i(θ),j)‖ ∀ θ ∈ Θ, j ∈ {1, . . . , Ni(θ)},

(2.11c)

−I � Pq � δqI, Pq � Eq, Eq � 0 ∀ q ∈ Q. (2.11d)

Note that the constraints (2.11c) can be expressed as semidefinite constraints,
using the Schur complement: for any z ∈ R and B ∈ Rn×n, it holds that
z ≥ ‖B‖ if and only if

[
zI B
BT zI

]
� 0 (see, e.g., Ben-Tal and Nemirovski, 2001, p.

152). The following theorem states that any feasible solution of (2.11) provides
a feasible solution of (2.9a)–(2.9c). (See also the paragraph below this theorem
for an explanation of the derivation of this tightened optimization problem.)

Theorem 2.24. Consider an automaton Aut = (Q,Σ,Θ), a set of sets of
matrices {Ai}i∈Σ b Rn×n and a set of rates {γθ}θ∈Θ ⊆ R>0. Let {Ac

i}i∈Σ,
{Ah

i,j}i∈Σ, j∈{1,...,Ni} and {ri}i∈Σ be as in (2.10). Let ({Pq}q∈Q, {Eq}q∈Q, {δq}q∈Q, η, ε)
be a feasible solution of (2.11b)–(2.11d). Then, it holds that ({Pq}q∈Q, ε) is a
feasible solution of (2.9b)–(2.9c).

Proof. See Appendix A.2.8.

The idea behind the derivation of (2.11) as a tightening of (2.9a)–(2.9c)
is the following. For any θ ∈ Θ, by replacing the matrix Pt(θ) by the matrix
Et(θ) � 0, the constraint

Ac
i(θ)

TPt(θ)A
c
i(θ) +Ac

i(θ)
TPt(θ)B +BTPt(θ)A

c
i(θ) +BTEt(θ)B − γ2

θ Ps(θ) � −εI
(2.11b’)

provides a convex enclosure of the constraint (2.9b) with this θ, in the sense
that, for fixed Ps(θ), Pt(θ), Et(θ) and ε, the set of matrices B that satisfy the
constraint (2.11b’), shifted by Ac

i(θ), is a convex set containing the set of matri-
ces A that satisfy (2.9b) with this θ. Hence, it suffices to impose that this set
contains the vertices of the convex enclosure (2.10) of Ai(θ). This is achieved
by imposing that the matrix inequality (2.11b’) is satisfied at B = Ah

i(θ),j for
all j ∈ {1, . . . , Ni(θ)} with a margin taking into account the deviation of norm
ri(θ) around Ah

i(θ),j (see (2.10)). This margin is captured by the term ηI where
η satisfies (2.11c). See also the proof of Theorem 2.24 (Appendix A.2.8) for
details.
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Summarizing, Theorems 2.23 and 2.24 show that if the automaton, the
set of sets of matrices and the set of rates are given, then the verification of
p-dominance for a given dynamical system can be reduced to a semidefinite
optimization problem, and thus can be solved efficiently using classical convex
optimization algorithms. In the next subsubsection, we explain how to compute
an automaton and a set of sets of matrices satisfying the first condition in the
definition of p-dominance for dynamical systems. We also discuss the choice of
the set of rates.

Computation of the automaton, the sets of matrices and the rates

The computation of the automaton can be achieved by using the technique
of abstraction introduced in Section 1.4 and which amounts to compute a fi-
nite representation, called a symbolic model, of the dynamical system. For a
reminder, given a dynamical system Sys = (Rn, f) and a subset Λ ⊆ Rn, a
symbolic model of Sys on Λ (with time step T = 1) consists of a finite set of
regions {Oq}q∈Q b Rn satisfying Λ ⊆

⋃
q∈QOq, and a set of edges E ⊆ Q×Q

representing the possible transitions of the system among the different regions,
meaning that (q1, q2) ∈ E if {f(x) : x ∈ Oq1} ∩Oq2 6= ∅ (see Definition 1.57 in
Subsection 1.4.1). All symbolic models considered in this section are assumed
to have time step equal to one, and thus we refer to them simply as symbolic
models. See Figure 2.12 for an illustration of a symbolic model built with the
method presented in Subsection 1.4.2.

a b

Figure 2.12: Symbolic model for the Ikeda dynamical system (see Example 2.8 in
Subsection 2.3.3) on the set Λ = [−1.1, 3.4] × [−1.5, 1.8]. a: Discretization of Λ into
16 rectangular regions Oq, indexed by Q = {1, . . . , 16}. The image of the region O11

(in red) is represented in dark blue. The different regions that intersect the image
of O11 are represented in light blue. b: Graph representing the transitions (edges)
between the different regions of the symbolic model. The outgoing edges from the
node 11 are highlighted in red.
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Given a symbolic model ({Oq}q∈Q, E) of Sys = (Rn, f) on Λ ⊆ Rn, we
first build an automaton as follows. We let Aut be the automaton defined by
(Q,Σ,Θ) where Σ = Q and Θ = {(q1, q1, q2) : (q1, q2) ∈ E} ⊆ Q × Σ × Q (in
other words, the transitions of Aut are given by the edges of E labeled with
the source node of the edge in question). Then, we define the sets of matrices
{Ai}i∈Σ as follows. For each q ∈ Q = Σ, we let Aq ⊆ Rn×n be a set of matrices
such that for every x ∈ Oq, ∂f

∂x (x) ∈ Aq. This set of matrices can be defined
for instance by using the Lipschitz continuity of ∂f

∂x (which was assumed in
the construction of the symbolic model; see Assumption 1.63 in Subsection
1.4.2) or by identifying the variables that influence the value of ∂f

∂x and how
these variables vary in the region in question (as in the example at the end of
Subsection 2.3.1). By construction, Aut and {Ai}i∈Σ defined as above satisfy
the first condition in the definition of p-dominance of Sys.

Proposition 2.25. Consider a dynamical system Sys = (Rn, f) and a set
Λ ⊆ Rn. Let ({Oq}q∈Q, E) be a symbolic model of Sys on Λ, and let Aut =
(Q,Σ,Θ) and {Ai}i∈Σ b Rn×n be defined as above. Then, Aut and {Ai}i∈Σ

satisfy Condition 1 in Definition 2.21.

Proof. Straightforward from the definition of a symbolic model and from the
construction of Aut and {Ai}i∈Σ.

Remark 2.8. In practice, the definition of the sets of matrices {Ai}i∈Σ often
directly provides convex enclosures in the form of (2.10); but this is not required
and can be achieved in a second time if one wants to use Theorem 2.24 to verify
that the second condition in Definition 2.21 holds.

Now that we have seen how to construct an automaton and a set of sets
of matrices satisfying the first condition in the definition of p-dominance, it
remains to discuss how to find, if it exists, a set of rates satisfying the second
condition in the definition of p-dominance with a given automaton and a given
set of sets of matrices. As in the case of switched linear systems, there is in
general no systematic way to find such a set of rates, but we can nevertheless
reduce the search space for the rates by using constraints similar to the ones
in Proposition 2.19.

Proposition 2.26. Consider an automaton Aut = (Q,Σ,Θ), a set of sets of
matrices {Ai}i∈Σ b Rn×n, a set of rates {γθ}θ∈Θ ⊆ R>0 and a set of matrices
{Pq}q∈Q ⊆ Sn×np satisfying the second condition in Definition 2.21. Let (θt)T−1

t=0
be a cycle in Aut, and for each t ∈ {0, . . . , T − 1}, let At ∈ Ai(θt). Define
Ā = AT−1 · · ·A0 and γ̄ = γθ0 · · · γθT−1 . Then, it holds that Ā has p eigenvalues
with modulus |λi| > γ̄ and n− p eigenvalues with modulus |λi| < γ̄.
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Proof. The proof is identical to the proof of Condition 1 in Proposition 2.19.

In all generality, the rates can be different for each transition of the automa-
ton. However, when the size of the automaton increases, it becomes rapidly
intractable to explore the space of all sets of rates having a different value for
each transition of the automaton. Therefore, in the numerical experiments,
we often search a suitable set of rates with the additional requirement that
all rates are the same and we use Proposition 2.26 to derive bounds on the
common value of the rates (see also the example at the end of Subsection 2.3.1
for an illustration); the price to pay is to increase the conservatism of the al-
gorithmic framework for the verification of p-dominance of dynamical systems.
However, for some applications, assuming that all rates are equal, or even fixing
the value of the rates, does not add any conservatism for the numerical analysis
of the application in question. This is the case for instance for the verification
of hyperbolicity of dynamical systems, for which we may assume that all rates
are equal to one, as we will see in Subsection 2.3.3.

Complexity of the overall algorithmic framework

The complexity of the overall algorithmic framework is mainly driven by the
complexity of computing a symbolic model of the system. For a given diameter
of the regions, this grows in the worst case as a power of the dimension of
the system (this is the curse of dimensionality of the abstraction approach;
see, e.g., Reißig, 2011, p. 2588). Once a symbolic model is computed, one
can construct an automaton and a set of sets of matrices—or more precisely
convex enclosures of these sets of matrices—with the approach described in the
previous subsubsection. If for instance the Lipschitz continuity assumption is
used to construct the sets of matrices, this step can be performed in linear time
with respect to the number of regions in the symbolic model.

Regarding the selection of the rates, there is no clear complexity for this
step as we do not have a systematic methodology for it (see the previous sub-
subsection). If we assume that all rates are equal and assume some robustness
of the property of p-dominance of the dynamical system, then the rates can be
selected by trying equally spaced values within the confidence interval defined
by the constraints in Proposition 2.26.

Finally, for a given automaton Aut = (Q,Σ,Θ), a given set of convex sets
of matrices in the form of (2.10) and a given set of rates, the optimization
problem (2.11) can be solved efficiently using any polynomial-time semidefinite
optimization algorithm. The optimization problem involves 2|Q| matrix vari-
ables of dimension n × n and roughly |Q| scalar variables, and 4|Q| + 2|Θ|N̄
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semidefinite constraints of size n× n or 2n× 2n, where N̄ = maxi∈Σ Ni.

2.3.3 Numerical examples and applications

In this subsection, we present two applications of the theory of p-dominance
for dynamical systems. The first application deals with the verification of the
property of hyperbolicity of dynamical systems and the second one with the
estimation of the topological entropy of dynamical systems. Both applications
are illustrated with numerical examples.

p-dominance and hyperbolicity of dynamical systems

In Subsection 1.2.3, we introduced the concept of hyperbolicity for invertible
dynamical systems and discussed its applications regarding the structural sta-
bility of its invariant sets. For a reminder, an invariant set of an invertible
dynamical system is hyperbolic if for any point in the set there are two com-
plementary subspaces, one being stable for the linearized dynamics in forward
time and one being stable for the linearized dynamics in backward time (see
Definition 1.31).

It turns out that the property of hyperbolicity can be verified algorithmi-
cally using the framework of p-dominance for dynamical systems. Moreover,
in that case, the rates of p-dominance can be fixed to be equal to one, which
reduces considerably the complexity of the overall algorithmic framework for
the verification of p-dominance. The connection between hyperbolicity and
p-dominance is explained in the following proposition.

Proposition 2.27. Consider an invertible dynamical system Sys = (Rn, f)
and a set Λ ⊆ Rn invariant for Sys. Consider the following propositions:

1. There is p ∈ {0, . . . , n} such that Sys is p-dominant on Λ with some
automaton (Q,Σ,Θ) and with set of rates {γθ}θ∈Θ uniformly equal to
one (i.e., γθ = 1 for all θ ∈ Θ).

2. Λ is a hyperbolic invariant set for Sys.

It holds that 1⇒ 2. Moreover, if Λ is bounded and connected, then 1⇔ 2.

Proof. See Appendix A.2.9.

The numerical example below illustrates the use of the theory of p-dominance
for the identification of hyperbolic invariant sets of invertible dynamical sys-
tems.
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Example 2.8. Consider the dynamical system Sys = (R2, f) where f : R2 → R2

is the modified Ikeda map, defined by

f

([
x(1)

x(2)

])
=
[
r + a(x(1) cos τ − x(2) sin τ)
b(x(1) sin τ + x(2) cos τ)

]
, τ = C1 − C3

1 + (x(1))2 + (x(2))2 ,

where r = 2, C1 = 0.4, C3 = 6, a = 0.9, b = −0.9. The modified Ikeda map is
known to be invertible and to have a nonempty hyperbolic invariant set inside
Ω .= [−1.1, 3.4]× [−1.5, 1.8]; see, e.g., Osipenko (2007, Example 152).

We use the framework described in Subsection 2.3.2 to show that the max-
imal invariant set Λ of Sys included in Ω is hyperbolic. To do that, first, we
compute symbolic models of Sys on Ω using the method described in Subsection
1.4.2. From these symbolic models and by using Proposition 1.67 in Subsection
1.4.3, we obtain over-approximations of Λ; see Figure 2.13-a (the finer the ab-
straction the more accurate is the over-approximation of the maximal invariant
set).

Then, we show that Λ is a hyperbolic invariant set for Sys. Therefore, we
use Proposition 2.27 and show that Sys is 1-dominant, with rates uniformly
equal to one, on a subset Λ′ containing Λ. More precisely, we use the over-
approximation of Λ provided by the abstraction with h = [0.015, 0.014]T in
Figure 2.13-a (which has 1744 nodes and 7048 edges). From this abstraction,
we build an automaton Aut = (Q,Σ,Θ) and a set of sets of matrices {Ai}i∈Σ

satisfying the first condition in Definition 2.21 with the approach presented in
Subsection 2.3.2. Then, we solve the optimization problem (2.11) with Aut and
{Ai}i∈Σ, and with rates {γθ}θ∈Θ uniformly equal to one. This provides a set
of symmetric matrices {Pq}q∈Q ⊆ S2×2

1 satisfying the second condition in Defi-
nition 2.21, thereby showing that Sys is 1-dominant on Λ, with rates uniformly
equal to one. For the interested reader, the quadratic 1-cones associated to the
matrices {Pq}q∈Q, along a trajectory of the system, are represented in Figure
2.13-b. We observe that the cones are contracted by the prolonged system
∂Sys, as predicted by Proposition 2.9 in Subsection 2.2.2.

Related works. The problem of algorithmic verification of hyperbolicity of
dynamical systems was addressed by Osipenko (2007); this is the only other
work on this problem we are aware of. Osipenko’s approach relies on construct-
ing an abstraction of the prolonged system. The Morse spectrum of the system
can then be over-approximated by bounding the minimal and maximal growth
rate of the derivative along cycles in the graph of the abstraction. A certifi-
cate of hyperbolicity of the system is then obtained if the over-approximation
of the Morse spectrum keeps away from zero. Regarding the computational
complexity, this approach also suffers from the curse of dimensionality since it
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a b

Figure 2.13: Computation of a hyperbolic invariant set for the Ikeda map inside
Ω = [−1.1, 3.4]× [−1.5, 1.8] (see Example 2.8). a: Four abstractions of the system on
Ω, constructed with the method presented in Subsection 1.4.2. The step size of the
rectangular discretizations are indicated above the plots. The regions in red provide
over-approximations Λ′ of the maximal invariant set Λ of the system inside Ω. The
finer the discretization, the closer is the over-approximation to Λ. b: Quadratic 1-
cones (in blue) computed with the algorithm presented in Subsection 2.3.2 for the
verification of 1-dominance of the system on Λ′. The cones have been represented
along a trajectory of the system (in black). The images of the cones by the derivative
of the system are represented in green. We observe that the images are contained in
the cone at the next point of the trajectory, as predicted by Proposition 2.9.

requires to compute an abstraction of a system with dimension 2n− 1 (where
n is the dimension of the original system). It is difficult to have a further
comparison between the two methods because their respective complexity will
depend on the size of the abstraction of the system on its maximal invariant
set Λ, which can be smaller than O(‖h‖−n) if Λ is low-dimensional, where h is
the discretization step of the abstraction.

p-dominance and topological entropy of dynamical systems

In Subsection 1.5.2, we introduced the concept of topological entropy for hybrid
systems, and in Subsection 2.2.4, we showed that the theory of p-dominance
for discrete-time switched linear systems can be useful to obtain bounds on the
topological entropy of these systems. In this subsubsection, we show that the
latter approach can be generalized to dynamical systems.

Proposition 2.28. Consider a dynamical system Sys = (Rn, f) and let Λ ⊆ Rn

be a bounded forward invariant set for Sys. Let htop(Sys,Λ) be the topological
entropy of Sys restricted to Λ with cost function (x1, x2) 7→ ‖x1 − x2‖. Let
p1, . . . , pn ∈ N be such that pk ≤ k − 1 for all k ∈ {1, . . . , n}, and assume that
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for each k ∈ {1, . . . , n}, Sys is pk-dominant on Λ with automaton Aut(k) =
(Q(k),Σ(k),Θ(k)) and set of rates {γ(k)

θ }θ∈Θ(k) ⊆ R>0. Then, it holds that

htop(Sys,Λ) ≤
n∑
k=1

max {0, log2 γ̂
(k)
max},

where γ̂
(k)
max = max { (γ(k)

θ0
· · · γ(k)

θT−1
)1/T : (θt)T−1

t=0 is a cycle in Aut(k) }. Simi-
larly, if11 p1, . . . , pm ∈ N are such that pk ≥ k for all k ∈ {1, . . . ,m}, and
for each k ∈ {1, . . . ,m}, Sys is pk-dominant on Λ with automaton Aut(k) =
(Q(k),Σ(k),Θ(k)) and set of rates {γ(k)

θ }θ∈Θ(k) ⊆ R>0. Then, it holds that

htop(Sys,Λ) ≥
m∑
k=1

max {0, log2 γ̂
(k)
min},

where γ̂(k)
min = min { (γ(k)

θ0
· · · γ(k)

θT−1
)1/T : (θt)T−1

t=0 is a cycle in Aut(k) }.

Proof. See Appendix A.2.10.

For practical use of the upper bound in Proposition 2.28, it should be noted
that a dynamical system is always 0-dominant on any bounded forward invari-
ant set, with respect to some sufficiently large set of rates. For instance, if Λ ⊆
Rn is a bounded forward invariant set for a dynamical system Sys = (Rn, f),
then we can take the set of rates being larger than supx∈Λ‖

∂f
∂x (x)‖. In this

case, the upper bound in Proposition 2.28, with pk = 0 for each k ∈ {1, . . . , n},
coincides with the classical upper bound htop(Sys,Λ) ≤ n supx∈Λ log2 ‖

∂f
∂x (x)‖

(see, e.g., Liberzon and Mitra, 2018, Proposition 2). The upper bound in
Proposition 2.28 refines this bound when Sys is p-dominant with p < n. Sim-
ilarly, the lower bound in Proposition 2.28 refines the classical lower bound
htop(Sys,Λ) ≥ supx∈Λ log2 |det ∂f∂x (x)| (see, e.g., Liberzon and Mitra, 2018,
Proposition 3) when Sys is p-dominant with p < n.

Also, let us mention that the bounds on the topological entropy in Propo-
sition 2.28 are tight in the case of LTI systems. Indeed, on the one hand,
the topological entropy of a LTI system (Rn, A), with A ∈ Rn×n, is equal to∑
|λi|>1 log2|λi| where λ1, . . . , λn are the eigenvalues of A (see, e.g., Matveev

and Savkin, 2009, Theorem 2.4.2). On the other hand, from the characteriza-
tion of p-dominant LTI systems (see Proposition 2.3 in Subsection 2.2.1), the
values of the rate of dominance, for k = 1, . . . , n, can be taken arbitrarily close
to the modulus of the eigenvalues λk of A, so that the bounds in Proposition
2.28 provide tight estimates of the topological entropy of the system.

The numerical example below illustrates the use of the theory of p-dominance
for the estimation of the topological entropy of dynamical systems.

11Note that m may be smaller than n here.
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Example 2.9. Consider the dynamical system Sys = (R2, f) where f : R2 → R2

is defined by

f

([
x(1)

x(2)

])
= 1

((x(1))2 + (x(2))2)3/4

[
(x(1))2 − (x(2))2

2x(1)x(2)

]
.

It is easily seen that any set of the form {x ∈ Rn : r1 ≤ ‖x‖ ≤ r2}, with
0 < r1 < 1 < r2, is forward invariant for Sys. Hence, for definiteness, let
Λ = {x ∈ Rn : 1

2 ≤ ‖x‖ ≤ 2}. Using the theory of p-dominance, we will show
that 0.88 ≤ htop(Sys,Λ) ≤ 1.11.

Indeed, it can be shown that Sys is 1-dominant on Λ with set of rates
uniformly equal to 1 and also with set of rates uniformly equal to 1.85. Also,
Sys can be shown to be 0-dominant on Λ with set of rates uniformly equal to
2.15. These results were obtained by using the method described in Subsection
2.3.2 (the resulting automaton has 724 states and 4080 transitions). Hence, by
Proposition 2.28, we get the claimed bounds on the topological entropy of Sys
restricted to Λ:

0.88 ≤ log2 1.85 ≤ htop(Sys,Λ) ≤ log2 1 + log2 2.15 ≤ 1.11,

concluding the example.

Related works. The approach of Proposition 2.28 for the estimation of the
topological entropy of dynamical systems connects with the upper bound in
Matveev and Pogromsky (2019, Theorem 11) for the topological entropy of
a dynamical systems Sys = (Rn, f) on a bounded forward invariant subset
Λ ⊆ Rn:

htop(Sys,Λ) ≤ lim sup
T→∞

1
T

(
supx∈Λ

∑n

i=1
max

{
0, log2 ρi

(
∂χ
∂x (T, x)

)})
, (2.12)

where ρ1(A), . . . , ρn(A) denote the singular values of A ∈ Rn×n. In fact, the
proof of the upper bound in Proposition 2.28 (see Appendix A.2.10) relies on
the observation that, if Sys is p-dominant with Aut = (Q,Σ,Θ) and {γθ}θ∈Θ,
then for T large enough, an upper bound on the n− p smallest singular values
of ∂χ

∂x (T, x) can be derived from the set of rates: namely, this upper bound is
given by γ̂max,T = max { γθ0 · · · γθT−1 : (θt)T−1

t=0 is a cycle in Aut }. The upper
bound in Proposition 2.28 is less sharp than (2.12) because γ̂max,T only provides
an upper bound on the singular values of ∂χ

∂x (T, x), but it has the advantage
of providing a way of computing such upper bounds via the framework of p-
dominance.
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2.4 Conclusions

In this chapter, we studied the property of having a dominated p-splitting
for discrete-time switched linear systems and discrete-time smooth dynamical
systems, that is, the property that their linearized dynamics can be decom-
posed into a p-dimensional dominant dynamics and a complementary (n− p)-
dimensional dominated dynamics (with n the dimension of the system). The
asset of this separation feature is that it allows to refine the analysis of the
dynamics on each component. For instance, in quantized control, it allows to
use a different level of quantization for each component, thereby providing re-
fined bounds on the topological entropy of the system compared to the ones
that are generally obtained by analyzing the dynamics as a single “isotropic”
component. Another example is for the study of the convergence of the nor-
malized trajectories of switched linear systems. From the normalization, it
holds that only the dominant component of the dynamics will be relevant for
the asymptotic behavior of the system, so that the normalized trajectories con-
verge toward a subspace of dimension at most p, independently of their initial
condition. In the case of 1-dominance, this translates as the incremental sta-
bility of the normalized trajectories, and thus allows to study the properties of
incremental stability using a switched systems approach instead of the classi-
cal differential Lyapunov approaches based on the normalized system (which
would require to find a Lyapunov function for the nonlinear prolonged system).
Finally, another application discussed in this chapter is for the verification of
the property of hyperbolicity, a ubiquitous concept in systems theory allowing
for instance to study the structural stability of attractors of dynamical systems
or the quantized control of these systems.

We also provided an algorithmic framework for the verification of the prop-
erty of having a dominated p-splitting, drawing on a geometric characterization
of this property. This characterization is formulated in terms of the contrac-
tion properties, by the linearized dynamics, of a set of quadratic p-cones; the
contraction relations of the cones being driven by the transitions of an automa-
ton representing the admissible “traces” of the system (either the switching
signals in the case of switched linear systems, or the trajectories of the system
in the case of dynamical systems). The use of quadratic p-cones allows to en-
code the satisfiability of the geometric condition as the feasibility of a set of
matrix inequalities, which results in a tractable criterion for the verification
of the property of domination (thanks to the well-established theory of conic
optimization).

The concept of p-dominance was initially introduced by Forni and Sepul-
chre (2019) for the study of continuous-time smooth dynamical systems whose
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linearized dynamics can be decomposed into p “slow” modes and n− p “fast”
modes (with n the dimension of the system). Our work draws on this seminal
work, but differs in that the geometric characterization in Forni and Sepulchre
(2019) relies on a single quadratic p-cones that is contracted by the linearized
dynamics while our characterization involves several quadratic p-cones. The
conclusions in Forni and Sepulchre (2019) on the asymptotic behavior of sys-
tems satisfying the condition of p-dominance with a single quadratic p-cone
are also stronger; in particular, it holds that the asymptotic dynamics of these
systems is essentially the one of a p-dimensional system. The notion of p-
dominance considered in this thesis does not allow to derive such a property
(for instance there are examples of hyperbolic dynamical systems having a
complex asymptotic dynamics); however, it allows to capture a larger class of
systems.

An interesting direction for further research is to investigate potential ap-
plications of the property of a dominated splitting for the symbolic control
of dynamical systems. Indeed, the technique of abstraction is known to suffer
from the curse of dimensionality, which means that the complexity of construct-
ing and analyzing symbolic models of dynamical systems grows exponentially
with the dimension of the system. We believe that the theory of dominance
can be useful to fight the curse of dimensionality when the linearized dynam-
ics of the system has a low-dimensional dominant behavior. For instance, the
property of hyperbolicity has already proved useful for the symbolic analysis of
dynamical systems, namely via the notion of “Markov partition”, which allows
one to define a discretization of the state space that is adapted to the system
(see, e.g., Robinson, 1999, Chapter 10). However, as we have seen, the ques-
tion of algorithmic verification of the property of hyperbolicity has not received
much attention so far. Hence, it could be worth investigating the possibility of
combining the algorithmic framework for the verification of hyperbolicity with
the above observations to systematize the use of the property of hyperbolicity
in symbolic control algorithms, as well as in other computational problems in
control. Another interesting direction for further research is to investigate pos-
sible extensions to other classes of hybrid systems, like switched linear systems
with state-dependent switching and nonlinear hybrid systems. Notions related
to dominated splittings, like incremental stability or positivity, are known to
present subtleties when extended to hybrid systems (see, e.g., Postoyan et al.,
2015, and Lanotte and Maggiolo-Schettini, 2005). However, the cases studied
in this chapter provide proofs-of-concept that an algorithmic approach is pos-
sible to study these questions for some classes of hybrid systems, and it would
be interesting to see how it can be extended to other classes of such systems.





Chapter 3

Quantized control of hybrid
systems

In this chapter, we present the second part of our contributions, which deals
with the observation and control of switched linear systems under communi-
cation constraints. As we will see, these questions connect with several other
concepts in systems and control theory and in mathematics, such as topolog-
ical entropy (introduced in Subsection 1.5.2 and touched on in the previous
chapter), joint spectral radius (introduced in Subsection 1.3.2), and exterior
algebra.

3.1 Introduction and literature review

This chapter addresses two important and challenging aspects of modern con-
trol systems, namely quantization and switching. Indeed, many modern control
systems (such as IoT, networked systems, etc.) involve spatially distributed
components that communicate through a shared, digital communication net-
work, which can carry only a limited amount of information per unit of time.
The limitation on the information flow can have large negative effects on the
performance of the control loop. This has motivated a considerable amount
of research to study control problems subject to data-rate constraints; see,
e.g., Hespanha et al. (2007), Matveev and Savkin (2009) and Zhong-Ping and
Teng-Fei (2013) for surveys. Furthermore, many systems and phenomenons
encountered in modern applications involve switching among different opera-
tion modes (for instance cyber-physical systems, physical systems with impact,
etc.). The presence of switching dynamics turns out to considerably complexify
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the analysis of these systems, even for simple models (see, e.g., Jungers, 2009).
This has motivated the development of a new chapter in control theory, ad-
dressing switching phenomenons in control problems; see, e.g., van der Schaft
and Schumacher (2000), Liberzon (2003) and Lin and Antsaklis (2009).

Although switched systems and control with data-rate constraints have been
two active areas of research for some time now, the combination of these two
aspects in control problems has started to receive attention in the literature
only recently (some specific references are cited below). Combining these two
aspects in a unified framework is however essential to tackle control problems
encountered in a wide range of modern applications. For the main part, the
works on networked switched systems can be split into two settings, depending
on the assumption on the knowledge of the operating mode of the system by the
different elements of the network: in the first setting, called mode-dependent
quantized control, it is assumed that the current mode of the switched system
is known by every element of the network, and in the second setting, called
mode-oblivious quantized control, it is assumed that the mode of the system is
not known by every elements of the network and is thus part of the information
to be quantized and transmitted over the network.

In this thesis, we study control problems involving switching and data-rate
constraints in the case of switched linear systems. In particular, we study
the questions of state estimation and stabilization of switched linear systems
under data-rate constraints, for the two settings discussed above. We detail
our contributions and review the relevant literature in the paragraphs below.

Mode-dependent quantized control

First, we study the problem of quantized observation of linear time-varying
(LTV) systems. In particular, we are interested in determining the minimal
data rate required for state estimation of LTV systems, that is, the smallest
data rate at which information needs to be sent by a coder to a decoder to
estimate the state of the system with arbitrary finite accuracy; see also Figure
3.1 for an illustration. LTV systems can be seen as switched linear systems
whose switching signal is fixed. We are thus in the mode-dependent setting
since the mode of the system is known at all times by all elements of the
network.

Figure 3.1: Mode-dependent quantized observation of LTV systems.
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Inspired by the works of Shannon on information entropy and data rate
requirements for reliable communication, it was soon realized that the ques-
tion of the minimal data rate for state estimation of dynamical systems has
strong connections with the notion of topological entropy. For a reminder, the
topological entropy is a quantity that measures the growth rate of the smallest
number of functions necessary to approximate the trajectories of a dynamical
system with arbitrary finite accuracy (see Subsection 1.5.2). The study of the
topological entropy and its link with the minimal data rate for state estima-
tion has attracted a lot of attention from the control community in the last
decades; see, e.g., Savkin (2006), Matveev and Pogromsky (2016) and Kawan
(2018). A large part of these works focus on linear time-invariant systems
or time-invariant dynamical systems with compact state space. For these sys-
tems, it is known that the topological entropy is equal to the minimal data rate
for state estimation (see, e.g., Matveev and Pogromsky, 2016, or Proposition
1.80 in Subsection 1.5.2). These results are sometimes referred to as data-rate
theorems (see, e.g., Kawan et al., 2021, p. 1). On the other hand, beyond
these classes of systems, the situation is unfortunately much more elusive. The
topological entropy is only known to be a lower bound on the minimal data
rate for state estimation. In particular, it seems an open question whether the
topological entropy is also an upper bound on to the minimal data rate for
state estimation. As an evidence of this, we refer to Matveev and Pogromsky
(2016) and Kawan (2018), where the lower bound is discussed but no proof, or
counter-example, for the upper bound is presented.

Our main contribution regarding the quantized observation of LTV systems
is to show that the equivalence of topological entropy and minimal data rate
for state estimation extends to LTV systems. The relevance of this result is
first theoretical, as it extends the data-rates theorems of linear time-invariant
systems to LTV systems. Moreover, the proof of the theorem is constructive, as
it provides a coder–decoder that observes the state of the system with arbitrary
accuracy, and whose data rate can be as close as desired to the topological
entropy of the system. The implementation of the coder–decoder with optimal
data rate may however require unbounded memory, which can limit its practical
usability. The result and its proof can nevertheless be useful for practical
applications. For instance, it shows that the topological entropy can be used
as a benchmark to evaluate the performance of different implementations of
coders–decoders. Furthermore, the ideas presented in the proof of the theorem
can be used to obtain efficient coders–decoders satisfying memory limitations,
though possibly operating at suboptimal data rates.

We are also interested in the computation of the topological entropy of LTV
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systems. In general, the computation of the topological entropy of dynamical
systems is known to be a difficult problem (see, e.g., Koiran, 2001, and Delvenne
and Blondel, 2004). In fact, the exact value of the topological entropy of most
widely-used systems (such as the Hénon map, the van Der Pol oscillator, etc.)
is still unknown (see, e.g., Matveev and Pogromsky, 2016). On the other hand,
many constructive ways of deriving lower bounds and upper bounds on the
topological entropy of dynamical systems have been proposed in the literature
(see, e.g., Liberzon and Mitra, 2018, Matveev and Pogromsky, 2016, and Kawan
et al., 2021). In the case of switched linear systems with fixed switching signal,
this question is thoroughly studied in Vicinansa and Liberzon (2019) and Yang
et al. (2020), which provide lower bounds and upper bounds on the topological
entropy of switched systems, depending on the matrices of the system and on
the switching signal. In this thesis, we show how these bounds can sometimes
be refined, using the framework of p-dominant switched linear systems.

In a second time, we study the question of the quantized observation and
stabilization of switched linear systems under arbitrary switching, in the mode-
dependent setting. In particular, we are interested in determining the minimal
data rate required for state estimation and stabilization of switched linear sys-
tems (with affine control input), when the switching signal of the system is not
fixed beforehand but is known at all times by all elements of the network; see
also Figure 3.2 for an illustration.

Figure 3.2: Mode-dependent quantized stabilization of switched linear systems.

This setting is motivated, for instance, by quantized control problems in-
volving switched systems with exogenous switching signal that can be observed
by all elements of the network, or switched systems with deterministic switch-
ing mechanism but for which the switching signal is not known at the time of
communication infrastructure’s design. This setting is also relevant for quan-
tized control of switched linear systems with controlled switching signal, as the
decoder controls both the mode and the affine input to achieve a given control
objective; see also Example 3.6 in Subsection 3.3.4. Finally, this setting pro-
vides fundamental lower bounds and upper bounds on the data rate required
in other settings, like mode-oblivious quantized control, or quantized control
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based on event-triggered communication strategies (see, e.g., Tallapragada and
Cortés, 2016, and Pearson et al., 2017).

Mode-dependent quantized control of switched systems has been studied
mainly in the context of Markov Jump Linear Systems (discrete-time control-
affine switched linear systems whose sequence of modes is dictated by a Markov
chain). Constructive data rate bounds for their Mean Square Stabilization have
been proposed, e.g., in Zhang et al. (2009), Ling and Lin (2010) and Xiao et al.
(2010), and an expression for the minimal data rate for Mean Square Stabiliza-
tion, thought not computable in general, is derived in Nair et al. (2003).

Our contribution regarding the quantized control of switched linear systems
in the mode-dependent setting is as follows. First, we introduce the concept of
worst-case topological entropy, accounting for the maximal topological entropy
that can be reached by the system among all its switching signals. We demon-
strate the relevance of this concept by showing that the minimal data rate
for state estimation or stabilization of a switched linear system corresponds
to the worst-case topological entropy of the open-loop switched linear system.
Moreover, we show that this optimal data rate bound can be approached by
practical (i.e., implementable) coders–decoders. In particular, we describe the
implementation of a practical coder–decoder that observes or stabilizes the
system and whose data rate can be as close as desired to the worst-case topo-
logical entropy of the open-loop system. Secondly, we present a computable
closed-form expression for the worst-case topological entropy of switched linear
systems. The worst-case topological entropy is expressed as the joint spectral
radius (see Definition 1.50 in Subsection 1.3.2) of some “lifted” system that rep-
resents the action of the original system on elements of volume (captured by
algebraic constructions called exterior algebras). The main asset of this closed-
form expression is that it can be computed numerically via well-established
algorithms for the computation of the joint spectral radius (see, e.g., Jungers,
2009, and Sun and Ge, 2011); thereby allowing for practical computation of
the minimal data rate for state estimation and stabilization of switched linear
systems in the mode-dependent setting.

Mode-oblivious quantized control

Finally, we study the problem of quantized control of switched linear systems
in the mode-oblivious setting. That is, we are interested in the state estimation
and stabilization of switched linear systems (with affine control input), when
both state and mode observation are subject to data-rate constraints; see also
Figure 3.3 for an illustration.

When the mode of the system is only partially known by the decoder, state
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Figure 3.3: Mode-oblivious quantized stabilization of switched linear systems.

encoding and input actuating strategies must take into account the fact that
unobserved switching may occur during the transmission interval. One way to
limit the uncertainty on the switching signal between the transmission times
is to impose slow-switching conditions on the switching signal to reduce its
expressiveness. This technique was used in Liberzon (2014), Wakaiki and Ya-
mamoto (2014) and Yang and Liberzon (2018), for the quantized stabilization
of switched linear systems with dwell-time assumptions on the switching signal
(see Definition 1.40 in Subsection 1.3.1). In particular, sufficient lower bounds
on the data rate of the coder–decoder and on the absolute and average dwell
time of the system are derived to ensure stabilization of the system. Entropy-
related notions for non-autonomous dynamical systems with slow-varying in-
puts are also studied in the recent preprint by Sibai and Mitra (2020); in
particular, a result (similar to Theorem 3.35 in this thesis) stating that these
systems have in general a infinite topological entropy is presented.

Our main contribution regarding this setting is to push further the ap-
proach used in the above references and to study the necessity and sufficiency
of the slow-switching conditions for the quantized stabilization of switched lin-
ear systems with mode-oblivious coder–decoder. More precisely, we show that
switched linear systems under arbitrary switching are in general not stabiliz-
able with a finite data rate. In particular, we present an example of switched
linear system that is stabilizable for any switching signal in the absence of
data-rate constraints, but cannot be stabilized with a finite data rate. This
motivates the introduction of slow-switching assumptions in order to make the
problem of quantized mode-oblivious stabilization of switched linear systems
tractable. Then, we show that any stabilizable (without data-rate constraints)
switched linear system with average dwell time bounded away from zero can
be stabilized with a finite data rate. We present a sufficient upper bound on
the data rate depending on the system and the average dwell time, and we de-
scribe the implementation of a coder–decoder that stabilizes the system. The
difference with the above references is that the average dwell time can be ar-
bitrarily close to zero, whereas in Liberzon (2014), Wakaiki and Yamamoto
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(2014) and Yang and Liberzon (2018), the lower bound on the data rate does
not converge to zero, even if the transmission frequency and the data rate tend
to infinity. Finally, we also show that switched linear systems have in general
an infinite topological entropy. This implies that these systems are in general
not observable with arbitrary accuracy with a finite data rate, regardless of the
slow-switching assumptions on the switching signal. This contrasts with the
above result that switched linear systems with nonzero average dwell time are
stabilizable with a finite data rate.

The results presented in this chapter have been reported in

• Guillaume O Berger and Raphaël M Jungers. Worst-case topological
entropy and minimal data rate for state observation of switched linear
systems. In Proceedings of the 23rd International Conference on Hybrid
Systems: Computation and Control, pages 1–11. ACM, 2020e. doi: 10.
1145/3365365.3382195.

• Guillaume O Berger and Raphaël M Jungers. Topological entropy and
minimal data rate for state observation of LTV systems. IFAC-PapersOnLine,
53(2):3060–3065, 2020d. doi: 10.1016/j.ifacol.2020.12.1007.

• Guillaume O Berger and Raphaël M Jungers. Finite data-rate feedback
stabilization of continuous-time switched linear systems with unknown
switching signal. In 2020 59th IEEE Conference on Decision and Control
(CDC), pages 3823–3828. IEEE, 2020a. doi: 10.1109/CDC42340.2020.
9304214.

• Guillaume O Berger and Raphaël M Jungers. Quantized stabilization of
continuous-time switched linear systems. IEEE Control Systems Letters,
5(1):319–324, 2021c. doi: 10.1109/LCSYS.2020.3002068.

3.2 Quantized observation of linear time-varying
systems

In this section, we study the minimal data rate for state estimation of linear
time-varying systems. We show that this quantity coincides with the topo-
logical entropy of these systems, thereby extending the well-known “data rate
theorems” for linear time-invariant systems and time-invariant nonlinear dy-
namical systems with compact domain. This result is relevant for the problem
of observing linear time-varying systems over communication networks, as it
provides a tight lower bound on the channel capacity required for the state es-
timation of these systems. This bound can be used for instance as a benchmark
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for the comparison of different implementations of coders–decoders observing
the system.

Compared to time-invariant dynamical systems, the following difficulty arises
when one seeks to relate the topological entropy with the minimal data rate for
state estimation of time-varying systems. Since the coder–decoder communi-
cates at periodic times, data rate requirements are mainly driven by the amount
of information generated by the system between two transmission times. By
contrast, the topological entropy gives the growth rate of information neces-
sary to approximate the trajectories of the system since the beginning of time.
For time-invariant systems, this problem is overcome by using the fact that the
amount of information generated on each transmission interval is the same, and
thus it is possible to relate the minimal data rate with the topological entropy.
However, this is not true in general for time-varying systems. Therefore, in
our analysis of linear time-varying systems, we have used a different approach
exploiting the fact that from the growth rate of information generated by the
system, i.e., the topological entropy, we can derive an upper bound on the
amount of information generated during the sampling intervals. This requires
that the trajectories of the system are spatially distributed in a “uniform way”
(see Subsection 3.2.2 for details), and which is ensured by the linearity of the
system; in particular, it seems that the proof argument presented in this paper
does not extend straightforwardly to nonlinear time-varying systems.

The section is organized as follows. In Subsection 3.2.1, we remind the
notions of linear time-varying systems, topological entropy and minimal data
rate for state estimation of these systems, and we introduce the problem of
interest. In Subsection 3.2.2, we present and prove the main result of this
section, namely the equivalence of the topological entropy and the minimal data
rate for state estimation of linear time-varying systems. Finally, in Subsection
3.2.3, we discuss the applications of the framework of p-dominance of switched
linear systems (introduced in Section 2.2) for the computation of the topological
entropy of linear time-varying systems.

Notation. We will consider both continuous-time systems and discrete-time
systems, and we will use the symbol T to denote the time domain of the system,
as it should be clear from the context whether T = R (continuous-time systems)
or T = Z (discrete-time systems). The restriction of a function f : A → B to
a set A′ ⊆ A is denoted by f |A′ . The Minkowski sum of A ⊆ Rn and B ⊆ Rn

(or {x} ⊆ Rn) is denoted by A + B (or A + x). d·e and b·c are the ceil and
floor functions.
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3.2.1 Problem setting

We consider Linear Time-Varying (LTV) systems, which are time-varying dy-
namical systems1 of the form (Rn, f) where f(t, x) = Â(t)x for all t ∈ T≥0

and x ∈ Rn, and Â : T≥0 → Rn×n is continuous. Let Sys = (Rn, Â) be a
LTV system. For a reminder, the trajectories ξ : T≥0 → Rn of Sys satisfy that
ξ̇(t) = Â(t)ξ(t) for all t ∈ R≥0 (if Sys is continuous-time) and ξ(t+1) = Â(t)ξ(t)
for all t ∈ N (if Sys is discrete-time). Following the notation of switched linear
systems, we let χ(·, ·, ·; Sys) (or simply χ when Sys is clear from the context) be
the generator2 and χ̊(·, ·; Sys) (or simply χ̊ when Sys is clear from the context)
be the fundamental matrix solution3 of Sys.

Topological entropy of LTV systems

The following definition of topological entropy particularizes the one for hybrid
systems (see Definition 1.78 in Subsection 1.5.2) to LTV systems.

Definition 3.1 (Topological entropy of a LTV system). Consider a LTV sys-
tem Sys = (Rn, Â) and a bounded set X0 ⊆ Rn. The topological entropy of Sys
starting from X0, denoted by htop(Sys, X0), is defined as the topological entropy
of the hybrid system associated to Sys, with initial set X0 for the variable “x”,
and with respect to the cost function C : (R × Rn) × (R × Rn) → R≥0 defined
by C(t1, x1, t2, x2) = ‖x1 − x2‖.

In other words, htop(Sys, X0) in Definition 3.1 is defined as

htop(Sys, X0) = sup
ε>0

lim sup
T→∞

1
T

log2 sspan(ε, T ;X0), (3.1)

where sspan(ε, T ;X0) is the smallest cardinality of an (ε, T )-spanning set for
Sys starting from X0, that is, the minimal number of functions necessary to
approximate, with accuracy ε on the interval [0, T ) ∩ T, all trajectories of Sys
starting in X0 (see Definition 1.76 in Subsection 1.5.2 for details). Equivalently,
htop(Sys, X0) can be defined as

htop(Sys, X0) = sup
ε>0

lim sup
T→∞

1
T

log2 ssep(ε, T ;X0), (3.2)

where ssep(ε, T ;X0) is the largest cardinality of an (ε, T )-separated set for Sys
starting from X0, that is, the maximal number of trajectories of Sys starting in

1We refer the reader to Subsection 1.1.2 for the definition of time-varying dynamical
systems.

2See Definition 1.36 in Subsection 1.3 for the definition in the case of switched linear
systems.

3See Definition 1.47 in Subsection 1.3 for the definition in the case of switched linear
systems.
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X0 that are ε-distinguishable on [0, T )∩T (see Definition 1.77 and Proposition
1.79 in Subsection 1.5.2 for details).

It follows from the linearity of LTV systems that the topological entropy of
these systems is independent of the initial set X0, as long as it is bounded with
nonempty interior; the reason is that the quantity sspan (or ssep) is invariant
by spatial translation of the initial set (so that we can assume that 0 is in the
interior of X0), and from the scaling invariance of linear systems, it holds that
for any c > 0, sspan(cε, T ; cX0) = sspan(ε, T ;X0) (see, e.g., Yang et al., 2020,
Proposition 2 for details). For this reason, in the following, we will omit the
initial set in the notation, and simply use htop(Sys) to denote the topological
entropy of the LTV system Sys starting from any bounded initial set with
nonempty interior.

The example below illustrates the notions of spanning sets, separated sets,
and topological entropy, with a simple LTV system.

Example 3.1. Consider the discrete-time LTV system Sys = (R1, Â) where
Â : N → R1×1 is defined by Â(t) = 1 if t is even and Â(t) = 2 if t is odd.
The generator of Sys is thus given by χ(t, x) = 2bt/2cx for all t ∈ N. We will
show that htop(Sys) = 1/2. As explained above, the topological entropy of LTV
systems does not depend on the initial set; hence, we set X0 = [0, 1].

Step 1: We show that htop(Sys) ≤ 1/2, by using (3.1). Therefore, fix ε > 0
and T ∈ N, and let N = dε−12(T−3)/2e. Define E = {0, 1/N, 2/N, . . . , 1} and
let E = {χ(·, x)|{0,...,T−1}}x∈E . We show that E is (ε, T )-spanning for Sys
starting from X0. Therefore, fix x ∈ X0, and let x̂ ∈ E minimize the distance
to x. Then, by definition of E, it holds that |x − x̂| ≤ 1/(2N) ≤ ε2(1−T )/2.
This implies that |χ(t, x)−χ(t, x̂)| = 2bt/2c|x− x̂| ≤ ε for all t ∈ {0, . . . , T −1}.
Thus, E is (ε, T )-spanning for Sys starting from X0, so that sspan(ε, T ;X0) ≤
|E| = dε−12(T−3)/2e+ 1. Since ε and T were arbitrary, it follows that htop(Sys)
is upper-bounded by supε>0 lim supT→∞ 1

T log2(dε−12(T−3)/2e+ 1) = 1/2.

Step 2: We show that htop(Sys) ≥ 1/2, by using (3.2). Therefore, fix
ε > 0 and T ∈ N odd. Let N = dε−12(T−1)/2e − 1. We assume that
N > 0 since in (3.2) we take the limit when ε → 0 and T → ∞. De-
fine F = {0, 1/N, 2/N, . . . , 1}. Then, any distinct x1, x2 ∈ F satisfy that
|x1 − x2| > ε2(1−T )/2, so that |χ(T − 1, x1) − χ(T − 1, x2)| > ε. Thus, the set
{χ(·, 0, x)|{0,...,T−1}}x∈F is (ε, T )-separated for Sys starting from X0, implying
that ssep(ε, T ;X0) ≥ |F | = dε−12(T−1)/2e. Since ε and T were arbitrary, and
by injecting in (3.2), we get that htop(Sys) ≥ 1/2. This concludes the example.
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Minimal data rate for state estimation of LTV systems

The following definition of minimal data rate for state estimation of LTV sys-
tems particularizes the one for hybrid systems (see Definition 1.74 in Subsection
1.5.2) in the case of LTV systems.

Definition 3.2 (Minimal data rate for state estimation of a LTV system).
Consider a LTV system Sys = (Rn, Â) and a bounded set X0 ⊆ Rn. The
minimal data rate for state estimation of Sys starting from X0, denoted by
Rest(Sys, X0), is defined as the minimal data rate for state estimation of the
hybrid system associated to Sys, with initial set X0 for the variable “x”, and
with respect to the cost function C : (R × Rn) × (R × Rn) → R≥0 defined by
C(t1, x1, t2, x2) = ‖x1 − x2‖.

In other words, Rest(Sys, X0) in Definition 3.2 is defined as

Rest(Sys, X0) = sup
ε>0

inf
CoDec

R(CoDec),

where the infimum is over all coders–decoders CoDec that ε-observe Sys starting
from X0, and where R(CoDec) is the data rate of CoDec (see Definitions 1.71
and 1.73 in Subsection 1.5.1). Following the definitions in Subsection 1.5.1,
a coder–decoder for Sys starting from X0, with transmission period Tt, can
be described as an ordered pair ((Ψc

k)k∈N, (Ψd
k)k∈N) where for every k ∈ N,

Ψc
k : X0 → Yt is the coder function at step k and Ψd

k : (Yt)k+1 × [kTt, (k +
1)Tt) ∩ T → X is the decoder function at step k. At each time t = kTt,
k ∈ N, the coder outputs a symbol e(k) defined by e(k) = Ψc

k(x) where x is the
initial condition of the system. The symbols are transmitted to the decoder,
which produces at each time t ∈ [kTt, (k + 1)Tt) ∩ T, k ∈ N, an estimate
ξ̂(t) = Ψd

k(e(0), . . . , e(k), t) of the current state of the system. The coder–
decoder CoDec = ((Ψc

k)k∈N, (Ψd
k)k∈N) is said to ε-observe Sys starting from X0

if for every trajectory ξ : T≥0 → Rn of Sys with ξ(0) ∈ X0 and every t ∈ T≥0,
‖ξ(t) − ξ̂(t)‖ ≤ ε where ξ̂(t) is defined as above, with x = ξ(0). Finally, the
data rate of CoDec is defined as the maximal number of bits per unit of time
necessary to encode the symbols: R(CoDec) = dlog2|Yt|e

Tt
.

For linear time-invariant systems and hybrid systems whose initial set is
forward invariant, it is well known that the topological entropy and the mini-
mal data rate for state estimation coincide (see Proposition 1.80 in Subsection
1.5.2). This result—sometimes referred to as a data-rate theorem (see, e.g.,
Kawan et al., 2021, p. 1)—does not apply in general to time-varying dynamical
systems because the initial set of these systems is not forward invariant (see
Definitions 1.9 and 1.10 in Subsection 1.1.2 for the definitions of time-varying



128 CHAPTER 3. QUANTIZED CONTROL OF HYBRID SYSTEMS

dynamical systems as hybrid systems). However, we will see in the next sub-
section that, for the special case of LTV systems, the data-rate theorem does
hold.

3.2.2 Equivalence of topological entropy and minimal data
rate for LTV systems

The following theorem is the main result of this section. It extends the data-
rate theorem (Proposition 1.80 in Subsection 1.5.2) to LTV systems.

Theorem 3.3. Consider a LTV system Sys = (Rn, Â) and a bounded set
X0 ⊆ Rn with nonempty interior. It holds that htop(Sys) = Rest(Sys, X0).

The proof of Theorem 3.3 is presented in the subsubsection below. Then,
in the afternext subsubsection, we discuss the consequences and the practical
applicability of the theorem.

Proof of Theorem 3.3

The fact that Rest(Sys, X0) ≥ htop(Sys) in Theorem 3.3 was already proved in
Proposition 1.80. The rest of this subsubsection is thus devoted to the proof of
Rest(Sys, X0) ≤ htop(Sys). Therefore, we first introduce a few definitions and
notation.

Consider a LTV system Sys = (Rn, Â) and T ∈ T>0 ∪ {∞}. We define the
function ‖·‖Sys,T : Rn → R≥0 by

‖x‖Sys,T = sup
t∈ [0,T )∩T

‖χ̊(t, 0)x‖ for all x ∈ Rn,

where χ̊ is the fundamental matrix solution of Sys. It holds that ‖·‖Sys,T

is a norm on Rn; indeed, it satisfies that the axioms of positive definiteness
(since ‖x‖Sys,T ≥ ‖x‖), triangular inequality and positive homogeneity (as the
supremum of a set of functions satisfying each the triangular inequality and
the positive homogeneity). Note that by the definition of ‖·‖Sys,T , it holds that
if x1, x2 ∈ Rn satisfy ‖x1 − x2‖Sys,T > ε, then there is t ∈ [0, T ) ∩ T such that
‖χ(t, 0, x1) − χ(t, 0, x2)‖ > ε, so that the trajectories of Sys starting from x1

and x2 respectively are (ε, T )-separated. Hence, the norm ‖·‖Sys,T allows us
to provide an equivalent definition of (ε, T )-separated sets in the case of LTV
systems; this will be used in Lemma 3.5 below. Finally, for every a ∈ Rn and
r ≥ 0, we let BSys,T (a, r) = {x ∈ Rn : ‖x − a‖Sys,T ≤ r}. Note that, by the
positive homogeneity of norms and the definition of BSys,T , it holds that for
any c > 0, BSys,T (a, cr) = a+ cBSys,T (0, r).
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Definition 3.4. Let ε > 0, Λ ⊆ Rn and E ⊆ Rn. We say that E ⊆ Rn

is an (ε, T ; Sys)-cover (or (ε, T )-cover if Sys is clear from the context) of Λ if
Λ ⊆

⋃
a∈E BSys,T (a, ε). The smallest cardinality of an (ε, T ; Sys)-cover of Λ is

denoted by scov(ε, T ; Sys,Λ) (or scov(ε, T ; Λ) if Sys is clear from the context).
An (ε, T ; Sys)-cover of Λ with cardinality equal to scov(ε, T ; Sys,Λ) is said to be
minimal.

Idea of the proof: The idea behind the proof of Rest(Sys, X0) ≤ htop(Sys)
in Theorem 3.3 is that for a LTV system Sys = (Rn, Â) and a set Λ ⊆ Rn, any
minimal (ε, T )-cover of Λ must be “uniformly distributed” over Λ. From the
uniform distribution, we get that if E1 is a minimal (ε, T1)-cover of Λ and E2 is
an (ε, T2)-cover of Λ, with T2 ≥ T1, then there is an (ε, T2)-cover of BSys,T1(0, ε)
with cardinality of the order of |E2|/|E1|. These claims are encapsulated in the
following lemmas.4

Lemma 3.5. Consider a LTV system Sys = (Rn, Â) and a bounded set Λ ⊆ Rn.
Let ε > 0 and T ∈ T>0, and let F ⊆ Λ be a set with maximal cardinality such
that {χ(·, x)|[0,T )∩T}x∈F is (ε, T )-separated for Sys starting from Λ. Then, it
holds that F is an (ε, T )-cover of Λ.

Proof. For every y ∈ Λ, there is x̂ ∈ F such that ‖y− x̂‖Sys,T ≤ ε, as otherwise
F ∪{y} ⊆ Λ would satisfy that {χ(·, x)|[0,T )∩T}x∈F ∪{y} is an (ε, T )-separated
set for Sys, contradicting the maximality of F . This implies that F is an
(ε, T )-cover of Λ, concluding the proof.

Lemma 3.6. Consider a LTV system Sys = (Rn, Â), and let ε > 0 and
T ∈ T>0. Then, for every a ∈ Rn and c ≥ 0, there is an (ε, T )-cover E of
BSys,T (a, cε) with |E| ≤ (2c+ 1)n.

Proof. See Appendix A.3.1.

Lemma 3.7. Consider a LTV system Sys = (Rn, Â) and a bounded set Λ ⊆ Rn.
Let ε > 0 and T1, T2 ∈ T>0, T2 ≥ T1. Let E1 be a minimal (ε, T1)-cover of
Λ and let E2 be an (ε, T2)-cover of Λ + BSys,T1(0, 2ε). Then, there exists an
(ε, T2)-cover E of BSys,T1(0, ε) with cardinality |E| ≤ 11n|E2|/|E1|.

Proof. See Appendix A.3.2.

We are now able to prove that Rest(Sys, X0) ≤ htop(Sys) in Theorem 3.3.

4The proofs of the first two lemmas connect with the concepts of packing and covering
in machine learning; see, e.g., Shalev-Shwartz and Ben-David (2014, Chapter 27). See also,
e.g., Wang et al. (2021) for applications in data-driven control.



130 CHAPTER 3. QUANTIZED CONTROL OF HYBRID SYSTEMS

Proof of Rest(Sys, X0) ≤ htop(Sys) in Theorem 3.3. Since X0 is bounded and
sinceRest(Sys, X0) is increasing withX0, we may assume without loss of general
that X0 is the Euclidean ball centered at 0 ∈ Rn and with radius r ≥ 1. We
will show that htop(Sys) = Rest(Sys, X0).

From Lemma 3.5, it holds that scov(ε, T ;X0) ≤ ssep(ε, T ;X0). Hence, by
(3.2), we get that

sup
ε>0

lim sup
T→∞

1
T

log2 scov(ε, T ;X0) ≤ htop(Sys). (3.3)

Let R > htop(Sys) and ε ∈ (0, 1/2). We build a coder–decoder that ε-observes
Sys and whose data rate is smaller than R. For the sake of simplicity, we
assume that Sys is continuous-time; the proof with Sys discrete-time is along
the same lines and can be found in Berger and Jungers (2020d, Section 3).

To build such a coder–decoder, fix α ∈ R such that htop(Sys) < α < R,
and then, using (3.3), let T ∈ R>0 be large enough so that bRT c ≥ αT + 8n,
and for all T ′ ∈ [T,∞), scov(ε, T ′;X0) ≤ 2αT ′ . This T will be the transmission
period of the coder–decoder. The implementation of the coder and the decoder
is given in Figure 3.4.

We prove that the coder–decoder described in Figure 3.4 ε-observes Sys.
Therefore, let ξ be a trajectory of Sys starting in X0. Fix k ∈ N, and let
Tk and Ek be defined as in the implementation of the coder–decoder. By
definition of x̂k, it holds that ξ(0) ∈ BSys,Tk(x̂k, ε), which means that for all
t ∈ [0, Tk], ‖ξ(t)−χ(t, x̂k)‖ ≤ ε. Moreover, by definition of T and Tk, it is clear
Tk ≥ (k+1)T . Hence, it follows by definition of ξ̂ that for all t ∈ [kT, (k+1)T ),
‖ξ(t) − ξ̂(t)‖ ≤ ε. Since k was arbitrary, this shows that the coder–decoder ε-
observes Sys.

Finally, it remains to show that the data rate of the coder–decoder is smaller
than R, and this is where we will use the results (Lemmas 3.6 and 3.7) on the
“uniform distribution” of (ε, T )-covers of X0. Therefore, fix k ∈ N, and let Tk
and Ek be defined as in the implementation of the coder. Using Lemmas 3.6
and 3.7, we will show that |Ek| ≤ 220n2αT (see Lemma 3.9 below). First, we
will need the following lemma.

Lemma 3.8. Consider a LTV system Sys = (Rn, Â) and a set Λ ⊆ Rn. Let
ε > 0 and T ∈ R>0. There is T∗ ∈ R, T∗ > T , such that scov(ε, T∗; Λ) ≤
4nscov(ε, T ; Λ).

Proof. See Appendix A.3.3.

Lemma 3.9. Let α, T , {Tk}k∈N and {Ek}k∈N be as in the implementation of
the coder. It holds that for all k ∈ N, |Ek| ≤ 220n2αT .
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Proof. The claim is clear for k = 0, by definition of Tk. Now, assume k ∈ N>0.
Since ε < r/2, it holds that X0 + BSys,Tk(0, 2ε) ⊆ 2X0. By Lemma 3.6, it is
possible to cover 2X0 with 5n translated copies of X0, so that scov(ε, Tk; 2X0) ≤
5nscov(ε, Tk;X0). Thus, by using Lemma 3.7, we get that |Ek| ≤ 55nscov(ε, Tk;X0)/
scov(ε, Tk−1;X0). Moreover, by definition of Tk−1, it holds that scov(ε, Tk−1; Λ) ≥
4−n2αkT (see Lemma 3.8). Hence, we have that |Ek| ≤ (55n2α(k+1)T )/(4−n2αkT ) =
220n2αT .

Since bRT c ≥ αT + 8n, it is sufficient to have bRT c bits to give a unique
number to each of the 220n2αT points of Ek, since log2(220n2αT ) ≤ αr + 8n.
Hence, the symbol e(k) in the definition of the coder–decoder can be encoded
with bRT c bits. This shows that the data rate of the coder–decoder is at most
equal to bRT c/T ≤ R, which concludes the proof of Theorem 3.3.

Discussion of Theorem 3.3

It should be noted that the result of Theorem 3.3 is rather theoretical, since
the practical implementation of the coder–decoder described in Figure 3.4 can
be quite intricate. In fact, the challenging part of the implementation is not so
much the computation of the minimal (ε, Tk)-covers Ek (for k ∈ N), which can
be achieved by computing minimal-volume ellipsoidal enclosures of the balls
BSys,Tk (see, e.g., Boyd and Vandenberghe, 2004, Section 8.4), but rather the
computation of the times Tk (for k ∈ N), which supposes that the values of
Â are known over a potentially infinite time horizon. This assumption is not
always satisfiable in practice; in particular, it may imply that the memory of
the coder–decoder is infinite. This assumption is however crucial in the proof
of the theorem, as it ensures that Tk can be chosen so that scov(ε, Tk−1; Λ) is
bounded from below (see the proof of Lemma 3.9). We nevertheless believe that
Theorem 3.3 can be useful for practical purposes, as it gives a fundamental lower
bound on the minimal data rate for state estimation of LTV systems, which can
be used as a benchmark to compare the efficiency, in terms of communication
resources, of different coders–decoders observing a given LTV system.

Finally, let us mention that the proof argument used in the proof of The-
orem 3.3 relies on the linearity of the system, which ensures that the minimal
covers of the initial set are “uniformly distributed” (see Lemma 3.7 for a for-
mal statement). In particular, it is not straightforward how to generalize this
argument to nonlinear time-varying dynamical systems, or dynamical systems
whose initial set is not forward invariant. On the other hand, we do not have
a counter-example of such a system for which the topological entropy and the
minimal data rate for state estimation do not coincide. There seems thus to be
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a gap in the theory, which could be an interesting direction for further research.

3.2.3 Computation of the topological entropy of LTV sys-
tems

In this subsection, we show that the theory of p-dominance (introduced in
Section 2.2) can be used to compute bounds on the topological entropy of LTV
systems obtained from p-dominant switched linear systems. More precisely,
given a switched linear system SwS ∼ (Rn, {Ai}i∈Σ) and a switching signal
σ : T≥0 → Σ, we consider the associated LTV system Sys = (Rn, Â) where
Â : T≥0 → Σ is defined by Â(t) = Aσ(t) for all t ∈ T≥0. We denote by
htop(SwS;σ) the topological entropy of Sys. Our goal is to give lower bounds
and upper bounds on htop(SwS;σ) when SwS is p-dominant and the rates of
p-dominance are known (see Definition 2.8 in Subsection 2.2.2).

For the sake of simplicity, we restrict our attention to discrete-time LTV
systems obtained from switched linear systems. However, using the theory of
p-dominance for dynamical systems (introduced in Section 2.3), one can easily
extend the results presented in this subsection to all discrete-time LTV systems,
and to continuous-time LTV systems by using time-discretization.

Before presenting these results, let us mention that the question of esti-
mating the topological entropy of switched linear systems with fixed switching
signal was thoroughly studied in Yang et al. (2020) for general switched linear
systems, and in Vicinansa and Liberzon (2019) for switched linear systems with
a “regular” switching signal. The first reference provides the following lower
bound and upper bound on the topological entropy of switched linear systems
with fixed switching signal (the statement of the theorem has been adapted to
discrete-time systems).

Proposition 3.10 (Yang et al., 2020, Theorem 1). Consider a discrete-time
switched linear system SwS ∼ (Rn, {Ai}i∈Σ) and a switching signal σ : N→ Σ.
Let ‖·‖∗ be any sub-multiplicative matrix norm. For each T ∈ N and i ∈ Σ, let
ρi(T ) = 1

T |{t ∈ [0, T )∩N : σ(t) = i}| be the portion of time spent by the system
in mode “i” on the time interval {0, . . . , T − 1}. Then, it holds that

max
{

lim sup
T→∞

∑
i∈Σ

ρi(T ) log2 |det(Ai)|, 0
}
≤ htop(SwS;σ) ≤

max
{

lim sup
T→∞

n
∑
i∈Σ

ρi(T ) log2 ‖Ai‖∗, 0
}
.

The above bounds can sometimes be very conservative: for instance, if one
of the matrices of the system has a zero eigenvalue, then the lower bound in
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Proposition 3.10 is equal to zero; on the other hand, if all matrices have a
common eigenvector associated to a very large eigenvalue λ∗ and have zero
eigenvalues otherwise, then the upper bound will be equal to n log2 λ∗ while it
should be equal to log2 λ∗. It turns out that the above bounds can be refined
when the switched linear system is p-dominant with 0 < p < n and the rates
of p-dominance are known.

Theorem 3.11. Consider a discrete-time switched linear system SwS ∼ (Rn, {Ai}i∈Σ)
and a switching signal σ : N → Σ. Let ‖·‖∗ be any sub-multiplicative matrix
norm. Assume that SwS is p-dominant with automaton Aut = (Q,Σ,Θ) and set
of rates {γθ}θ∈Θ ⊆ R>0. Let (θt)∞t=0 ⊆ Θ be a path in Aut such that σ(t) = i(θt)
for all t ∈ N. It holds that

max {pγ̂, 0} ≤ htop(SwS;σ) ≤

max {(n− p)γ̂, 0}+ max
{

lim sup
T→∞

p
∑
i∈Σ

ρi(T ) log2 ‖Ai‖∗, 0
}
,

where γ̂ = lim sup
T→∞

1
T log2(γθ0 · · · γθT−1), and ρi(T ), for i ∈ Σ and T ∈ N, is as

in Proposition 3.10.

Proof. See Appendix A.3.4.

Corollary 3.12. Consider a discrete-time switched linear system SwS ∼ (Rn, {Ai}i∈Σ)
under arbitrary switching. Assume that SwS is p-dominant with automaton
Aut = (Q,Σ,Θ) and set of rates {γθ}θ∈Θ ⊆ R>0, and assume that Aut is cycle-
stable with respect to {γθ}θ∈Θ. Then, for any switching signal σ ∈ S, it holds
that

htop(SwS;σ) ≤ max {p%̂(SwS), 0},

where %̂(SwS) is the joint spectral radius of SwS (see Definition 1.50 in Subsec-
tion 1.3.2).

Proof. Straightforward for Theorem 3.11 and the definition of cycle-stable au-
tomaton (see Definition 2.14 in Subsection 2.2.2).

An example of application of Theorem 3.11 for the computation of the
topological entropy of a p-dominant discrete-time switched linear system, and
comparison with the bound in Proposition 3.10, is presented in Subsection
2.2.4.
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3.3 Quantized control of switched linear sys-
tems with mode-dependent coder–decoder

In this section, we study the problem of state estimation and stabilization of
switched linear systems with a mode-dependent coder–decoder. We introduce
the concept of worst-case topological entropy of a switched linear system, and
we show that the minimal data rate for state estimation or stabilization of
switched linear systems coincides with the worst-case topological entropy of
the open-loop system. We also derive a closed-form expression for the worst-
case topological entropy, expressed as the joint spectral radius (see Definition
1.50 in Subsection 1.3.2) of some lifted switched linear system obtained from
the original one by using tools from multilinear algebra. Drawing on this ex-
pression, we describe a practical coder–decoder that observes or stabilizes the
system, and whose data rate can be as close as desired to the optimal data
rate.

The section is organized as follows. In Subsection 3.3.1, we introduce the
concept of worst-case topological entropy of a switched linear system. We also
introduce the notions of minimal data rate for state estimation and stabilization
of switched linear systems with a mode-dependent coder–decoder. In Subsec-
tion 3.3.2, we present the closed-form expression for the worst-case topological
entropy and discuss the computability aspects. In Subsection 3.3.3, we demon-
strate the equivalence of the worst-case topological entropy and the minimal
data rate for state estimation and stabilization of switched linear systems, and
we describe a practical coder–decoder that observes or stabilizes such systems
and whose data rate can be as close as desired to the worst-case topological
entropy. Finally, in Subsection 3.3.4, we demonstrate the applicability of our
results on numerical examples.

Notation. We will consider both continuous-time systems and discrete-time
systems, and we will use the symbol T to denote the time domain of the system,
as it should be clear from the context whether T = R (continuous-time systems)
or T = Z (discrete-time systems). The restriction of a function f : A → B to
a set A′ ⊆ A is denoted by f |A′ . The Minkowski sum of A ⊆ Rn and B ⊆ Rn

(or {x} ⊆ Rn) is denoted by A + B (or A + x). If A ⊆ Rn and M ∈ Rn×n,
then MA is the image of A by M , i.e., MA = {Mx : x ∈ A}. d·e, b·c and J·K
are the ceil, floor and round functions.

3.3.1 Problem setting

We introduce the problem of interest of this section: namely, the study of
the minimal data rate for state estimation and stabilization of switched linear



3.3. QUANTIZED MODE-DEPENDENT CONTROL OF SLS 135

systems with a mode-dependent coder–decoder, and its connection with the
concept of worst-case topological entropy for switched linear systems.

Let us consider a switched linear system5 SwS ∼ (Rn,Rm, {Ai}i∈Σ, {Bi}i∈Σ).
For a reminder, the trajectories (ξ, σ) : T≥0 → Rn × Σ of SwS with input
u : T≥0 → Rn satisfy ξ̇(t) = Aσ(t)ξ(t) + Bσ(t)u(t) for all t ∈ R≥0 (if SwS is
continuous-time) and ξ(t + 1) = Aσ(t)ξ(t) + Bσ(t)u(t) for all t ∈ N (if SwS is
discrete-time), where ξ : T≥0 → Rn is the continuous variable and σ : T≥0 → Σ
is the switching signal of the trajectory, which specifies the mode i ∈ Σ of SwS
at each time t ∈ T≥0. For the sake of simplicity, we assume that all switched
linear systems considered in this section are under arbitrary switching, which
means that the set of admissible switching signals of SwS, denoted by S(SwS)
(or S if SwS is clear from the context), is the set of right-continuous, piecewise
constant functions from T≥0 to Σ (see also Subsection 1.3.1). Finally, given
a switched linear system SwS ∼ (Rn,Rm, {Ai}i∈Σ, {Bi}i∈Σ), we let SwS◦ be
the associated autonomous (or open-loop) switched linear system, defined by
SwS◦ ∼ (Rn, {Ai}i∈Σ) and S(SwS◦) = S(SwS).

Worst-case topological entropy of switched linear systems

In Subsection 3.2.1, we introduced the notion of topological entropy for a linear
time-varying (LTV) system Sys = (Rn, Â), denoted by htop(Sys) (see Definition
3.1). We also saw, in Subsection 3.2.3, that a switched linear system SwS ∼
(Rn, {Ai}i∈Σ) with a fixed switching signal σ : T≥0 → Σ can be seen as a LTV
system Sys = (Rn, Â) where Â : T≥0 → Rn×n is defined by Â(t) = Aσ(t) for all
t ∈ T≥0, and we denoted its topological entropy by htop(SwS;σ) = htop(Sys).
These notions allow us to define the worst-case topological entropy of a switched
linear system.

Definition 3.13 (Worst-case topological entropy of a switched linear system).
Consider a switched linear system SwS ∼ (Rn, {Ai}i∈Σ) under arbitrary switch-
ing. The worst-case topological entropy of SwS, denoted by hwc-top(Sys), is
defined as

hwc-top(SwS) = sup
σ∈S

htop(SwS;σ).

The example below illustrates the notion of worst-case topological entropy
for switched linear systems.

Example 3.2. Consider the discrete-time switched linear system SwS ∼ (R1, {Ai}i∈Σ)
under arbitrary switching, with Σ = {1, 2}, and A1 = 1 and A2 = 2. Let

5We refer the reader to Section 1.3 for the notation and definitions related to switched
systems.
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σ : N → Σ be the switching signal defined by σ(t) = 1 for all t ∈ N even, and
σ(t) = 2 for all t ∈ N odd. The LTV system associated to SwS with switching
signal σ corresponds to the one in Example 3.1, whose topological entropy was
shown to be equal to 1/2. Hence, htop(SwS;σ) = 1/2. As for the worst-case
topological entropy of SwS, it is not difficult to see that the switching signal
σ : N → Σ that maximizes the topological entropy is given by σ(t) = 2 for
all t ∈ N. In this case, χ(t, 0, x, σ) = 2tx for all t ∈ N and x ∈ Rn, where
χ is the generator6 of SwS. We deduce that h(SwS;σ) = log2 2 = 1, so that
hwc-top(SwS) = 1.

In Subsection 3.3.2, we give a closed-form expression for the worst-case
topological entropy of a switched linear system, and we discuss the implications
of this expression for the computation of the worst-case topological entropy of
switched linear systems. Then, in Subsection 3.3.3, we explain the connections
between the worst-case topological entropy and the minimal data rate for state
estimation and stabilization of switched linear systems with a mode-dependent
coder–decoder. These notions are reminded in the next subsubsection.

Minimal data rate for state estimation and stabilization of switched
linear systems with a mode-dependent coder–decoder

The following definition of minimal data rate for state estimation of switched
linear systems with a mode-dependent coder–decoder particularizes the defini-
tion of minimal data rate for state estimation of hybrid systems (see Definition
1.74 in Subsection 1.5.2) in the case of switched linear systems, and when the
current mode of the system is known by the decoder via the universal output
map.

Definition 3.14 (Minimal data rate for state estimation of a switched linear
system with a mode-dependent coder–decoder). Consider a switched linear
system SwS ∼ (Rn, {Ai}i∈Σ) under arbitrary switching and a bounded set X0 ⊆
Rn. The minimal data rate for state estimation of SwS starting from X0 with
a mode-dependent coder–decoder, denoted by Rest-md(SwS, X0), is defined as
the minimal data rate for state estimation of the hybrid system associated to
SwS, with initial set X0×Σ, and with respect to the cost function C : (Rn×Σ)×
(Rn × Σ)→ R≥0 defined by C(x1, i1, x2, i2) = ‖x1 − x2‖, and via the universal
output map H : Rn × Σ→ Σ defined by H(x, i) = i.

In other words, Rest-md(SwS, X0) in Definition 3.14 is defined as

Rest-md(SwS, X0) = sup
ε>0

inf
CoDec

R(CoDec),

6For a reminder, see Definition 1.36 in Subsection 1.3.1.
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where the infimum is over all mode-dependent coders–decoders CoDec that ε-
observe SwS starting from X0, and where R(CoDec) is the data rate of CoDec
(see Definitions 1.71 and 1.73 in Subsection 1.5.1). Following the definitions in
Subsection 1.5.1, a mode-dependent coder–decoder for the observation of SwS
starting from X0, with transmission period Tt, can be described as an ordered
pair ((Ψc

k)k∈N, (Ψd
k)k∈N) where for every k ∈ N,

Ψc
k : X0 × Σ[0,kTt]∩T → Yt

is the coder function at step k and

Ψd
k : (Yt)k+1 ×

⋃
t∈ [kTt,(k+1)Tt)∩T

Σ[0,t]∩T → Rn

is the decoder function at step k. At each time t = kTt, k ∈ N, the coder
outputs a symbol e(k) defined by e(k) = Ψc

k(x, σ|[0,kTt]∩T) where x is the
initial condition of the system and σ is the switching signal. The symbols are
transmitted to the decoder, which produces at each time t ∈ [kTt, (k+1)Tt)∩T,
k ∈ N, an estimate ξ̂(t) = Ψd

k(e(0), . . . , e(k), σ|[0,t]∩T) of the current state of the
system. The coder–decoder CoDec = ((Ψc

k)k∈N, (Ψd
k)k∈N) is said to ε-observe

SwS starting from X0 if for every trajectory (ξ, σ) : T≥0 → Rn × Σ of SwS
with ξ(0) ∈ X0 and every t ∈ T≥0, ‖ξ(t) − ξ̂(t)‖ ≤ ε where ξ̂(t) is defined
as above, with x = ξ(0). Finally, the data rate of CoDec is defined as the
maximal number of bits per unit of time necessary to encode the symbols:
R(CoDec) = dlog2|Yt|e

Tt
.

Similarly, we define the minimal data rate for stabilization of switched linear
systems with a mode-dependent coder–decoder.

Definition 3.15 (Minimal data rate for stabilization of a switched linear sys-
tem with a mode-dependent coder–decoder). Consider a switched linear sys-
tem SwS ∼ (Rn,Rm, {Ai}i∈Σ, {Bi}i∈Σ) under arbitrary switching. The mini-
mal data rate for stabilization of SwS with a mode-dependent coder–decoder,
denoted by Rstab-md(SwS), is defined as the minimal data rate for stabiliza-
tion of the hybrid system associated to SwS, with respect to the cost function
C : Rn × Σ → R≥0 defined by C(x, i) = ‖x‖, and via the universal output map
H : Rn × Σ→ Σ defined by H(x, i) = i.

As for the case of state estimation, a mode-dependent coder–decoder for
the stabilization of SwS, with transmission period Tt, can be described as an
ordered pair ((Ψc

k)k∈N, (Ψd
k)k∈N) where for every k ∈ N,

Ψc
k : Rn × Σ[0,kTt]∩T → Yt

is the coder function at step k and

Ψd
k : (Yt)k+1 ×

⋃
t∈ [kTt,(k+1)Tt)∩T

Σ[0,t]∩T → Rm
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is the decoder function at step k. At each time t = kTt, k ∈ N, the coder
outputs a symbol e(k) defined by e(k) = Ψc

k(x, σ|[0,kTt]∩T) where x is the
initial condition of the system and σ is the switching signal. The symbols are
transmitted to the decoder, which produces at each time t ∈ [kTt, (k+1)Tt)∩T,
k ∈ N, a control input u(t) = Ψd

k(e(0), . . . , e(k), σ|[0,t]∩T). The coder–decoder
CoDec = ((Ψc

k)k∈N, (Ψd
k)k∈N) is said to stabilize SwS if there is a class-KL

function β such that for every x ∈ Rn, σ ∈ S and t ∈ T≥0, ‖χ(t, 0, x, σ, u)‖ ≤
β(‖x‖, t) where u : T≥0 → Rm is defined as above, and χ is the generator7 of
SwS.

3.3.2 Closed-form expression for the worst-case topolog-
ical entropy of switched linear systems

For a continuous-time control-affine LTI system ξ̇(t) = Aξ(t) + Bu(t), with
A ∈ Rn×n and B ∈ Rn×m, it is well known that the topological entropy of the
open-loop system is given by

htop(A) = log2(e)
n∑
i=1

max {Re(λi(A)), 0} (continuous-time) (3.4)

where λ1(A), . . . , λn(A) are the eigenvalues of A, and it is also well known
that htop(A) coincides with the minimal data rate for state estimation of the
open-loop system and with the minimal data rate for stabilization (see, e.g.,
Colonius, 2012, Section 4). Similar results hold for a discrete-time control-affine
LTI system ξ(t+ 1) = Aξ(t) +Bu(t): the topological entropy of the open-loop
system is given by

htop(A) =
n∑
i=1

max { log2 |λi(A)|, 0} (discrete-time) (3.5)

where λ1(A), . . . , λn(A) are the eigenvalues of A, and htop(A) coincides with
the minimal data rate for state estimation of the open-loop system and with
the minimal data rate for stabilization (see, e.g., Matveev and Savkin, 2009,
Sections 2.4 and 2.5).

In this subsection, we present a closed-form expression, similar to (3.4)–
(3.5), for the worst-case topological entropy of switched linear systems. The
closed-form expression relies on the concept of joint spectral radius (see Defi-
nition 1.50 in Subsection 1.3.2) and exterior powers of matrices.

The subsection is organized as follows. First, we introduce the notion of
exterior powers of matrices. Then, we present the closed-form expression for

7For a reminder, see Definition 1.36 in Subsection 1.3.1.
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the worst-case topological entropy, and we discuss its consequences for the
computation of the worst-case topological entropy of switched linear systems.
Finally, we discuss the connections with related results in the literature at the
end of this subsection.

Exterior algebras

The exterior algebra of a vector space V is an algebraic construction used
to study the notions of area, volume, and their higher-dimensional analogues
in V (see, e.g., Winitzki, 2010). In finite dimension, exterior algebras can
be constructed from the exterior products of vectors in V , introduced below;
since we restrict our attention to finite-dimensional spaces, and for simplicity
of notation, we assume, without loss of generality, that V = Rn.

Definition 3.16 (Exterior product of vectors). Let v1, . . . , vk ∈ Rn, with k ∈
N>0. The exterior product of v1, . . . , vk, denoted by v1∧· · ·∧vk, is the k-linear
map from (Rn)k to R, defined by

(v1∧· · ·∧vk)(w1, . . . , wk) = det
([
wT
i vj
]k,k
i,j=1

)
for all (w1, . . . , wk) ∈ (Rn)k.

Definition 3.17 (kth exterior power of a vector space). Consider a vector
space Rn and let k ∈ {1, . . . , n}. Let {v1, . . . , vn} be any basis of Rn. The
kth exterior power of Rn, denoted by ΛkRn, is the vector space spanned by the
exterior products {vi1 ∧ vi2 ∧ · · · ∧ vik : 1 ≤ i1 < i2 < . . . < ik ≤ n}. By
convention, we also let Λ0Rn = R.

In particular, for all k ∈ {0, . . . , n}, the dimension of ΛkRn is equal to
C(k, n) = n!/(k!(n− k)!). In numerical computations, it is convenient to treat
ΛkRn as the coordinate space RC(k,n). This can be done by fixing a basis B
for ΛkRn: e.g., B = {ei1 ∧ ei2 ∧ · · · ∧ eik : 1 ≤ i1 < i2 < . . . < ik ≤ n}, where
{e1, . . . , en} is the canonical basis of Rn. If the elements of B are ordered with
respect to the lexicographical order of their indices (i1, . . . , ik), then B is called
the canonical basis of ΛkRn.

Using the above, we define the concept of exterior power of a square matrix.

Definition 3.18 (kth exterior power of a matrix). Let A ∈ Rn×n and k ∈
{1, . . . , n}. The kth exterior power of A, denoted by A∧k, is the unique linear
map from ΛkRn to ΛkRn satisfying

A∧k(v1 ∧ · · · ∧ vk) = Av1 ∧ · · · ∧Avk for all (v1, . . . , vk) ∈ (Rn)k.

By convention, we also let A∧0 = 1.
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Remark 3.1. The exterior power can be seen as a generalization of the concept
of determinant: in particular, for all A ∈ Rn×n, it holds that A∧n = det(A);
see, e.g., Arnold (1998, Section 3.2.3).

For any k ∈ {0, . . . , n} and A ∈ Rn×n, using the canonical basis of ΛkRn,
A∧k can be represented by a C(k, n)×C(k, n) matrix. The exterior power of A,
denoted by A∧, is then defined as the 2n×2n matrix A∧ = diag{A∧0, . . . , A∧n}.

We also define the concept of reduced exterior power8 of a square matrix.

Definition 3.19 (kth reduced exterior power of a matrix). Let A ∈ Rn×n and
k ∈ {1, . . . , n}. The kth reduced exterior power of A, denoted by A�k, is the
unique linear map from ΛkRn to ΛkRn satisfying

A�k(v1∧· · ·∧vk) =
k∑
i=1

v1∧· · ·∧vi−1∧Avi∧vi+1∧· · ·∧vk for all (v1, . . . , vk) ∈ (Rn)k.

By convention, we also let A�0 = 0.

Remark 3.2. The reduced exterior power can be seen as a generalization of the
concept of trace: in particular, for all A ∈ Rn×n, it holds that A�n = trace(A);
see, e.g., Arnold (1998, Section 3.2.3).

For any k ∈ {0, . . . , n} and A ∈ Rn×n, using the canonical basis of ΛkRn,
A�k can be represented by a C(k, n) × C(k, n) matrix. The reduced exterior
power of A, denoted by A�, is then defined as the 2n × 2n matrix A� =
diag{A�0, . . . , A�n}.

The following proposition, whose proof can be found in Arnold (1998),
summarizes the properties of exterior algebras that will be needed in this work.

Proposition 3.20 (Arnold, 1998, Lemma 3.2.6). Let k ∈ {0, . . . , n} and
A,B ∈ Rn×n.

1. I∧k = I, (AB)∧k = A∧kB∧k, (AT)∧k = (A∧k)T, (AT)�k = (A�k)T.

2. If A is upper-triangular/lower-triangular/diagonal/orthogonal, then so
are A∧k and A�k (in the canonical basis of ΛkRn).

3. The eigenvalues of A∧k are given by {λi1(A)λi2(A) · · ·λik(A) : 1 ≤ i1 <

i2 < . . . < ik ≤ n}, where λ1(A), . . . , λn(A) are the eigenvalues of A.
In particular, ρ(A∧) =

∏n
i=1 max{|λi(A)|, 1} where ρ(A∧) is the spectral

radius of A∧. The eigenvalues of A�k are given by {λi1(A) + λi2(A) +
· · ·+ λik(A) : 1 ≤ i1 < i2 < . . . < ik ≤ n}.

8This concept, which can be seen as the Lie derivative of the exterior product with respect
to a linear vector field, seems to have no well-defined name in the literature. Therefore, for
the purpose of this work, we chose the name of “reduced exterior power”.
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4. The singular values of A∧k are given by {ρi1(A)ρi2(A) · · · ρik(A) : 1 ≤
i1 < i2 < . . . < ik ≤ n}, where ρ1(A), . . . , ρn(A) are the singular values
of A. In particular, ‖A∧‖ =

∏n
i=1 max{ρi(A), 1}.

5. e(A�k) = (eA)∧k. Thus, eA� = (eA)∧.

Finally, we define the exterior power of a switched linear system.

Definition 3.21 (Exterior power of a switched linear system). Consider a
switched linear system SwS ∼ (Rn, {Ai}i∈Σ). The exterior power of SwS, de-
noted by SwS∧, is defined by

• SwS∧ ∼ (Rn, {A�i }i∈Σ) and S(SwS∧) = S(SwS) if SwS is continuous-
time,

• SwS∧ ∼ (Rn, {A∧i }i∈Σ) and S(SwS∧) = S(SwS) if SwS is discrete-time.

Proposition 3.22. Consider a switched linear system SwS ∼ (Rn, {Ai}i∈Σ).
For every σ ∈ S and t0, t1 ∈ T≥0, t1 ≥ t0, it holds that χ̊(t1, t0, σ; SwS∧) =
χ̊(t1, t0, σ; SwS)∧, where χ̊(·, ·, ·;�) is the fundamental matrix solution9 of � ∈
{SwS,SwS∧}.

Proof. Straightforward from Item 1 (and Item 5 for continuous-time systems) in
Proposition 3.20 and from the definition of the exterior power of SwS (Definition
3.21).

Main result and consequences

The main contribution of this subsection is the following theorem, which pro-
vides a closed-form expression for the worst-case topological entropy of switched
linear systems.

Theorem 3.23. Consider a switched linear system SwS ∼ (Rn, {Ai}i∈Σ) under
arbitrary switching. It holds that

hwc-top(SwS) = log2(e) %̂(SwS∧)

where %̂(SwS∧) is the joint spectral radius10 of SwS∧.

Proof. See Appendix A.3.5.

9For a reminder, see Definition 1.47 in Subsection 1.3.
10For a reminder, see Definition 1.50 in Subsection 1.3.2.
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We discuss below the implications of Theorem 3.23 for the numerical eval-
uation of the worst-case topological entropy of switched linear systems.

First of all, it follows from Theorem 3.23 that the worst-case topological
entropy of a switched linear system depends continuously on its set of matri-
ces. This property is important for numerical analysis as it ensures that small
errors on the system model will not change too much the worst-case topological
entropy of the system.

Corollary 3.24. Consider a switched linear system SwS ∼ (Rn, {Ai}i∈Σ) un-
der arbitrary switching. For any ε > 0, there is δ > 0 such that for any switched
linear system SwS′ ∼ (Rn, {A′i}i∈Σ) under arbitrary switching, satisfying that
‖Ai −A′i‖ ≤ δ for all i ∈ Σ, |hwc-top(SwS)− hwc-top(SwS′)| ≤ ε.

Proof. The proof follows from the continuity of A∧ or A� with respect to A ∈
Rn×n and the continuity of the joint spectral radius with respect to bounded
sets of matrices (straightforward consequence of Proposition 1.52 in Subsection
1.3.2; see also Jungers, 2009, Proposition 1.10).

Secondly, Theorem 3.23 shows that the computation of the worst-case topo-
logical entropy can benefit from well-established algorithms for the computation
of the joint spectral radius of switched linear systems.11 Indeed, any of these
algorithms can be used to approximate %̂(SwS∧) from SwS∧. Furthermore,
the computation of SwS∧ from SwS is straightforward from its definition (see
Berger and Jungers, 2021c, Section 3.B). However, it should be noted that the
dimension of SwS∧ increases exponentially with the dimension of SwS, and thus
so will the complexity of estimating %̂(SwS∧) (this is the curse of dimension-
ality!). In this regard, a simple and algorithm-independent way to speed up
the estimation of ρ(SwS∧), although not sufficient to fight the curse of dimen-
sionality, is to observe that since the matrices {A∧i }i∈Σ and {A�i }i∈Σ are block
diagonal, the computation of %̂(SwS∧) can be decoupled among the different
diagonal blocks (see, e.g., Jungers, 2009, Proposition 1.5).

Furthermore, there are cases for which the computation of the joint spectral
radius is straightforward; for instance, when {Ai}i∈Σ is a set of normal/upper-
triangular/lower-triangular matrices. By combining these results with the
properties of the exterior power of matrices (see Proposition 3.20), we get

11A wide range of methods, of very different natures, have been proposed in the last decades
to evaluate the joint spectral radius of a set of matrices; see, e.g., Jungers (2009, Section
2.3), Sun and Ge (2011, Section 2.4) and Vankeerberghen et al. (2014). While theoretical
discouraging results exist for the computation of the joint spectral radius in general (see, e.g.,
Jungers, 2009, Section 2.2), these methods turn out to be extremely powerful in practice and
to provide high-accuracy approximation algorithms for the joint spectral radius.
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efficient ways to compute the worst-case topological entropy of normal/upper-
triangular/lower-triangular switched linear systems.

Corollary 3.25. Consider a switched linear system SwS ∼ (Rn, {Ai}i∈Σ) un-
der arbitrary switching. Assume that for each i ∈ Σ, Ai is a normal matrix,
and let λ1(Ai), . . . , λn(Ai) be the eigenvalues of Ai. Then, it holds that

hwc-top(SwS) = max
i∈Σ

∑n

j=1
max { log2(e) Re(λj(Ai)), 0} (continuous-time case)

hwc-top(SwS) = max
i∈Σ

∑n

j=1
max { log2 |λj(Ai)|, 0} (discrete-time case).

The same holds for switched linear systems with upper-triangular/lower-triangular
matrices.

Proof. See Appendix A.3.6.

Similarly, the theory of p-dominance for switched linear systems (introduced
in Section 2.2) can be helpful to reduce the complexity of computing the worst-
case topological entropy of p-dominant switched linear systems.

Corollary 3.26. Consider a switched linear system SwS ∼ (Rn, {Ai}i∈Σ) un-
der arbitrary switching. Assume that SwS is p-dominant (Definition 2.8 in
Subsection 2.2.2) with automaton Aut = (Q,Σ,Θ) and set of rates {γθ}θ∈Θ,
and assume that Aut is cycle-stable with respect to {γθ}θ∈Θ (Definition 2.14 in
Subsection 2.2.2). Then, it holds that

htop(SwS) = max
k∈{0,...,p}

log2(e) %̂(SwS∧k)

where SwS∧k is defined as SwS∧ but with {A∧ki }i∈Σ ({A�ki }i∈Σ) instead of
{A∧i }i∈Σ ({A�i }i∈Σ).

Proof. Straightforward from the characterization of the asymptotic behavior of
switched linear systems that are p-dominant with a cycle-stable automaton (see
Theorem 2.15 in Subsection 2.2.2) and from Item 4 in Proposition 3.20.

Numerical examples illustrating the computation of the worst-case topolog-
ical entropy of switched linear systems, using Theorem 3.23 and Corollary 3.25,
are presented in Subsection 3.3.4.

Remark 3.3. In view of the closed-form expression of Theorem 3.23, one might
legitimately think that a similar formula holds for the topological entropy of
a switched linear system SwS = (Rn, {Ai}i∈Σ) with a fixed switching signal
σ : T≥0 → Σ, namely that htop(SwS;σ) = lim supT→∞ 1

T log2 ‖χ̊(T, 0, σ)∧‖.
We present a counter-example in Appendix A.3.7 showing that this is not the
case in general.
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Related works

The worst-case topological entropy of a switched linear system provides an
upper bound on the topological entropy of the system with any fixed switching
signal. The question of estimating the topological entropy of switched linear
systems with a fixed switching signal is studied thoroughly in Yang et al. (2020).
Because it is assumed that the switching signal is fixed, the bounds on the
topological entropy obtained in Yang et al. (2020) are in general better than
the worst-case topological entropy. However, in some “ill-conditioned” cases
(e.g., triangular systems with large differences among the diagonal entries),
the bounds available in Yang et al. (2020) can be more conservative than the
worst-case topological entropy (which can be computed efficiently, e.g., for
triangular systems; see Corollary 3.25).

Exterior algebras have also received attention in systems and control theory;
namely, in the study of the Lyapunov exponents (see, e.g., Arnold, 1998, and
Barreira, 2017) and entropy-related properties of dynamical systems (see, e.g.,
Kozlovski, 1998, and Kawan, 2013). For instance, we note the formula by
Kozlovski for the topological entropy of a discrete-time autonomous dynamical
system Sys = (Rn, f), with C∞ map f : Rn → Rn, over a compact forward
invariant set X ⊆ Rn:

htop(Sys, X) = lim
T→∞

1
T

log2

w
X

∥∥∂fT
∂x (x)∧

∥∥dx.

Theorem 3.23 shows, among others things, that the integral can be replaced by
a maximum over all switching signals in the case of the worst-case topological
entropy of switched linear systems, and enables practical computation using
the stability theory of switched linear systems.

3.3.3 Minimal data rate for state estimation and stabi-
lization of switched linear systems with a mode-
dependent coder–decoder

In this subsection, we show that the minimal data rate for state estimation of
an autonomous switched linear system with a mode-dependent coder–decoder
coincides with its worst-case topological entropy. Similarly, the minimal data
rate for stabilization of a feedback stabilizable switched linear system with a
mode-dependent coder–decoder coincides with the worst-case topological en-
tropy of the open-loop switched linear system. Moreover, we describe the im-
plementation of a practical (i.e., implementable) coder–decoder that observes,
or stabilizes, the system and whose data rate can be arbitrarily close to the
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optimal data rate (equal to the worst-case topological entropy). These results
are encapsulated in the following two theorems.

Theorem 3.27. Consider a switched linear system SwS ∼ (Rn, {Ai}i∈Σ) under
arbitrary switching, and a bounded set X0 ⊆ Rn with nonempty interior. It
holds that Rest-md(SwS, X0) = hwc-top(SwS).
Moreover, for any R > hwc-top(SwS) and ε > 0, there is a practical mode-
dependent coder–decoder with data rate smaller than or equal to R, that ε-
observes SwS.

Theorem 3.28. Consider a switched linear system SwS ∼ (Rn,Rm, {Ai}i∈Σ, {Bi}i∈Σ)
under arbitrary switching. Assume that SwS is feedback stabilizable with a static
controller12 (see Definitions 1.17 and 1.19 in Subsection 1.1.3). Then, it holds
that Rstab-md(SwS) = hwc-top(SwS◦).
Moreover, for any R > hwc-top(SwS), there is a practical mode-dependent
coder–decoder CoDec with data rate smaller than or equal to R, that stabi-
lizes SwS with exponential asymptotic rate of convergence, meaning that there
is µ > 0 and a class-K function g such that for any x ∈ Rn, σ ∈ S and t ∈ T≥0,

‖χ(t, 0, x, σ; SwS‖CoDec)‖ ≤ g(‖x‖)e−µt, (3.6)

where SwS‖CoDec is the closed-loop system obtained from the feedback compo-
sition of SwS and CoDec (see Definition 1.70 in Subsection 1.5.1).

We present the proof of Theorem 3.28 only, as the proof of Theorem 3.27
is identical. The proof that Rstab-md(SwS) ≥ hwc-top(SwS◦) in Theorem 3.28 is
presented in Appendix A.3.8. The proof that Rstab-md(SwS) ≤ hwc-top(SwS◦)
in Theorem 3.28 will follow from the next subsubsection, where we describe a
practical coder–decoder satisfying the assertions of the theorem.

Practical coder–decoder

Consider a switched linear system SwS ∼ (Rn,Rm, {Ai}i∈Σ, {Bi}i∈Σ) under
arbitrary switching, and assume that SwS is feedback stabilizable with a static
controller, denoted by κ : Rn × Σ→ Rm. Let R > hwc-top(SwS◦). We describe
the implementation of a practical coder–decoder satisfying (3.6), and whose
data rate is smaller than or equal to R.

In the following, we let B be the centered unit Euclidean ball. First, we de-
scribe for any matrix A ∈ Rn×n and resolution α > 0, a finite-points quantizer
for the reachable set of A from B; see the algorithm in Figure 3.5.

12In applications, static feedback stabilizing controllers for switched linear systems are
generally linear, meaning that for each i ∈ Σ, there is Fi ∈ Rm×n such that the switched
linear system SwS′ ∼ (Rn, {A′i}i∈Σ), defined by A′i = Ai+BiFi for each i ∈ Σ and S(SwS′) =
S(SwS), is stable; but this is not required for this theorem.
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Definition 3.29 (Quantizer associated to a matrix). For any A ∈ Rn×n and
α > 0, the quantizer implemented by the algorithm in Figure 3.5 is called the
quantizer with resolution α associated to A and is denoted by Qα,A : Rn →
Ξα,A. The set Ξα,A is called the range of Qα,A, and we denote its cardinality
by m̂(α,A) = |Ξα,A|.

The following result follows directly from the definition of Qα,A in Definition
3.29.

Lemma 3.30. For every A ∈ Rn×n and α > 0, the quantizer Qα,A : Rn →
Ξα,A satisfies that

• for all x ∈ B, ‖Ax−Qα,A(Ax)‖ ≤ α, and Qα,A(x) = 0 if ‖x‖ ≤ α
n1/2 ;

• m̂(α,A) =
∏n
i=1
(
2
q
n1/2

2α ρi(A)
y

+ 1
)

where ρ1(A), . . . , ρn(A) are the sin-
gular values of A.

Proof. Straightforward from the definition of Qα,A.

By combining the second item of the above lemma with the closed-form ex-
pression for the worst-case topological entropy, we obtain the following bound
on the cardinality of the quantizer associated to the fundamental matrix solu-
tion of a switched linear system.

Lemma 3.31. Consider a switched linear system SwS ∼ (Rn, {Ai}i∈Σ) under
arbitrary switching, and a resolution α > 0. Let R > hwc-top(SwS). There
is T ∈ T≥0 such that for every σ ∈ S and T ′ ∈ T, T ′ ≥ T , it holds that
m̂(α, χ̊(T ′, 0, σ)) ≤ 2bRT ′c.

Proof. See Appendix A.3.9.

Now, let us define a coder–decoder satisfying (3.6), and whose data rate is
smaller than or equal to R. First, we define some parameters, depending on
the system SwS and its stabilizing controller κ. Then, we describe the imple-
mentation of the coder and the decoder. Finally, we discuss the correctness of
the implementation.

Parameters: Fix α ∈ (0, 1) and let T1 ∈ T≥0 be such that for every x ∈ B,
σ ∈ S and T ′ ∈ T, T ′ ≥ T1, it holds that ‖χ(T ′, 0, x, σ; SwS‖κ)‖ ≤ α, where
SwS‖κ is the closed-loop system obtained from the composition with the static
controller κ. Fix R > hwc-top(SwS◦) and let T2 ∈ T≥0 be such that for every
σ ∈ S and T ′ ∈ T, T ′ ≥ T2, it holds that m̂(α, χ̊(T ′, 0, σ)) ≤ 2bRT ′c (Lemma
3.31). Finally, let T = max{T1, T2} be the period of the coder–decoder.
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Remark 3.4. We assume here, for the sake of simplicity of presentation, that
the quantity T2 above is computed a priori, but this quantity can in fact be
computed on the fly; see Berger and Jungers (2021c, Section 3.D).

Coder and decoder implementations: For the parameters defined above, the
associated coder and decoder are implemented by the algorithms in Figure 3.7
(the reader may find useful to refer to Figure 3.6, where the different quantities
involved in the algorithms are represented). For the sake of simplicity of presen-
tation, we assume that the trajectories of the system start in B, as the general
case can be handled by adding a “capturing phase” (via a “zooming-out” pro-
cedure) at the beginning of the stabilization process, as explained in Liberzon
(2014, Section 4.3). Also, we assume that the coder–decoder is without trans-
mission delay. Again, this assumption is made for simplicity of presentation,
but is not necessary; see Berger and Jungers (2021c, Section 3.D).

Correctness of the coder–decoder: The proof that the coder–decoder de-
scribed in Figure 3.7 has a data rate smaller than or equal to R and that
it satisfies (3.6) is presented in Appendix A.3.10.

3.3.4 Numerical experiments

In this subsection, we illustrate the application of the results of Subsections
3.3.2 and 3.3.3 on several numerical examples.

Worst-case topological entropy

We use the results of Subsection 3.3.2 to compute the worst-case topological
entropy of switched linear systems with general and triangular matrices.

Example 3.3. Consider the continuous-time switched linear system SwS ∼
(R2, {Ai}i∈Σ) under arbitrary switching, with Σ = {1, 2}, and A1 =

[ 0.1 2.0
0.5 0.1

]
andA2 =

[
−0.5 0.5
2.0 0.0

]
. The exterior power of SwS is given by SwS∧ ∼ (R4, {A�i }i∈Σ)

where

A�1 =


1

0.1 2.0
0.5 0.1

0.2

 and A�2 =


1
−0.5 0.5
2.0 0.0

−0.5

 .
We have used the JSR Toolbox (see Vankeerberghen et al., 2014), combined
with Protasov and Jungers (2013, Theorem 3), to estimate the joint spectral
radius of SwS∧. This provided the interval %̂(SwS∧) ∈ (1.21, 1.22). Hence, by
Theorem 3.23, it follows that hwc-top(SwS) ∈ log2(e)(1.21, 1.22) ≈ (1.75, 1.76)
bits per unit of time.
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Example 3.4. Consider the discrete-time switched linear system SwS ∼ (R2, {Ai}i∈Σ)
under arbitrary switching, with Σ = {1, 2}, and A1 =

[ 3 1
0.1
]

and A2 =
[ 1.1 1

2
]
.

Since A1 and A2 are upper-triangular, we may apply Corollary 3.25. We de-
duce that the worst-case topological entropy of the SwS is equal to log2 3 =
1.5850. The reader will check that the same result can be obtained by ap-
plying directly Theorem 3.23; indeed the exterior powers of SwS is given by
SwS∧ ∼ (R4, {A∧i }i∈Σ) where

A∧1 =


1

3 1
0.1

0.3

 and A∧2 =


1

1.1 1
2

2.2

 ,
and the joint spectral radius of a discrete-time upper-triangular switched linear
system is given by the largest absolute value of the diagonal entries of its
matrices (see, e.g., Jungers, 2009, Proposition 2.3).

Stabilization with a mode-dependent coder–decoder

In this subsubsection, we illustrate the use of the coder–decoder described in
Figure 3.7 for the stabilization of a continuous-time switched linear system.
Example 3.5. Consider the continuous-time switched linear system SwS ∼
(R2,R1, {Ai}i∈Σ, {Bi}i∈Σ) under arbitrary switching, with Σ = {1, 2}, and
A1 =

[ 0.1 2.0
0.5 0.1

]
, A2 =

[
−0.5 0.5
2.0 0.0

]
, B1 =

[ 1
1
]

and B2 =
[ 0

1
]
. This system

is stabilizable with the linear static controller κ : R2 × Σ → R1 defined by
κ(x, i) = Kix where K1 = [−1.261 −1.261 ] and K2 = [−2.5 −0.823 ].

Note that the open-loop system SwS◦ is the switched linear system studied
in Example 3.3, which was shown to satisfy hwc-top(SwS◦) ∈ log2(e)(1.21, 1.22)
bits per unit of time (see Example 3.3). Hence, by Theorem 3.28, it follows
that for any R ≥ 1.22 log2(e), the coder–decoder described in Figure 3.7, with
data rate R, stabilizes the system. A sample execution of SwS controlled by
the coder–decoder with data rate R = 3 log2(e) is represented in Figure 3.8-a.
A comparison of the rate of convergence for different values of the data rate
of the coder–decoder is presented in Figure 3.8-b. As intuitively expected, we
observe that the norm of ξ decreases more rapidly when the data rate is higher.

Stabilization with a coder–decoder and controlled switching signal

In this subsubsection, we illustrate the application of the mode-dependent set-
ting for the stabilization of a continuous-time switched linear system with con-
trolled switching signal and when the observation of the state is subject to
data-rate constraints.
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Example 3.6. Consider the continuous-time switched linear system SwS ∼
(R2, {Ai}i∈Σ) with Σ = {1, 2}, and A1 =

[
0.1 −1.0
1.0 0.1

]
and A2 =

[
−1.0 0.0
0.0 1.0

]
(inspired from Jungers and Mason, 2017, Example 2.3). Assume that we want
to stabilize this system by controlling the switching signal; that is, at each time
instant, the controller can choose the mode of the system, and the objective
is to drive the state of the system to zero. The effect of each matrix of SwS
is represented in Figure 3.9-a,b. A switching control strategy to stabilize the
system is the following (see also Figure 3.9-c for an illustration):

• Rotation mode: While the angle between ξ(t) and the horizontal axis
is not small enough (say > π/8), apply the matrix A1 (“rotation + di-
vergence”) until the angle becomes small enough (≤ π/8). When this is
the case, the controller switches to a “convergence mode”;

• Convergence mode: Apply the matrix A2 (“horizontal convergence
+ vertical divergence”) until the angle between ξ(t) and the horizontal
axis becomes too large (say > π/6). During this phase, since ξ(t) is
sufficiently horizontal, the state gets closer to the origin, but at the same
time it becomes less horizontal. Once the angle between ξ(t) and the
horizontal axis is too large (> π/6), the controller switches back the the
“rotation mode”.

Our goal is to design a coder–decoder that stabilizes the system using quan-
tized measurements of the state and using the switching signal as control input.
For that, we use the mode-dependent coder–decoder described in Figure 3.7 for
the estimation of the state. Note that, for this application, the assumption that
the current mode is known by the decoder is automatically satisfied since the
decoder chooses the current mode of the system.

In terms of data rate requirement: since one can hardly predict in advance
what will be the sequence of modes of the controlled system, it is natural to
consider the worst-case scenario to deduce the data rate that will allows us to
estimate the state of the system with exponentially decreasing error. There-
fore, we compute the worst-case topological entropy of SwS◦ ∼ (R2, {Ai}i∈Σ)
under arbitrary switching. Using the formula of Theorem 3.23, we find that
htop(SwS◦) = log2(e) (one can show that %̂(SwS◦) = 1, by using the Lyapunov
function V (x) = ‖x‖, satisfying V̇ (ξ(t)) ≤ V (ξ(t))). Thus, for any R > log2(e),
there is a mode–controlling coder–decoder, with data rate R, that stabilizes the
system. A sample execution of SwS controlled by the coder–decoder with data
rate R = 2.5 log2(e) is represented in Figure 3.10-a. A comparison of the rate
of convergence for different values of the data rate of the coder–decoder is pre-
sented in Figure 3.10-b. As intuitively expected, we observe that the norm of
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ξ decreases more rapidly when the data rate is higher.

3.4 Quantized control of switched linear sys-
tems with mode-oblivious coder–decoder

In this section, we study the problem of state estimation and stabilization of
switched linear systems when only limited information about the state and the
mode of the system is available. We restrict our attention to continuous-time
switched linear systems, since the case of discrete-time systems is much easier
to handle. First, we show that switched linear systems, with or without con-
straints on the switching signal, have in general an infinite topological entropy,
implying that they are in general not observable with arbitrary accuracy with
a finite data rate. Then, we show that switched linear systems under arbitrary
switching, i.e., with no constraint on the switching signal, are in general not
stabilizable with a finite data rate. Drawing on this result, we restrict our
attention to switched linear systems satisfying a fairly mild slow-switching as-
sumption, namely that the switching signal has an average dwell time bounded
away from zero. We show that under this assumption, switched linear systems
that are stabilizable in the classical sense remain stabilizable with a finite data
rate.

The section is organized as follows. In Subsection 3.4.1, we remind the
notions of topological entropy and minimal data rate for state estimation and
stabilization of switched linear systems. In Subsection 3.4.2, we present the
negative results regarding the state estimation of switched linear systems and
the stabilization of switched linear systems under arbitrary switching with a
mode-oblivious coder–decoder. In Subsection 3.4.3, we show that switched
linear systems with average dwell time bounded away from zero preserve their
stabilizability properties under data-rate constraints. In particular, we describe
a practical coder–decoder that stabilizes the system when the system is sta-
bilizable in the absence of data-rate constraints and the average dwell time
is bounded away from zero. Finally, in Subsection 3.4.4, we demonstrate the
applicability of our results on numerical examples.

Notation. In this section, all considered switched linear systems are continuous-
time switched linear systems, and thus for the sake of brievety, we will refer to
them simply as switched linear systems. The restriction of a function f : A→ B

to a set A′ ⊆ A is denoted by f |A′ . d·e, b·c and J·K are the ceil, floor and round
functions.
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3.4.1 Problem setting

We introduce the problem of interest of this section: namely, the quantized
observation and stabilization of switched linear systems when the switching
signal of the system is not directly observed by the decoder (mode-oblivious
coder–decoder). We also discuss the notion of topological entropy (different
from the worst-case topological entropy introduced in the previous section) for
switched linear systems.

Let us consider a switched linear system13 SwS ∼ (Rn,Rm, {Ai}i∈Σ, {Bi}i∈Σ).
For a reminder, the trajectories (ξ, σ) : R≥0 → Rn × Σ of SwS with input
u : R≥0 → Rn satisfy ξ̇(t) = Aσ(t)ξ(t) + Bσ(t)u(t) for all t ∈ R≥0, where
ξ : R≥0 → Rn is the continuous variable and σ : R≥0 → Σ is the switching
signal of the trajectory, which specifies the mode i ∈ Σ of SwS at each time
t ∈ R≥0. The set of admissible complete switching signals of SwS is denoted by
S(SwS), or S if SwS is clear from the context (see Definition 1.34 in Subsection
1.3.1). We remind that all switching signals of SwS are right-continuous, piece-
wise constant functions from R≥0 to Σ. Given a right-continuous, piecewise
constant function σ : R≥0 → Σ, and t0, t1 ∈ R>0, t1 ≥ t0, we let Nσ(t1, t0) be
the number of discontinuity points of σ in [t0, t1). Given τa > 0, a switched
linear system SwS is said to have average dwell time τa if all its switching sig-
nals have average dwell time τa with some parameter N◦ ≥ 0, meaning that for
all σ ∈ S, and t1, t0 ∈ R>0, t1 ≥ t0, it holds that Nσ(t1, t0) ≤ N◦ + t1−t0

τa
(see

Definition 1.40 in Subsection 1.3.1). Finally, given a switched linear system
SwS ∼ (Rn,Rm, {Ai}i∈Σ, {Bi}i∈Σ), we let SwS◦ be the associated autonomous
(or open-loop) switched linear system, defined by SwS◦ ∼ (Rn, {Ai}i∈Σ) and
S(SwS◦) = S(SwS).

Topological entropy of switched linear systems

The following definition of topological entropy particularizes the one for hybrid
systems (see Definition 1.78 in Subsection 1.5.2) to switched linear systems.

Definition 3.32 (Topological entropy of a switched linear system). Consider
a switched linear system SwS ∼ (Rn, {Ai}i∈Σ) and a bounded set X0 ⊆ Rn.
The topological entropy of SwS starting from X0, denoted by htop(SwS, X0), is
defined as the topological entropy of the hybrid system associated to SwS, with
initial set X0×Σ, and with respect to the cost function C : (Rn×Σ)×(Rn×Σ)→
R≥0 defined by C(x1, i1, x2, i2) = ‖x1 − x2‖.

13We refer the reader to Section 1.3 for the notation and definitions related to switched
systems.
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In other words, htop(SwS, X0) in Definition 3.32 is defined as

htop(SwS, X0) = sup
ε>0

lim sup
T→∞

1
T

log2 sspan(ε, T ;X0), (3.7)

where sspan(ε, T ;X0) is the smallest cardinality of an (ε, T )-spanning set for
SwS starting from X0, that is, the minimal number of functions from [0, T ) to
Rn necessary to approximate, with accuracy ε on the interval [0, T ), the “ξ”
component of all trajectories (ξ, σ) : R≥0 → Rn×Σ of SwS with ξ(0) ∈ X0 (see
Definition 1.76 in Subsection 1.5.2 for details). Equivalently, htop(SwS, X0) can
be defined as

htop(SwS, X0) = sup
ε>0

lim sup
T→∞

1
T

log2 ssep(ε, T ;X0), (3.8)

where ssep(ε, T ;X0) is the largest cardinality of an (ε, T )-separated set for
SwS starting from X0, that is, the maximal number of trajectories (ξ, σ) :
R≥0 → Rn × Σ of SwS satisfying ξ(0) ∈ X0 and whose “ξ” components are ε-
distinguishable on [0, T ) (see Definition 1.77 and Proposition 1.79 in Subsection
1.5.2 for details).

Remark 3.5. Consider a switched linear system SwS ∼ (Rn, {Ai}i∈Σ) and
a bounded set X0 ⊆ Rn with nonempty interior. By contrast to the case
of LTV systems (see Subsection 3.2.1), it seems an open question whether
htop(SwS, X0) depends on X0 or not. It nevertheless holds that htop(SwS, X0)
is invariant by positive scaling of the initial set X0, meaning that for any c > 0,
htop(SwS, cX0) = htop(SwS, X0). It follows that htop(SwS, X0) is maximal
(over all bounded X0 ⊆ Rn) when X0 contains the origin in its interior. For
the sake of brievety, the proof is omitted.

In Subsection 3.4.2, we will see that the topological entropy of switched
linear systems is infinite whenever the system is unstable. We will also see that
a similar result holds for the minimal data rate for state estimation of switched
linear systems, but not for the minimal data rate for stabilization of switched
linear systems, under mild assumptions on the systems. These two notions of
minimal data rate for state estimation and stabilization are reminded in the
subsubsection below.

Minimal data rate for state estimation and stabilization of switched
linear systems

The following definition of minimal data rate for state estimation of switched
linear systems (with a mode-oblivious coder–decoder) particularizes the defini-
tion of minimal data rate for state estimation of hybrid systems (see Definition
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1.74 in Subsection 1.5.2) in the case of switched linear systems, and when the
universal output map is the empty map.

Definition 3.33 (Minimal data rate for state estimation of a switched lin-
ear system). Consider a switched linear system SwS ∼ (Rn, {Ai}i∈Σ) and a
bounded set X0 ⊆ Rn. The minimal data rate for state estimation of SwS
starting from X0, denoted by Rest(SwS, X0), is defined as the minimal data
rate for state estimation of the hybrid system associated to SwS, with initial set
X0 × Σ, and with respect to the cost function C : (Rn × Σ)× (Rn × Σ)→ R≥0

defined by C(x1, i1, x2, i2) = ‖x1 − x2‖.

In other words, Rest(SwS, X0) in Definition 3.33 is defined as

Rest(SwS, X0) = sup
ε>0

inf
CoDec

R(CoDec),

where the infimum is over all coders–decoders CoDec that ε-observe SwS start-
ing from X0, and where R(CoDec) is the data rate of CoDec (see Definitions
1.71 and 1.73 in Subsection 1.5.1). Following the definitions in Subsection
1.5.1, a (mode-oblivious) coder–decoder for the observation of SwS starting
from X0, with transmission period Tt, can be described as an ordered pair
((Ψc

k)k∈N, (Ψd
k)k∈N) where for every k ∈ N,

Ψc
k : X0 × Σ[0,kTt] → Yt

is the coder function at step k and

Ψd
k : (Yt)k+1 × [kTt, (k + 1)Tt)→ Rn

is the decoder function at step k. At each time t = kTt, k ∈ N, the coder outputs
a symbol e(k) defined by e(k) = Ψc

k(x, σ|[0,kTt]) where x is the initial condition
of the system and σ is the switching signal. The symbols are transmitted to the
decoder, which produces at each time t ∈ [kTt, (k + 1)Tt), k ∈ N, an estimate
ξ̂(t) = Ψd

k(e(0), . . . , e(k), t) of the current state of the system. The coder–
decoder CoDec = ((Ψc

k)k∈N, (Ψd
k)k∈N) is said to ε-observe SwS starting from

X0 if for every trajectory (ξ, σ) : R≥0 → Rn × Σ of SwS with ξ(0) ∈ X0 and
every t ∈ R≥0, ‖ξ(t)− ξ̂(t)‖ ≤ ε where ξ̂(t) is defined as above, with x = ξ(0).
Finally, the data rate of CoDec is defined as the maximal number of bits per
unit of time necessary to encode the symbols: R(CoDec) = dlog2|Yt|e

Tt
.

Similarly, we define the minimal data rate for stabilization of switched linear
systems (with a mode-oblivious coder–decoder).

Definition 3.34 (Minimal data rate for stabilization of a switched linear sys-
tem). Consider a switched linear system SwS ∼ (Rn,Rm, {Ai}i∈Σ, {Bi}i∈Σ).
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The minimal data rate for stabilization of SwS, denoted by Rstab(SwS), is
defined as the minimal data rate for stabilization of the hybrid system associ-
ated to SwS, with respect to the cost function C : Rn × Σ → R≥0 defined by
C(x, i) = ‖x‖.

As for the case of state estimation, a (mode-oblivious) coder–decoder for
the stabilization of SwS, with transmission period Tt, can be described as an
ordered pair ((Ψc

k)k∈N, (Ψd
k)k∈N) where for every k ∈ N,

Ψc
k : Rn × Σ[0,kTt] → Yt

is the coder function at step k and

Ψd
k : (Yt)k+1 × [kTt, (k + 1)Tt)→ Rm

is the decoder function at step k. At each time t = kTt, k ∈ N, the coder outputs
a symbol e(k) defined by e(k) = Ψc

k(x, σ|[0,kTt]) where x is the initial condition
of the system and σ is the switching signal. The symbols are transmitted to the
decoder, which produces at each time t ∈ [kTt, (k+1)Tt), k ∈ N, a control input
u(t) = Ψd

k(e(0), . . . , e(k), t). The coder–decoder CoDec = ((Ψc
k)k∈N, (Ψd

k)k∈N)
is said to stabilize SwS if there is a class-KL function β such that for every
x ∈ Rn, σ ∈ S and t ∈ R≥0, ‖χ(t, 0, x, σ, u)‖ ≤ β(‖x‖, t) where u : R≥0 → Rm

is defined as above, and χ is the generator14 of SwS.

3.4.2 Obstacles to state estimation and stabilization of
switched linear systems with a mode-oblivious coder–
decoder

We start with some negative results regarding the topological entropy and the
minimal data rate for state estimation of switched linear systems.

Theorem 3.35. Consider a switched linear system SwS ∼ (Rn, {Ai}i∈Σ), a
bounded set X0 ⊆ Rn with nonempty interior, and a dwell time τa > 0. Assume
that S contains all switching signals from R≥0 to Σ with absolute dwell time τa
(see Definition 1.40 in Subsection 1.3.1). Also, assume that {Ai}i∈Σ contains
at least one unstable matrix, and that for every x ∈ Rn\{0}, there are i1, i2 ∈ Σ
such that Ai1x 6= Ai2x. Then, it holds that htop(SwS, X0) =∞.

Proof. See Appendix A.3.11.

Remark 3.6. Let us mention that a result similar to the one in Theorem 3.35
has been proved in the recent preprint by Sibai and Mitra (2020, Theorem 5).

14For a reminder, see Definition 1.36 in Subsection 1.3.1.
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Corollary 3.36. With the hypothesis of Theorem 3.35, it holds that Rest(SwS, X0) =
∞.

Proof. This follows from Rest(SwS, X0) ≥ htop(SwS, X0) (see Proposition 1.80
in Subsection 1.5.2).

The important feature of switched linear systems responsible for the above
negative results is their non-determinism, which implies that from any state,
there is in general an infinite set of states that can be reached by the system
over a finite horizon. In the case of switched linear systems, the diameter of
the set of states that can be reached from a given state depends on the norm
of the state in question. The assumption that there is at least one unstable
matrix involved in the system implies that this diameter stays bounded away
from zero, at least along some trajectories. In terms of quantized observation,
this implies that, along such trajectories, the uncertainty on the current state of
the system between two transmission times cannot be arbitrarily close to zero,
even if the data rate goes to infinity, resulting in the infeasibility of observing
the system with a finite data rate.

Now, we discuss the question of the minimal data rate for stabilization of
switched linear systems. The situation is quite different from the one of state
estimation. Indeed, in this case, we can control the norm of the trajectories
(this is the goal of stabilization), so that the uncertainty on the state of the
system between the transmission times is not the main issue. However, we
need to take into account the uncertainty on the mode of the system, which
implies that even if the state of the system is known accurately, one does not
know which control input to apply to stabilize the system (since the effect of
the control input will depend on the mode of the system). The example below
illustrates the fact that the uncertainty on the current mode of the system can
prevent the system to be stabilized with a finite data rate.

Example 3.7. Consider the continuous-time switched linear system SwS ∼
(R1,R1, {Ai}i∈Σ, {Bi}i∈Σ) under arbitrary switching, with Σ = {1, 2}, and
A1 = A2 = 0, B1 = −1 and B2 = 1. In other words, the trajectories of SwS
satisfy ξ̇(t) = −u(t) if σ(t) = 1 and ξ̇(t) = u(t) if σ(t) = 2. This system
is somehow the most basic switched control-affine system, and is clearly sta-
bilizable, e.g., with the linear static controller κ : R1 × Σ → R1 defined by
κ(x, i) = −Bix.

Proposition 3.37. Let SwS be as in Example 3.7. It holds that Rstab(SwS) =
∞.

Proof. Let CoDec be a coder–decoder for SwS. Let T ∈ R>0 and let UT be the
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set of all distinct input functions that can be produced by CoDec during the
interval [0, T ). By definition of a coder–decoder, UT is finite.

Now, for each ν > 0, let σν : R≥0 → Σ be the switching signal that
oscillates between mode 1 and mode 2 with frequency 2/ν: that is, for every
t ∈ R≥0, σν(t) = 1 if 2kν ≤ t < (2k + 1)ν for some k ∈ N, and σν(t) = 2 if
(2k + 1)ν ≤ t < 2(k + 1)ν for some k ∈ N. Then, by using an adaptation of
the proof of the Riemann–Lebesgue lemma (see, e.g., Teschl, 2021, Corollary
14.5), one can show that for any integrable function u : [0, T ) → R, it holds
that

r T
0 Bσν(t)u(t) dt→ 0 when ν → 0. Since UT is finite, this implies that for

any ε > 0, there is ν > 0 such that |
r T
0 Bσν(t)u(t) dt| < ε for all u ∈ UT . Thus,

for every x ∈ R1 and u ∈ UT , it holds that |χ(T, 0, x, σν , u; SwS)| > |x| − ε.
Since T and ε were arbitrary, this implies that CoDec does not stabilize SwS.
Since CoDec was arbitrary, this shows that Rest(SwS) = ∞, concluding the
proof.

One way to limit the uncertainty on the mode of the system is to impose
slow-switching conditions on the switching signal of the system. In particular,
in the next subsection, we show that any feedback stabilizable switched linear
system with average dwell time bounded away from zero can be stabilized with
a finite data rate.

3.4.3 Stabilization of switched linear systems with dwell
time with a mode-oblivious coder–decoder

As shown in Example 3.7, switched linear systems under arbitrary switching
are in general not stabilizable with a finite data rate. For this reason, we con-
sider switched linear systems with a positive average dwell time. We make the
following assumption on the system, which accounts for the fact the the system
with average dwell time τa is stabilizable with a static feedback controller.

Assumption 3.38. Given a switched linear system SwS ∼ (Rn,Rm, {Ai}i∈Σ, {Bi}i∈Σ)
and a dwell time τa > 0, we assume that there is a static feedback controller
κ : Rn × Σ → Rm, and constants D ≥ 0 and µ1, µ2 > 0 such that µ1/τa < µ2

and for every x ∈ Rn, σ : R≥0 → Σ and t ∈ R≥0, it holds that

‖χ(t, 0, x, σ; SwS‖κ)‖ ≤ D‖x‖eµ1Nσ(t,0)−µ2t (3.9)

where SwS‖κ is the closed-loop system (assumed to be under arbitrary switch-
ing15) obtained from the composition with the static controller κ.

15This assumption is made only for the well definition of χ( · , · , · , σ; SwS‖κ) for all σ :
R≥0 → Σ.
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With SwS and κ as in the assumption, (3.9) implies that the closed-loop
system SwS‖κ is exponentially stable for all switching signal σ : R≥0 → Σ with
average dwell time τa.

Remark 3.7. A controller satisfying Assumption 3.38 can be derived for instance
if SwS admits a multiple control Lyapunov function; see, e.g., Liberzon (2003)
or Lin and Antsaklis (2009). An interesting situation, is when SwS admits a
common control Lyapunov function; in this case, (3.9) is satisfiable with µ1 = 0,
so that Assumption 3.38 holds for any τa > 0.

We are now able to present the main result of this subsection, which states
that any switched linear system with positive average dwell time satisfying
Assumption 3.38 is stabilizable with a finite data rate.

Theorem 3.39. Consider a switched linear system SwS ∼ (Rn,Rm, {Ai}i∈Σ, {Bi}i∈Σ)
with average dwell time τa > 0, and let Assumption 3.38 hold. There is a (mode-
oblivious) coder–decoder CoDec that stabilizes SwS with exponential asymptotic
rate of convergence, meaning that there is µ > 0 and a class-K function g such
that for any x ∈ Rn, σ ∈ S and t ∈ T≥0,

‖χ(t, 0, x, σ; SwS‖CoDec)‖ ≤ g(‖x‖)e−µt, (3.10)

where SwS‖CoDec is the closed-loop system obtained from the feedback composi-
tion of SwS and CoDec (see Definition 1.70 in Subsection 1.5.1). In particular,
it holds that Rstab(SwS) <∞.

We will provide a constructive proof of Theorem 3.39. More precisely, in
the subsubsection below, we describe the implementation of a coder–decoder
satisfying the assertions of the theorem. A precise upper bound on the minimal
data rate for stabilization of the system will be derived in due course of the
description of the coder–decoder; see (3.12). As for the decay rate µ in (3.10), it
will be obtained in the proof of the correctness of the proposed coder–decoder;
see (A.25) in Appendix A.3.12. The gain function g, however, will not be
explicitly defined but its existence will be demonstrated. As a class-K function,
g satisfies g(r)→ 0 when r → 0. However, as it will be clear from the proof of
its existence, g(r) is not Lipschitz continuous at r = 0. This lack of regularity
is not due to a potential sub-optimality of the proposed coder–decoder, or
to the switching nature of the system, but is intrinsic to any finite-data-rate
stabilization scheme for linear systems (including LTI systems); see for instance
Colonius (2012, Proposition 2.2).
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Description of a coder–decoder satisfying Theorem 3.39

Consider a switched linear system SwS ∼ (Rn,Rm, {Ai}i∈Σ, {Bi}i∈Σ) with av-
erage dwell time τa > 0 Let Assumption 3.38 hold with controller κ : Rm×Σ→
Rm and D ≥ 0 and µ1, µ2 > 0. We describe the implementation of a coder–
decoder CoDec that satisfies (3.10) for some µ > 0 and some class-K function g.
First, we define some parameters, which depend on SwS, τa, κ, D, µ1 and µ2.
Then, we describe the implementation of the coder and the controller. Finally,
we discuss the correctness of the implementation.

Parameters: Let ν = 1
2 maxi∈Σ λmax(Ai+A>i ), and let ∆A = maxi1,i2∈Σ ‖Ai1−

Ai2‖ and ∆B = maxi1,i2∈Σ ‖Bi1 − Bi2‖. Also, define L = sup { ‖κ(x, i)‖/‖x‖ :
i ∈ Σ, x ∈ Rn \ {0} }. Pick T ∈ R>0, α > 0 and p ∈ N>0 such that

De−µ2pT + eνpTα+ (1 + 1
α )ε(p, T ) < θe−µ1pT/τa (3.11)

for some θ ∈ (0, 1), where ε(p, T ) = eνpTT pT
τa
D(∆A + ∆BL).16 Finally, let Qα

be the quantizer Qα,I in Definition 3.29 where I is the n × n identity matrix,
and let Ξα be the set of quantizing points of Qα, whose cardinality satisfies
|Ξα| ≤ m̂α

.=
(
2
q
n1/2

2α
y

+ 1
)n (see Lemma 3.30).

We will build a coder–decoder CoDec with transmission period T , that
stabilizes the system and operates at data rate

R(CoDec) = 1
T

(⌈ 1
pdlog2((p+ 1)m̂α)e

⌉
+ dlog2(|Σ|)e

)
. (3.12)

Coder and decoder implementations: For the parameters defined above, the
associated coder and decoder are implemented by the algorithms in Figure 3.11.
For the sake of simplicity of presentation, we assume that the trajectories of
the system start in the centered unit Euclidean ball, as the general case can
be handled by adding a “capturing phase” (via a “zooming-out” procedure)
at the beginning of the stabilization process, as explained in Liberzon (2014,
Section 4.3). Also, we assume that the coder–decoder is without transmission
delay. Again, this assumption is made for simplicity of presentation, but can be
alleviated at the cost of increasing slightly the data rate of the coder–decoder.

The implementation deserves the following explanations. If σ : R≥0 → Σ is
the switching signal of the system, then σ̂ : R≥0 → Σ is the sample-and-hold
switching signal built for the observations of σ by coder at the transmission
times, that is, for all t ∈ R≥0, it holds that σ̂(t) = σ(bt/T cT ). Also, for
j0, j1 ∈ N, j1 ≥ j0, we let N sw

σ (T ; j0, j1) be the number of transmission intervals

16A strategy for choosing T, α, p is: first, choose T ′ = pT large enough so that
De(µ1/τa−µ2)T ′ < 1. Then, for this T ′, choose α, p such that eνT ′α and ε(p, T ′/p) are
small enough for (3.11) to be satisfied with θ < 1.
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during which σ switches at least once, that is,

N sw
σ (T ; j0, j1) = |{j ∈ [j0, j1) ∩ N : Nσ((j + 1)T, jT ) > 0}|. (3.13)

By definition, it holds that N sw
σ (T, j1, j0) ≤ j1 − j0. Finally, for all v ∈

{0, . . . , p}, we define

ā(v) = Deµ1v−µ2pT , and b̄(v) = eνpT vTeµ1vD(∆A + ∆BL). (3.14)

Correctness of the coder–decoder: The proof that the coder–decoder de-
scribed in Figure 3.7 has data rate as in (3.12) and that it satisfies (3.6) is
presented in Appendix A.3.12.

3.4.4 Numerical experiments

In this subsubsection, we illustrate the use of the coder–decoder described in
Figure 3.11 for the stabilization of a continuous-time switched linear system.

Example 3.8. Consider the continuous-time switched linear system SwS ∼
(R2,R1, {Ai}i∈Σ, {Bi}i∈Σ), with Σ = {1, 2}, and A1 =

[
0.1 −1.0
1.5 0.1

]
, A2 =[

−0.5 2.0
−1.5 0.0

]
, B1 =

[ 1
1
]

and B2 =
[ 0

1
]
. This system satisfies Assumption 3.38

with D = 1, µ1 = 0, µ2 = 0.15 and with the linear static controller κ : R2×Σ→
R1 defined by κ(x, i) = Kix where K1 = [−0.43 −0.43 ] and K2 = [−0.38 −0.52 ].

First, we have simulated the system with average dwell time τa = 1.0 s.
We have used the values T = 0.008, α = 0.05 and p = 100 for the parameters
of the coder–decoder, which satisfy (3.11). With these parameters, the data
rate of the coder–decoder is 145 bits/s. A sample execution of SwS with this
average dwell time, controlled by the coder–decoder, is represented in Figure
3.12-a. We observe that the state of the system converges to zero, as predicted.

Then, we have simulated the system with a smaller average dwell time,
namely τa = 0.25 s. We have used the values τs = 0.002, α = 0.05 and n = 400
for the parameters of the coder–decoder, which satisfy (3.11). The data rate of
the coder–decoder is 523 bits/s. A sample execution of SwS with this average
dwell time, controlled by the coder–decoder, is represented in Figure 3.12-b.
Again, we observe that the sampled trajectory converges to zero, as predicted.

3.5 Conclusions

In this chapter, we studied the interaction of switching and quantization in
control problems. Namely, we studied the question of quantized control for
switched linear systems, and considered two different settings for this control
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problem, accounting for different assumptions on the information about the
operating mode of the system available to the decoder. The results obtained
for the different settings are summarized in Table 3.1.

The mode-dependent setting is the one for which we obtained the strongest
positive results. In particular, we related the minimal data rate for state estima-
tion and stabilization with a entropy-based notion, namely the worst-case topo-
logical entropy. We also showed that these quantities could be approximated
numerically with arbitrary accuracy. On the other hand, we demonstrated
several negative results for the quantized control of switched linear systems
in the mode-oblivious setting. This motivated the introduction of additional
assumptions on the switching mechanism of the system to make the problem
of quantized stabilization with mode-oblivious coder–decoder tractable. Sim-
ilar assumptions were already considered in previous works on this topic, but
not necessarily motivated by counter-examples. Under these assumptions, we
provided sufficient data rate bounds for stabilization, and we described the im-
plementation of a practical coder–decoder achieving stabilization whenever the
system is stabilizable in the absence of data-rate constraints. Since the mode-
dependent setting is the one for which we have the most information about the
system, it is not surprising that the strongest positive results were obtained for
this setting, while the strongest negative results were obtained for the setting
with the weakest information structure.

An interesting direction for further research is to investigate further applica-
tions of the mode-dependent setting for the control of switched linear systems.
We think for instance to applications in the context of controlled or constrained
switching (see namely Example 3.6 for a proof-of-concept). Indeed, the worst-
case topological entropy provides an upper bound on the minimal data rate
for stabilization of these systems; it would be worth investigating whether it
is possible to improve this bound or define more efficient coders–decoders for
the stabilization of these systems if the switching signal can be controlled or
constrained in some way by the decoder.

It would also be interesting to investigate improvements of the coder–
decoder described in the mode-oblivious setting. For instance, one could con-
sider the use of Lyapunov functions (as in Liberzon, 2014, Wakaiki and Ya-
mamoto, 2014, and Yang and Liberzon, 2018, for instance), refine the analysis
of the propagation of reachable sets during transmission intervals by using
tools from multilinear algebra (as in the mode-dependent case), or consider
additional assumptions on the system.
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Mode-dependent Mode-oblivious
Fixed switch-

ing signal
(LTV systems)

Free switch-
ing signal

Free switch-
ing signal

Entropy

Classical definition
of topological
entropy (Def-
inition 3.1)

Worst-case
topological entropy

= maximal
topological

entropy over all
switching signals
(Definition 3.13)

Always finite +
“computable” close-

form expression
(Theorem 3.23)

Classical definition
of topological

entropy for non-
deterministic
systems (Def-
inition 3.32)

Can be infinite
(Theorem 3.35)

State esti-
mation

Minimal data
rate = topo-

logical entropy
(Theorem 3.3)

Implementation
may require

unbounded memory

Minimal data
rate = worst-case

topological entropy
+ can be reached

by a practical
coder–decoder
(Theorem 3.27)

May be not
observable with
finite data rate,

even under
slow-switching
assumptions

(Corollary 3.36)

Stabilization

Minimal data
rate = topological
entropy (straight-
forward extension
of Theorem 3.3)

Implementation
may require

unbounded memory

Minimal data
rate = worst-case

topological entropy
of open-loop system

+ can be reached
by a practical
coder–decoder
(Theorem 3.28)

May be not
stabilizable with
finite data, under

arbitrary switching
(Theorem 3.7)

Stabilizable
with finite data
+ description
of a practical

coder–decoder,
under nonzero
average dwell-

time assumption
(Theorem 3.39)

Table 3.1: Summary of the results regarding the quantized control of switched linear
systems.
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Coder
Input: A LTV system Sys =
(Rn, Â), a bounded set X0 ⊆ Rn.
An accuracy ε > 0, a “data rate”
α > htop(Sys) and a period T ∈ R>0.
Output: Symbols e(k) to be sent to
the decoder at each time t = kT ,
k ∈ N.
Algorithm:
Let x = ξ(0) be the initial condition
of ξ.
Let x̂−1 = 0 ∈ Rn and Ẽ−1 = X0.
Loop: at time t = kT for k =
0, 1, 2, . . .

Let Tk ∈ R ∪ {∞} be the largest
time such that scov(ε, Tk;X0) ≤
2α(k+1)T .
Let Ek be a minimal (ε, Tk)-cover
of Ẽk−1.
Let ŷk ∈ Ek be such that x −
x̂k−1 ∈ BSys,Tk(ŷk, ε).
Encode ŷk as a symbol e(k) and
send it to the decoder.
Let x̂k = x̂k−1 + ŷk.
Let Ẽk = BSys,Tk(x̂k, ε).

Decoder
Input: A LTV system Sys =
(Rn, Â), a bounded set X0 ⊆ Rn.
An accuracy ε > 0, a “data rate”
α > htop(Sys) and a period T ∈ R>0.
Output: A estimate ξ̂(t) at each
time t ∈ R≥0 satisfying ‖ξ(t)−ξ̂(t)‖ ≤
ε.
Algorithm:
Let x̂−1 = 0 ∈ Rn and Ẽ−1 = X0.
Loop: at time t = kT for k =
0, 1, 2, . . .

Let Tk ∈ R ∪ {∞} be the largest
time such that scov(ε, Tk;X0) ≤
2α(k+1)T .
Let ŷk be decoded from the sym-
bol e(k) sent by the coder.†

Let x̂k = x̂k−1 + ŷk.
For each t ∈ [kT, (k + 1)T ), let
ξ̂(t) = χ(t, xk).
Let Ẽk = BSys,Tk(x̂k, ε).

Figure 3.4: Implementation of the coder–decoder. ξ : R≥0 → Rn is the trajectory of
the system and starts in X0. †For each k ∈ N, the decoder can compute Ek, and thus
it can compute ŷk from e(k).
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Input: A matrix A ∈ Rn×n and a resolution α > 0.
Output: A finite-points quantizer Q : Rn → Ξ ⊆ Rn with resolution α on
AB.
Algorithm:
Let ᾱ = 2α/n1/2.
Let USV T be a SVD of A, with U, V ∈ Rn×n orthogonal and S =
diag(ρ1, . . . , ρn) ∈ Rn×n diagonal.
For each j ∈ {1, . . . , n}, let Sj = {−Jρj/ᾱK, . . . , Jρj/ᾱK}.
Let Ξ = ᾱU(S1 × · · · × Sn). Let Q : Rn → Ξ ⊆ Rn be defined by Q(x) =
arg minx̂∈Ξ ‖x− x̂‖.

Figure 3.5: Quantizer associated to a square matrix.

ξ(kT )

x̂k
αk αkρ1

αkρ2

x̃k+1

x̂k+1

2ααk

n1/2

yk+1 αkŷk+1

χ((k + 1)T, kT, ·, σ; SwS‖κ) ξ((k + 1)T )

αkĀk+1B + x̃k+1

Figure 3.6: The different quantities involved in the implementation of the coder–
decoder described in Figure 3.7. The black points represent the quantized points,
i.e., the set Ξα,Āk scaled by αk and shifted by x̃k+1.



164 CHAPTER 3. QUANTIZED CONTROL OF HYBRID SYSTEMS

Coder
Input: A switched linear system
SwS ∼ (Rn,Rm, {Ai}i∈Σ, {Bi}i∈Σ)
under arbitrary switching, a static
controller κ : Rn × Σ → Rm for SwS.
A resolution α > 0 and a period
T ∈ T>0.
Output: Symbols e(k) to be sent to
the decoder at each time t = kT ,
k ∈ N.
Algorithm:
Let x̂0 = 0 ∈ Rn and n0 = ‖x̂0‖ = 0.
Send “empty symbol” and wait until
t = T .
Loop: at time t = kT for k =
1, 2, . . .

Let x̃k = nk−1χ(kT, (k −
1)T, x̂k−1/nk−1, σ; SwS‖κ) (or
x̃k = 0 if nk−1 = 0).†

Measure ξ(kT ) and let yk =
ξ(kT )− x̃k.
Let Āk = χ̊(kT, (k−1)T, σ; SwS◦).†

Let ŷk = Qα,Āk(yk/αk−1).
Encode ŷk as a symbol e(k) and
send it to the decoder.
Let x̂k = x̃k + αk−1ŷk.

Decoder
Input: A switched linear system
SwS ∼ (Rn,Rm, {Ai}i∈Σ, {Bi}i∈Σ)
under arbitrary switching, a static
controller κ : Rn × Σ → Rm for SwS.
A resolution α > 0 and a period
T ∈ T>0.
Output: A control input u(t) at
each time t ∈ T≥0 that is applied
to the system.
Algorithm:
Let x̂0 = 0 ∈ Rn and n0 = ‖x̂0‖ = 0.
Apply the input u ≡ 0 ∈ Rm until
t = T .
Loop: at time t = kT for k =
1, 2, . . .

Let x̃k = nk−1χ(kT, (k −
1)T, x̂k−1/nk−1, σ; SwS‖κ) (or
x̃k = 0 if nk−1 = 0).†

Let Āk = χ̊(kT, (k−1)T, σ; SwS◦).†

Let ŷk be decoded from the sym-
bol e(k) sent by the coder.‡

Let x̂k = x̃k + αk−1ŷk and nk =
‖x̂k‖.
For each t ∈ [kT, (k +
1)T ) ∩ T, let u(t) =
nk κ(χ(t, kT, x̂k/nk, σ; SwS‖κ), σ(t)).†

Figure 3.7: Implementation of the coder–decoder. (ξ, σ) : T≥0 → Rn × Σ is the
trajectory of the controlled system. At each time t ∈ T≥0, ξ(t) and σ(t) are known by
the coder, but only σ(t) is known by the decoder (mode-dependent setting). †For each
k ∈ N and t ∈ [kT, (k+ 1)T ) ∩ T, the coder and the decoder can compute χ(kT, (k−
1)T, x̂k−1/nk−1, σ; SwS‖κ), χ̊(kT, (k−1)T, σ; SwS◦) and χ(t, kT, x̂k/nk, σ; SwS‖κ), for
instance by integrating auxiliary systems. ‡For each k ∈ N, the decoder can compute
Qα,Āk from Āk, and thus it can compute ŷk from e(k).
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Figure 3.8: a: Evolution of ξ and u for a sample execution of the system controlled
by the coder–decoder described in Figure 3.7 with data rate R = 3 log2(e). The black
curve below the plot represents the switching signal σ. The orange and red diamonds
represent the value of x̂k at the transmission times t = kT , k ∈ N. b: Evolution of
the norm of ξ for sample executions of the system controlled by the coder–decoder
described in Figure 3.7 with data rates R ∈ log2(e){1.5, 2, 3, 4}.

Figure 3.9: Switched linear system of Example 3.6. a: Effect of the matrix A1

(“rotation + divergence”). b: Effect of the matrix A2 (“horizontal convergence +
vertical divergence”). c: Switching control strategy for the system, with switching
signal as control input.
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Figure 3.10: a: Evolution of ξ and u for a sample execution of the system controlled
by the coder–decoder described in Example 3.6 with data rate R = 2.5 log2(e). The
black curve below the plot represents the switching signal σ. The orange and red
diamonds represent the value of x̂k at the transmission times t = kT , k ∈ N. b:
Evolution of the norm of ξ for sample executions of the system controlled by the
coder–decoder described in Example 3.6 with data rates R ∈ log2(e){1.2, 1.5, 2, 2.5}.
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Coder
Input: A switched linear system SwS ∼
(Rn,Rm, {Ai}i∈Σ, {Bi}i∈Σ) with dwell
time τa, a static controller κ : Rn × Σ →
Rm for SwS. A resolution α > 0, a period
T ∈ R>0, and a subperiod p ∈ N>0.
Output: Symbols e(j) to be sent to the
decoder at each time t = jT , j ∈ N.
Algorithm:
Let x̂0 = 0 ∈ Rn, r0 = s0 = 1 and v0 = 0
Loop: at time t = kpT for k = 0, 1, . . .

Measure ξ(kpT ) and let yk = ξ(kpT )−
x̂k.
If k > 0

Let rk = eνpT sk−1 + (ā(vk) +
b̄(vk))rk−1.†

Let sk = eνpTαsk−1 + b̄(vk)rk−1.†

Let ŷk = Qα(yk/sk).
Encode the pair (ŷk, vk) as p symbols
e(kp), e(kp+ 1), . . . , e(kp+ p− 1).
Loop: at time t = (kp + j)T for
j = 0, 1, . . . , p− 1

Send e(kp+ j) and σ((kp+ j)T ) to
the decoder.

Let x̃k+1 = χ((k +
1)pT, kpT, x̂k, σ̂; SwS‖κ).‡

Let ỹk+1 = χ((k +
1)pT, kpT, ŷk, σ̂; SwS◦).‡

Let x̂k+1 = x̃k+1 + skỹk+1.
Let vk+1 = N sw

σ (T ; kp, (k + 1)p).†

Decoder
Input: A switched linear system SwS ∼
(Rn,Rm, {Ai}i∈Σ, {Bi}i∈Σ) with dwell
time τa, a static controller κ : Rn × Σ →
Rm for SwS. A resolution α > 0, a period
T ∈ R>0, and a subperiod p ∈ N>0.
Output: A control input u(t) at each
time t ∈ R≥0 that is applied to the sys-
tem.
Algorithm:
Let x̂0 = 0 ∈ Rn, and r0 = s0 = 1.
Loop: at time t = kT for k = 0, 1, . . .

Loop: at time t = (kp + j)T for
j = 0, 1, . . . , p− 1

Receive e(kp+ j) and σ((kp+ j)T ).
For each t ∈ [(kp +
j)T, (kp + j + 1)T ), let u(t) =
κ(χ(t, kpT, x̂k, σ̂; SwS‖κ), σ̂(t)).‡

Let ŷk and vk be decoded from the
previously received symbols.
If k > 0

Let rk = eνpT sk−1 + (ā(vk) +
b̄(vk))rk−1.†

Let sk = eνpTαsk−1 + b̄(vk)rk−1.†

Let x̃k+1 = χ((k +
1)pT, kpT, x̂k, σ̂; SwS‖κ).‡

Let ỹk+1 = χ((k +
1)pT, kpT, ŷk, σ̂; SwS◦).‡

Let x̂k+1 = x̃k+1 + skỹk+1.

Figure 3.11: Implementation of the coder–decoder. (ξ, σ) : T≥0 → Rn × Σ is the
trajectory of the controlled system. †See (3.13) for the definition of N sw

σ , and (3.14)
for the definitions of ā and b̄. ‡σ̂ is the sample-and-hold version of σ with period T ,
built from the observations of σ by the coder at times t = jT , j ∈ N (see paragraph
“Coder and decoder implementations”).
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Figure 3.12: Evolution of ξ and u for a sample execution of the system controlled
by the coder–decoder described in Figure 3.11, for different values of the average
dwell time. The black curve below the plot represents the switching signal σ. The
orange and red curves represent the evolution of ξ̂ : R≥0 → R2, defined by ξ̂(t) =
χ(t, kT, x̂k, σ̂; SwS‖κ) for each t ∈ [kpT, (k + 1)pT ), k ∈ N.



Conclusions

The goal of systems and control theory is to study natural phenomenons (e.g.,
biological processes), technological devices (e.g., robots) or combinations of
both (e.g., pacemakers), and to design strategies to control them so that they
behave in some specified way. For that, we rely on mathematical models de-
scribing the evolution of these phenomenons/devices (called systems) and de-
scribing how they react to external inputs. The challenge with modern systems
is that these systems are becoming immensely complex and have many non-
standard characteristics. We think for instance to cyber-physical systems which
involve the interaction of discrete and continuous dynamics (called hybrid be-
havior) and often include spatially distributed components that communicate
through a shared communication network (called networked systems). These
characteristics preclude the use of classical control techniques and thus call for
the development of new mathematical and algorithmic tools to address these
fundamental challenges of modern control systems and to provide workable
solutions for emerging concrete control problems.

In this thesis, we studied these two fundamental and challenging aspects
of modern control systems (hybrid behavior and networked systems) from the
perspective of switched systems (a paradigmatic class of hybrid systems) and
quantized control (control with quantization errors and limited information
flow). For that, we focused on the property that the dynamics of theses systems
can often be divided into several distinct components, which grow at different
speeds (sometimes referred to as slow and fast modes separation).

First, we studied the property of separation of the dynamics, from the the-
oretical and algorithmic points of view, for switched linear systems and for
nonlinear smooth dynamical systems; see Chapter 2. Therefore, we leveraged
several classical tools from systems and control theory, like the concepts of hy-
perbolicity and positivity, and extended them for the study of switched linear
systems. In particular, the concept of hyperbolicity was very useful as it
accounts for the property that the linearized dynamics of a dynamical system
can be decomposed into a “dominant” component that grows exponentially

169
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fast and a “dominated” component that converges exponentially to zero. We
extended this property to switched linear systems, and we provided an algorith-
mic framework for the verification of this property, drawing on advanced tools
from applied mathematics, like conic optimization and automata theory. We
also considered a more general notion of separation of the dynamics in which
the dominated component grows exponentially slower than the dominant dy-
namics, but does not necessarily converge to zero. Finally, by combining the
results for the analysis of this property for switched linear systems with tools
from symbolic control (allowing to abstract a nonlinear dynamical system as a
collection of “local” linear systems), we provided an algorithmic framework for
the study of the property of separation of the linearized dynamics for smooth
dynamical systems. We also described several applications of this property,
encompassing the convergence of the trajectories of switched linear systems to
a low-dimensional time-varying attractor, the study of the robustness of attrac-
tors of nonlinear dynamical systems, and the computation of the topological
entropy of switched linear systems and nonlinear smooth dynamical systems.

Then, we leveraged the property of separation of the dynamics into compo-
nents with different rates of growth for the quantized control of switched linear
systems; see Chapter 3. Indeed, dynamics with different growth rates generally
requires different levels of quantization and different information rates to be
described accurately. We used this observation to obtain sharp bounds on the
minimal data rate necessary to control or estimate the state of a switched linear
system under several communication structures, and for the implementation of
associated optimal quantizing–controlling strategies. More precisely,

• In Section 3.2, we studied the question of the minimal data rate
for state estimation of linear time-varying systems. We estab-
lished the equivalence between this quantity and the topological entropy
of the system, thereby extending the classical “data rate theorems” of
time-invariant systems to this class of time-varying systems. We also im-
proved some existing results regarding the computation of the topological
entropy of linear time-varying systems, using the theory of p-dominance
developed in the first part of the thesis.

• In Section 3.3, we introduced the concept of worst-case topological
entropy of switched linear systems. We showed that this concept
was key for the theoretical analysis and practical computation of quan-
tized control strategies when the mode of the system is known in real
time by the coder–decoder (mode-dependent setting). Therefore, we
leveraged several tools from applied mathematics, namely the concepts of
exterior algebras and Joint Spectral Radius, and tools developed in the
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first part of the thesis, to study the separation of the growth rate of the
different components of the dynamics.

• In Section 3.4, we provided theoretical and practical insights on what can
and cannot be achieved with respect to the quantized control of switched
linear systems when the mode is not known in real time by the decoder
(mode-oblivious setting). We showed that, in this setting, switched
systems are in general impossible to observe with a finite data rate and
we demonstrated the importance of switching signal’s trackability
for the stabilizability (i.e., control) of these systems under data-rate con-
straints.

Directions for future research

The above suggests several interesting directions for future research.
Firstly, it would be worth studying generalizations of the property of sep-

aration of the dynamics for other classes of hybrid systems, like switched lin-
ear systems with state-dependent switching and nonlinear hybrid systems. It
would also be interesting to investigate further applications of the property of
hyperbolicity in modern control problems, for instance, for the study of the di-
mension of attractors of hybrid systems or to perform dimensionality reduction
in algorithmic control problems (such as abstractions computation, safety anal-
ysis, and controller synthesis), as we did for the computation of the worst-case
topological entropy of switched linear systems.

Secondly, the result on the equivalence of topological entropy and the mini-
mal data rate for state estimation of LTV systems gives rise to several interest-
ing open questions. For instance, it would be worth investigating whether we
can generalize this result to nonlinear time-varying systems, and if yes, under
which assumptions. Also, we saw that the resulting coder–decoder requires in
general an unbounded memory. It would be interesting to inquire variants of
the notion of topological entropy accounting for the minimal data rate for state
estimation of LTV systems with a coder–decoder with finite memory.

Thirdly, a straightforward declination of the mode-dependent setting for
the quantized control of switched linear systems is the quantized control of
these systems when the mode of the system can be controlled by the coder–
decoder. We already provided a proof-of-concept that the notion of worst-case
topological entropy can be used for this kind of problems (Example 3.6 in
Subsection 3.3.4), but it would be interesting to investigate how our results
could be particularized for this specific application; for instance, whether we
can improve the bounds on the minimal data rate for stabilization when the
decoder can choose the mode of the system (e.g., we could use the selection
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of the mode to reduce the necessary data rate), and whether we can derive a
computable closed-form expression for the optimal data rate.

Finally, the results on the quantized stabilizability of switched linear sys-
tems in the mode-oblivious setting call for several further research directions.
Indeed, for the moment, there is still a gap between the sufficient conditions
and the necessary conditions for these systems to be stabilizable with a finite
data rate. More precisely, we provided a sufficient condition on the switching
signal (namely, that it has a nonzero average dwell time) to ensure stabilizabil-
ity of the system with a finite data rate, and we showed with examples that
this condition cannot be removed in general (that is, without adding other as-
sumptions). It would be interesting, from the theoretical and practical points
of view, to derive sufficient and necessary conditions for the stabilizability of
these systems under data-rate constraints, in the mode-oblivious setting. Fur-
thermore, this setting also allows to address the quantized control of other
classes of hybrid systems, like switched linear systems with state-dependent
switching and hybrid linear systems. It would nevertheless be worth investi-
gating whether the coder–decoder and its data rate could be improved for these
other classes of systems, possibly considering other assumptions on the system
(for instance, in the case of state-dependent switching, an abrupt change in
the state can be an evidence that a switching has occured and this information
could be used to improve the data rate of the coder–decoder).

The questions of switching and control under communication constraints are
already fundamental for a wide range of modern control problems, and they
are likely to become even more important in the coming years due the phe-
nomenal outbreak of cyber-physical systems and communication technologies
of all kinds. This will require, among others, formal verification tools where
these two aspects of modern control systems are integrated. In this thesis,
we aimed to lay the basis for the development of such tools, by developing
theoretical and computational frameworks for the analysis of switched linear
systems and for their control under communication constraints. In partic-
ular, we showed that the analysis and control of these systems can benefit
from recent advanced technologies developed within the fields of mathemat-
ics, computer science and optimization. This provides proof-of-concepts that
a multidisciplinary approach is essential for the development of such formal
verification tools for modern control problems, and we hope that the present
work will stimulate the research in that direction for the coming years.
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A.1 Proofs of Chapter 1

A.1.1 Proof of Proposition 1.16

Let α1 and α2 be class-K functions as in Definition 1.14 for the equivalence of C1

and C2. Assume that HySys is stable with respect to C1 and let β : R≥0×R≥0 →
R≥0 be a class-KL function as in Definition 1.15 for the stability of HySys with
respect to C1. Let φ be a trajectory of HySys and fix t ∈ R≥0. It holds
that C2(φ(t)) ≤ α2(C1(φ(t))) ≤ α2(β(C1(φ(t)), t)) ≤ α2(β(α1(C2(φ(t))), t)). It
is readily checked that the function (r, t) 7→ α2(β(α1(r), t)) is of class KL,
showing that HySys is stable with respect to C2. The proof that HySys is stable
with respect to C1 if it is stable with respect to C2 is identical. This concludes
the proof of the proposition.

A.1.2 Proof of Proposition 1.28

We show that Sys is stable with respect to V . By Proposition 1.16, this will
imply that Sys is stable with respect to C. Let T ∈ T>0 and α : R≥0 → R≥0

be a class-K function as in Definition 1.26 for the Lyapunov function V . Let
ξ be a trajectory of Sys and fix t ∈ T≥0. By Proposition 1.27, it holds that
0 ≤ V (ξ(t)) ≤ V (ξ(t′)) ≤ V (ξ(0)) for all t′ ∈ [0, t] ∩ T. Hence, α(V (ξ(kT ))) ≥
α(V (ξ(t))) for all k ∈ {0, . . . , bt/T c}, where b·c is the floor function. From
the definition of T and α, it follows that α(V (ξ(t)))bt/T c ≤ V (ξ(0)), so that
V (ξ(t)) ≤ α−1(min(α(V (ξ(0))), V (ξ(0))/bt/T c)) where α−1 is the inverse of α.
It is readily checked that the function (r, t) → α−1(min(α(r), r/bt/T c)) is of
class-KL, concluding the proof of the proposition.

A.1.3 Proof of Proposition 1.51

We provide a proof only for the case of continuous-time systems since the case
of discrete-time systems is similar and simpler. We will show that 1 ⇒ 4 and
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3 ⇒ 1. The implications 1 ⇒ 4 ⇒ 2 ⇒ 3 ⇒ 1 and 1 ⇒ 4 ⇒ 5 ⇒ 3 ⇒ 1 will
then follow trivially and this will conclude the proof for the continuous-time
case.

In order to prove the implication 1 ⇒ 4, assume that %̂(SwS) < 0. Then,
there is T ∈ T>0 such that 1

T log(sup {‖χ̊(T, 0, σ)‖ : σ ∈ S}) < 0. Hence, it
holds that sup {‖χ̊(T, 0, σ)‖ : σ ∈ S} ≤ ρ < 1. By Proposition 1.39, it follows
that any trajectory φ : R≥0 → Rn of HySys satisfies ‖φ(jT + T )‖ ≤ ρ‖φ(jT )‖
for all j ∈ N. This implies for all j ∈ N, ‖φ(jT )‖ ≤ ρj‖φ(0)‖, showing the
HySys is GES.

In order to prove the implication 3 ⇒ 1, we proceed by contradiction.
Therefore, assume that %̂(SwS) ≥ 0 and let M = {χ̊(1, 0, σ) ∈ Rn×n : σ ∈
S}. It holds that limk→∞

1
k log(sup {‖M1 . . .Mk‖ : M1, . . . ,Mk ∈ M}) =

%̂(SwS) ≥ 0. The first quantity in the previous equation is the joint spectral
radius of a “discrete-time switched system” under arbitrary switching with set
of matricesM (the setM is infinite but the principle is the same). SinceM is
bounded, it holds by classical results on the joint spectral radius of discrete-time
switched systems (see, e.g., Jungers, 2009, Theorem 1.2) that there is an infinite
sequence of matrices (Mj)Jj=1 ⊆M such that lim supj→∞‖MjMj−1 · · ·M1‖ >
0. The sequence (Mj)Jj=1 defines a switching signal σ ∈ S satisfying that
MjMj−1 · · ·M1 = χ̊(j, 0, σ) for all j ∈ N. It follows that lim supt→∞ χ̊(t, 0, σ) >
0, so that there is x ∈ Rn such that χ(t, x, σ) 6→ 0 as t → ∞. This is a
contradiction with Item 3, concluding the proof that 3⇒ 1.

A.1.4 Proof of Proposition 1.64

Let x0 ∈ Rn, r0 ≥ 0 and v ∈ [−r0, r0]n. From the assumption on χ, it
holds that ‖χ(T, x0 + v) − χ(T, x0) − ∂χ

∂x (T, x0)v‖∞ ≤ L
2 ‖v‖

2
∞ ≤ L

2 r
2
0 (see,

e.g., Berger et al., 2020, Theorem 4.1 with ν = 1). Hence, χ(T, x0 + v) −
χ(T, x0) − ∂χ

∂x (T, x0)v ∈ L
2 [−r2

0, r
2
0]n, and thus, since v ∈ [−r0, r0]n, it follows

that χ(T, x0+v)−χ(T, x0) ∈ ∂χ
∂x (T, x0)[−r0, r0]n+L

2 [−r2
0, r

2
0]n, which concludes

the proof.

A.1.5 Proof of Corollary 1.65

Let x0, x1 ∈ Rn and r0, r1 ≥ 0. By Proposition 1.64, it holds that if {χ(T, x) :
x ∈ x0+[−r0, r0]n}∩(x1+[−r1, r1]n) 6= ∅, then χ(T, x0)+ ∂χ

∂x (T, x0)[−r0, r0]n+
L
2 [−r2

0, r
2
0]n ∩ (x1 + [−r1, r1]n) 6= ∅. The latter is equivalent to saying that

x1 − χ(T, x0) ∈ ∂χ
∂x (T, x0)[−r0, r0]n + L

2 [−r2
0, r

2
0]n − [−r1, r1]n. The conclusion

then follows from L
2 [−r2

0, r
2
0]n − [−r1, r1]n = [−r1 − L

2 r
2
0, r1 + L

2 r
2
0]n.
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A.2 Proofs of Chapter 2

A.2.1 Results from linear algebra

Notation. For P ∈ Sn×n, we let ν(P ) be the number of negative eigenvalues of
P , and ν0(P ) the number of nonpositive eigenvalues of P .

Theorem A.40 (Sylvester inertia theorem, Horn and Johnson, 1985, Section
4.5). Let Q = ATPA where P ∈ Sn×n and A ∈ Rn×n. Then, ν(Q) ≤ ν(P ) and
ν0(Q) ≥ ν0(P ).17

Theorem A.41 (Min-max principle, Horn and Johnson, 1985, Section 4.2).
Let P ∈ Sn×n and k ∈ {0, . . . , n}. Then, ν(P ) ≥ k (resp. ν0(P ) ≥ k) if and
only if there is a subspace H ⊆ Rn with dimension k such that xTPx < 0 (resp.
≤ 0) for all x ∈ H \ {0}.

Theorem A.42 (Main inertia theorem, Lancaster and Tismenetsky, 1985,
Section 13.2). For any matrix A ∈ Rn×n, there is a matrix P ∈ Sn×n satisfying
ATPA − P ≺ 0 if and only if A has no eigenvalue with modulus |λi| = 1.
Moreover, in this case, P ∈ Sn×np where p is the number of eigenvalues of A
with modulus |λi| > 1.

A.2.2 Proof of Proposition 2.3

Item 1 follows from Theorem A.42. The equivalence of Items 1 and 2 follows
directly from the eigenvalue decomposition of A.

A.2.3 Proof of Proposition 2.5

The “only if” direction is straightforward from the definition of K(P ) and the
observation that intK(P ) = {x ∈ Rn : xTPx < 0}. For the “if” direction,
observe that (2.3) implies that for every x ∈ Rn \ {0} such that xTPx ≤ 0,
it holds that xTATP Ax < 0. Therefrom, we deduce the dissipation inequal-
ity (2.1) by applying the S-Lemma (see, e.g., Ben-Tal and Nemirovski, 2001,
Theorem 4.3.3, or Boyd and Vandenberghe, 2004, Section B.2).

17The proof in Horn and Johnson (1985, Section 4.5) is presented for A invertible with
the conclusion that ν(Q) = ν(P ) and ν0(Q) = ν0(P ). The case of A singular follows by
applying a small perturbation on A and using the continuous dependence of the eigenvalues
of symmetric matrices.
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A.2.4 Proof of Theorem 2.11

Part 1: 1⇒ 2

Assume that SwS is p-dominant with Aut = (Q,Σ,Θ), {γθ}θ∈Θ and {Pq}q∈Q
and let ε > 0 be such that the right-hand side of the dissipation inequalities
(2.4) can be replaced by −εI. Fix σ ∈ S. We will build a p-splitting (Es

σ, E
u
σ)

which satisfies (2.6) for some C ≥ 1 and µ ∈ (0, 1) independent of σ.
Therefore, let (θt)∞t=0 be a path in Aut such that σ(t) = i(θt) for all t ∈ N.

For each q ∈ Q, let Vq(x) = xTPqx. Remember that (2.4) implies that for all
t ∈ N and x ∈ Rn,

Vs(θt+1)(Aσ(t)x) ≤ γ2
θtVs(θt)(x)− ε‖x‖2. (A.15)

The component Eu
σ : N ⇒ Rn is defined as follows. Let Eu

σ(0) be any p-
dimensional subspace of Rn satisfying x ∈ Eu

σ(0)⇒ Vs(θ0)(x) ≤ 0 (see Theorem
A.41). Then, define Eu

σ on N>0 as follows: Eu
σ(t) = χ̊(t, 0, σ)Eu

σ(0) for all t ∈ N
where χ̊ is the fundamental matrix solution18 of SwS. By (A.15), it holds that
for every t ∈ N>0 and x ∈ Eu

σ(0)\{0}, Vs(θt)(χ̊(t, 0, σ)x) < 0. This implies that
for all t ∈ N, Ker χ̊(t, 0, σ) ∩ Eu

σ(0) = {0}, so that dimEu
σ(t) = dimEu

σ(0) = p.
The dominated component Es

σ : N ⇒ Rn is defined as follows. For each
t0, t1 ∈ N, t1 > t0, let E′t1,t0 = {x ∈ Rn : Vs(θt1 )(χ̊(t1, t0, σ)x) ≥ 0} and define
Es
σ(t0) =

⋂
t1>t0

E′t1,t0 . We will show that for each t0 ∈ N, Es
σ(t0) contains at

least one linear subspace with dimension n− p; the fact that Es
σ(t0) is actually

a linear subspace with dimension n−p will be obtained at the end of this proof.
By Theorem A.40, it holds that χ̊(t1, t0, σ)TPs(θt1 )χ̊(t1, t0, σ) has at least n− p
nonnegative eigenvalues; thus by Theorem A.41, E′t1,t0 contains at least one
linear subspace with dimension n − p. Moreover, (A.15) implies that E′t1,t0 is
decreasing with respect to t1: for all t0, t1, t2 ∈ N, t2 > t1 > t0, E′t2,t0 ⊆ E

′
t1,t0 .

Hence, with a standard compactness argument (see, e.g., Berger et al., 2018,
Lemma 7), it follows that for each t0 ∈ N, the intersection

⋂
t1>t0

E′t1,t0 also
contains a subspace of dimension n− p.

Now, we show that the pair (Es
σ, E

u
σ) defined above satisfies the relation

(2.6) for some C ≥ 1 and µ ∈ (0, 1). We will need the following lemma (the
proof is presented at the end of this subsection).

Lemma A.43. Let Aut, {γθ}θ∈Θ and {Pq}q∈Q be as above. There is µ ∈ (0, 1)
such that for every θ ∈ Θ, Vt(θ)(Ai(θ)x) ≤ γ2

θ ·min
{
µVs(θ)(x), 1

µVs(θ)(x)
}

.

Let µ be as in Lemma A.43, and let K = maxq∈Q ‖Pq‖. Let t0 ∈ N and
x1 ∈ Es

σ(t0) \ {0}. Then, by definition of Es
σ(t0), Lemma A.43 and (A.15), it

18For a reminded, see Definition 1.47 in Subsection 1.3.2.
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holds that for every t1 ∈ N, t1 > t0,

ε‖χ(t1, t0, x1, σ)‖2 ≤ γ2
θt1
Vs(θt1 )(χ(t1, t0, x1, σ)) ≤ γ2

θt1
γ2
θt1−1

µVs(θt1−1)(χ(t1 − 1, t0, x1, σ))

≤ (γθt0 · · · γθt1 )2µt1−t0Vs(θt0 )(x1) ≤ (γθt0 · · · γθt1 )2µt1−t0K‖x1‖2.
(A.16)

Similarly, if x2 ∈ Eu
σ(t0) \ {0}, then for all t1 ∈ N, t1 > t0,

−K‖χ(t1, t0, x2, σ)‖2 ≤ Vs(θt1 )(χ(t1, t0, x2, σ)) ≤ γ2
θt1−1

1
µVs(θt1−1)(χ(t1 − 1, t0, x2, σ))

≤ (γθt0+1 · · · γθt1−1)2µt0−t1+1Vs(θt0+1)(χ(t0 + 1, t0, x2, σ))
≤ −(γθt0+1 · · · γθt1−1)2µt0−t1+1ε‖x2‖2.

Taking the quotient of ‖χ(t1, t0, x1, σ)‖ and ‖χ(t1, t0, x2, σ)‖, it follows that
(2.6) holds with µ as above and with C = ε−1K 1√

µ maxθ∈Θ γ
2
θ . In particular,

µ and C are independent of σ and t0. Since t0 is arbitrary, this holds true for
every t0 ∈ N.

Finally, we use (2.6) to show that for all t ∈ N, Es
σ(t) is a linear subspace

with dimension n−p. Therefore, fix t0 ∈ N and assume that dim(spanEs
σ(t0)) >

n − p. Then, spanEs
σ(t0) ∩ Eu

σ(t0) 6= {0}, so there is x ∈ Eu
σ(t0) \ {0} and

x1, x2 ∈ Es
σ(t0) such that x = x1 +x2. It follows that for every t1 ∈ N, t1 ≥ t0,

‖χ(t1, t0, x, σ)‖ ≤ 2 max {‖χ(t1, t0, x1, σ)‖, ‖χ(t1, t0, x2, σ)‖}; a contradiction
with (2.6). Hence, Es

σ(t0) is a linear subspace with dimension n−p, concluding
the proof that 1⇒ 2.

Proof of Lemma A.43. Because {Pq}q∈Q is finite there is α > 0 such that, for
every q ∈ Q and every x ∈ Rn, −εI � αPq � εI. Hence, the right-hand
side of (2.4) can be replaced by αPq1 or −αPq1 . This concludes the proof,
since by the finiteness of Θ, there is µ ∈ (0, 1) such that for every θ ∈ Θ,
µγ2

θ ≤ γ2
θ − α < γ2

θ + α ≤ µ−1γ2
θ .

Part 2: 2⇒ 1

Assume that SwS satisfies Item 2 with C ≥ 1, µ ∈ (0, 1) and dominated p-
splitting (Es

σ, E
u
σ) for each σ ∈ S. The proof that 2⇒ 1 relies on the following

technical lemma (see Berger and Jungers, 2019, Lemma 6, for a proof).

Lemma A.44. Let SwS and (Es
σ, E

u
σ), for each σ ∈ S, be as above. There

is c > 0 such that for every σ ∈ S, t ∈ N and x ∈ Eu
σ(t), it holds that

‖Aσ(t)x‖ ≥ c‖x‖.

In the following, it will be convenient to describe the decompositions of Rn

induced by the dominated p-splittings with projection matrices. More precisely,



178 Appendix

for each σ ∈ S, we let Rσ : N→ Rn×n be defined by Rσ(t) is the projection on
Eu
σ(t) parallel to Es

σ(t). Note that for each σ ∈ S and t ∈ N, Rσ(t) determines
Es
σ(t) and Eu

σ(t) completely since ImRσ(t) = Eu
σ(t) and KerRσ(t) = Es

σ(t)
(in particular, it follows that rankRσ(t) = p). The following proposition,
which is a straightforward consequence of Lemma A.44 (see Berger and Jungers,
2019, Proposition 7, for a proof), states that the matrices Rσ(t) are uniformly
bounded for all σ ∈ S and all t ∈ N.

Proposition A.45. Let SwS and Rσ, for each σ ∈ S, be as above. There is
M ≥ 0 such that for every σ ∈ S and t ∈ N, ‖Rσ(t)‖ ≤M .

Using the above definitions and results, we will build an automaton, a set of
rates and a set of symmetric matrices for which SwS is p-dominant. Therefore,
fix T ∈ N>0 such that CµT ≤ 1

4 and fix r ∈ (0, 3
10 ). Let RM be the set of all

projection matrices R ∈ Rn×n of rank p and with ‖R‖ ≤M , where M is as in
Proposition A.45: i.e., RM = {R ∈ Rn×n : R2 = R, rankR = p, ‖R‖ ≤ M}.
Since RM is bounded, there is a finite set {S1, . . . , Sm} ⊆ RM that is an “r-
cover” of RM , meaning that for any R ∈ RM , there is q ∈ {1, . . . ,m} such that
‖R− Sq‖ ≤ r.

Now, using this set {S1, . . . , Sm}, we build an automaton Aut∗ = (Q∗,ΣT ,Θ∗)
and a set of matrices {P ∗q }q∈Q∗ ⊆ Sn×np as follows. The alphabet of Aut∗ is
ΣT = {(i1, . . . , iT ) : ik ∈ Σ} (the set of words of length T over Σ). The set
of states of Aut is defined by Q∗ = {1, . . . ,m}. Then, for each q ∈ Q∗, we let
P ∗q = −ST

qSq+(I−Sq)T(I−Sq) = I−Sq−ST
q . By construction, for each q ∈ Q∗,

P ∗q is symmetric, and moreover, P ∗q is negative definite on ImSq and positive
definite on KerSq. Hence, by Theorem A.41, P ∗q ∈ Sn×np for all q ∈ Q∗. Finally,
we define the set Θ∗ ⊆ Q∗×ΣT×Q∗ of admissible transitions in Aut∗ as follows:
for every w = (i1, . . . , iT ) ∈ ΣT and q1, q2 ∈ Q∗, we let θ .= (q1, w, q2) ∈ Θ∗

if and only if there is γ∗θ > 0 such that ĀT
wP
∗
q2
Āw − (γ∗θ )2P ∗q1

≺ 0, where
Āw = AiT · · ·Ai1 .

We show that every σ ∈ S can be read as the concatenation of words
obtained from a path in Aut∗. Therefore, fix σ ∈ S and decompose σ into words
of length T : that is, for every t ∈ N, let wt = (σ(tT ), . . . , σ(tT + T − 1)) ∈ ΣT .
Then, for each t ∈ N, let qt ∈ Q∗ be such that ‖Rσ(tT ) − Sqt‖ ≤ r, which
always exists since ‖Rσ(tT )‖ ≤ M (Proposition A.45). We claim that for all
t ∈ N, (qt, wt, qt+1) ∈ Θ∗, which would prove the assertion at the beginning of
the paragraph. To prove this claim, we fix t ∈ N, and we will show that there is
γ > 0 such that ĀT

wtP
∗
qt+1

Āwt − γ
2P ∗qt ≺ 0, where Āwt = Aσ(tT+T−1) · · ·Aσ(tT ).
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Indeed, let γ be any positive real satisfying

2 max { ‖Āwtx‖ : x ∈ Es
σ(tT ), ‖x‖ = 1 } ≤ γ ≤ 1

2 min { ‖Āwtx‖ : x ∈ Eu
σ(tT ), ‖x‖ = 1 }.

(A.17)
The existence of γ is ensured by (2.6) and CµT ≤ 1

4 . Also, Lemma A.44
ensures that the right-hand side of (A.17) is positive, so that we can always
choose γ > 0. To show that ĀT

wtP
∗
qt+1

Āwt − γ
2P ∗qt ≺ 0, we let x ∈ Rn \ {0}

and y = Āwtx, and we will show that yTP ∗qt+1
y < γ2xTP ∗qtx. Therefore, let

x1 ∈ Eu
σ(tT ) and x2 ∈ Es

σ(tT ) such that x = x1 + x2, and let y1 = Āwtx1 and
y2 = Āwtx2. Then, since ‖Rσ(tT ) − Sqt‖ ≤ r and ‖Rσ(tT + T ) − Sqt+1‖ ≤ r,
we get from the definition of {Pq}q∈Q∗ , the following relations (we use capital
letters, X1, X2, Y1, Y2, to denote the norm of the related vectors; e.g., X1 =
‖x1‖):

xTP ∗qtx ≥ −X
2
1 +X2

2−2r(X2
1 +X2

2 ), and yTP ∗qt+1
y ≤ −Y 2

1 +Y 2
2 +2r(Y 2

1 +Y 2
2 ).

We also have the relations Y1 ≥ 2γX1 and Y2 ≤ 1
2γX2 from (A.17). Hence,

γ−2yTP ∗qt+1
y − xTP ∗qtx ≤ (−1 + 2r)(γ−1Y1)2+

(1 + 2r)(γ−1Y2)2 + (1 + 2r)X2
1 + (−1 + 2r)X2

2

≤ 4(−1 + 2r)X2
1 + (1 + 2r)X2

1 + 1
4 (1 + 2r)X2

2 + (−1 + 2r)X2
2

= (−3 + 10r)X2
1 + 1

4 (−3 + 10r)X2
2 < 0.

The latter follows from the assumption that r < 3
10 . This proves that ĀT

wtP
∗
qt+1

Āwt−
γ2P ∗qt ≺ 0, and thus it follows that (qt, wt, qt+1) ∈ Θ∗, proving the claim at the
beginning of the paragraph.

Finally, to conclude the proof of the theorem, it remains to show that, from
Aut∗ defined above, we can build an automaton Aut = (Q,Σ,Θ) accepting
every σ ∈ S such that SwS is p-dominant with Aut. This is done by splitting
each transition (q1, w, q2) ∈ Θ∗ of Aut∗ into T sub-transitions (one per symbol
of w ∈ ΣT ). More precisely, for each transition θ = (q1, w, q2) ∈ Θ∗, we add
to Q∗ = {1, . . . ,m} the states (θ, 1), . . . , (θ, T − 1). This gives the set of states
Q = Q∗ ∪ (Θ∗×{1, . . . , T − 1}). Because Q contains states from Q∗ and states
induced by the transitions in Θ∗, we introduce the following unifying notation:
for θ = (q1, w, q2) ∈ Θ∗ and k ∈ {0, . . . , T}, we let q̄(θ, k) = q1 if k = 0,
q̄(θ, k) = (θ, k) if 1 ≤ k ≤ T − 1, and q̄(θ, k) = q2 if k = T , and for each
k ∈ {0, . . . , T − 1}, we let w̄(θ, k) = ik+1, where w = (i1, . . . , iT ). Then, we
define the set of transitions of Aut by Θ = {(q̄(θ, k), w̄(θ, k), q̄(θ, k + 1)) : θ ∈
Θ∗, 0 ≤ k ≤ T − 1

}
. By construction, it is clear that Aut = (Q,Σ,Θ) accepts

every σ ∈ S.
It remains to show that that SwS is p-dominant with Aut, some set of rates

{γθ}θ∈Θ ⊆ R>0 and some set of matrices {Pq}q∈Q ⊆ Sn×np . The set of rates
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and the set of symmetric matrices are built as follows. Fix δ > 0. For each
transition θ = (q1, w, q2) ∈ Θ∗ in Aut∗, we let Pq̄(θ,0) = P ∗q1

and Pq̄(θ,T ) = P ∗q2
,

and for k = T − 1, T − 2, . . . , 1, we define the matrices Pq̄(θ,k) recursively as
follows:

Pq̄(θ,k) = (γ∗θ )−2/TAT
w̄(θ,k)Pq̄(θ,k+1)Aw̄(θ,k) + δI.

By construction, we have that for all θ ∈ Θ∗ and k ∈ {1, . . . , T − 1},

AT
w̄(θ,k)Pq̄(θ,k+1)Aw̄(θ,k) − (γ∗θ )2/TPq̄(θ,k) ≺ 0. (A.18)

Observe that AT
w̄(θ,0)Pq̄(θ,1)Aw̄(θ,0) = (γ∗θ )2(1−1/T )ĀT

wPq̄(θ,T )Āw+∆ where Āw =
Aw̄(θ,T−1) · · ·Aw̄(θ,0), and ∆ ∈ Rn×n satisfies ‖∆‖ ∈ O(δ). Hence, by definition
of γ∗θ , it follows that (A.18) is also satisfied for k = 0, provided δ is small
enough.

Summarizing, we have shown that the automaton Aut, together with the
rates {γθ}θ∈Θ defined by γθ = (γ∗θ )1/T if θ = (q̄(θ∗, k), w̄(θ∗, k), q̄(θ∗, k+1)) for
some θ∗ ∈ Θ∗ and k ∈ {0, . . . , T − 1}, and with the matrices {Pq}q∈Q defined
as above, satisfy the dissipation inequalities (2.4). Hence, to show that SwS is
p-dominant, it remains to show that {Pq}q∈Q ⊆ Sn×np . By using (A.18) (which
holds for all k ∈ {0, . . . , T − 1}) and Theorem A.40, we get that for every
θ ∈ Θ∗,

p = ν(Pq̄(θ,T )) ≥ ν0(Pq̄(θ,T−1)) ≥ ν(Pq̄(θ,T−1)) ≥ . . . ≥
ν0(Pq̄(θ,1)) ≥ ν(Pq̄(θ,1)) ≥ ν0(Pq̄(θ,0)) = p,

whence for all k ∈ {0, . . . , T}, ν(Pq̄(θ,k)) = ν0(Pq̄(θ,k)) = p, concluding the proof
that 2⇒ 1.

A.2.5 Proof of Theorem 2.15

Part 1: 1⇒ 2

Assume that SwS satisfies Item 1. Then, the first assertion in Item 2 follows
directly from Theorem 2.11. The second assertion in Item 2 follows from (A.16)
and the fact that since Aut is cycle-stable with respect to {γθ}θ∈Θ there is
M ≥ 1 such that γθt0 · · · γθt1 ≤ M for every path (θt)∞t=0 in Aut and every
t0, t1 ∈ N, t1 ≥ t0. Hence, it suffices to take ρ = √µ and D =

√
ε−1KM .

Part 2: 2⇒ 1

The proof is very similar to the proof of 2⇒ 1 in Theorem 2.11. We just need
to make the following modifications:
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• We let T ∈ N be such that CµT ≤ 1
4 and DρT < 1

2 . The second constraint
will imply that there is γ ∈ (0, 1) satisfying (A.17).

• We let θ .= (q1, w, q2) ∈ Θ∗ if and only if ĀT
wPq2Āw − (γ∗θ )2Pq1 ≺ 0 for

some γ∗θ ∈ (0, 1), where Āw = AiT · · ·Ai1 and w = (i1, . . . , iT ).

The rest of the proof is exactly the same as the proof of 2 ⇒ 1 in Theorem
2.11. Observe that since γ∗θ < 1 for all θ ∈ Θ∗, we have that γθ < 1 for all
θ ∈ Θ. Hence, the automaton Aut = (Q,Σ,Θ) is cycle-stable with respect to
{γθ}θ∈Θ.

A.2.6 Proof of Theorem 2.17

Consider an automaton Aut = (Q,Σ,Θ) satisfying Assumption 2.16. We say
that q ∈ Q is recurrent if there is a path (θt)T−1

t=0 ⊆ Θ with length T ∈ N>0

from q to q, i.e., with s(θ0) = t(θT−1) = q. Let ({Pq}, ε) be a feasible solution
of (2.7b)–(2.7c) with ε > 0.

We first show that for any recurrent state q ∈ Q the inertia of Pq depends
only on the automaton, the set of rates {γθ}θ∈Θ and the matrices {Ai}i∈Σ. To
show this, fix a recurrent state q ∈ Q and let (θt)T−1

t=0 be a path from q to itself.
For every t ∈ {0, . . . , T − 1}, let Āt = Ai(θt) · · ·Ai(θ0) and γ̄t = γθT−1 · · · γθt .
Then, from (2.7b) and using that Pq = Ps(θ0) = Pt(θT−1), we get that

ĀT
T−1PqĀT−1 ≺ (γ̄T−1)2ĀT

T−2Pt(qT−2)ĀT−2 ≺ (γ̄T−2)2ĀT
T−3Pt(qT−3)ĀT−3 ≺ . . . ≺ (γ̄0)2Pq.

(A.19)
Hence, by Theorem A.42, we have that Pq ∈ Sn×nkq

where kq is the number of
eigenvalues of ĀT−1 with modulus > γ̄0. Because ĀT−1 and γ̄0 depend only
on Aut, {γθ}θ∈Θ, and {Ai}i∈Σ, and not on a particular solution ({Pq}, ε), and
by hypothesis of Theorem 2.17, it follows that {Pq}q∈Q ⊆ Sn×nk .

Now, let q ∈ Q be a non-recurrent state. By Assumption 2.16, there is
a recurrent state q− and a path (θt)T−1

t=0 from q− to q (since any backward
infinite path from q will eventually loop on itself). By the same argument as
above, it holds that ĀTPqĀ− γ̄2Pq− ≺ 0, where Ā = Ai(θT−1) · · ·Ai(θ0) and γ̄ =
γθT−1 · · · γθ0 . Hence, by Theorem A.40, it follows that ν(Pq) ≥ ν0(Pq−) = k.
By proceeding in a similar way (using a path from q to a recurrent state), we
can show that ν0(Pq) ≤ k. Hence, ν(Pq) = ν0(Pq) = k, and thus Pq ∈ Sn×nk ,
concluding the proof of the theorem.

A.2.7 Proof of Proposition 2.19

Let (θt)T−1
t=0 , Ā and γ̄ be as in the proposition. By using the same argument

as in (A.19), we get that ĀTPĀ− γ̄2P ≺ 0. Hence, by Theorem A.42, Ā has p
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eigenvalues with modulus |λi| > γ̄ and n−p eigenvalues with modulus |λi| < γ̄.
This proves Item 1.

Now, to prove Item 2, let the columns of H ∈ Rn×p be a basis of the
eigenspace, denoted by F , associated to the p eigenvalues of Ā with modulus
|λi| > γ̄. Then, it holds that ĀH = HĀp for some Āp ∈ Rp×p whose eigenvalues
are equal to the eigenvalues of Ā satisfying |λi| > γ̄. It follows from ĀH = HĀp

that ĀT
pH

TPHĀp− γ̄2HTPH ≺ 0, and thus Theorem A.42 implies that HTPH

is negative definite. Hence, any x ∈ F satisfies xTPx ≤ 0, so that F ⊆ K(P ).
A similar reasoning shows that any x in the eigenspace associated to the n− p
eigenvalues of Ā with modulus |λi| < γ̄ satisfies xTPx ≥ 0. This concludes the
proof of Item 2.

A.2.8 Proof of Theorem 2.24

Let ({Pq}q∈Q, {Eq}q∈Q, {δq}q∈Q, η, ε) be a feasible solution of (2.11b)–(2.11d).
We show that {Pq}q∈Q and ε satisfy (2.9b)–(2.9c). By assumption on {δq}q∈Q ⊆
[0, 1] and by the constraint (2.11d), it is clear that {Pq}q∈Q satisfies (2.9c).
Hence, it remains to prove that {Pq}q∈Q and ε satisfy (2.9b). Therefore, fix
θ ∈ Θ, and let A = Ac

i(θ) +
∑Ni(θ)
j=1 αjA

h
i(θ),j + ∆ where α1, . . . , αNi(θ) ∈ R≥0

satisfy
∑Ni(θ)
j=1 αj = 1 and ∆ ∈ ri(θ)B. We show that {Pq}q∈Q and ε satisfy

(2.9b) with this θ and this A ∈ Ai. Indeed, from (2.11b), it follows that

ATPt(θ)A− γ2
θ Ps(θ) = Ac

i(θ)
TPt(θ)A

c
i(θ) +

∑
j αj(Ac

i(θ)
TPt(θ)A

h
i(θ),j +Ah

i(θ),j
TPt(θ)A

c
i(θ))

+
∑
j αj((Ac

i(θ) +Ah
i(θ),j)TPt(θ)∆ + ∆TPt(θ)(Ac

i(θ) +Ah
i(θ),j))

+ (
∑
j αjA

h
i(θ),j)TPt(θ)(

∑
j αjA

h
i(θ),j) + ∆TPt(θ)∆− γ2

θ Ps(θ)

(then, using δt(θ) ≥ ‖Pt(θ)‖ and η ≥ r2
i(θ)δt(θ) + 2ri(θ)‖Pt(θ)(Ac

i(θ) +Ah
i(θ),j)‖)

� Ac
i(θ)

TPt(θ)A
c
i(θ) +

∑
j αj(Ac

i(θ)
TPt(θ)A

h
i(θ),j +Ah

i(θ),j
TPt(θ)A

c
i(θ))

+ (
∑
j αjA

h
i(θ),j)TPt(θ)(

∑
j αjA

h
i(θ),j) + ηI − γ2

θ Ps(θ)

(then, using Et(θ) � Pt(θ) and Et(θ) � 0)

� Ac
i(θ)

TPt(θ)A
c
i(θ) +

∑
j αj(Ac

i(θ)
TPt(θ)A

h
i(θ),j +Ah

i(θ),j
TPt(θ)A

c
i(θ))

+
∑
j αjA

h
i(θ),j

TEt(θ)A
h
i(θ),j + ηI − γ2

θ Ps(θ) � −εI,

where the last step follows from (2.11b). This concludes the proof of the
theorem.
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A.2.9 Proof of Proposition 2.27

Part 1: 1⇒ 2

Assume that Sys is p-dominant on Λ with Aut = (Q,Σ,Θ), {Ai}i∈Σ and
{γθ}θ∈Θ satisfying γθ = 1 for all θ ∈ Θ. Note that Aut is cycle-stable with
respect to {γθ}θ∈Θ. Also note that, for any x ∈ Λ and T ∈ N, ∂χ

∂x (T, x) =
∂f
∂x (χ(T − 1, x)) · · · ∂f∂x (χ(0, x)), and by definition of Aut and {Ai}i∈Σ, for any
x ∈ Λ, there is a path (θt)∞t=0 in Aut, such that for all t ∈ N, ∂f∂x (χ(t, x)) ∈ Ai(θt).
Hence, by exactly the same argument as in the proof of 1⇒ 2 in Theorem 2.15,
it follows that there is D1 ≥ 1 and ρ1 ∈ (0, 1), and for each x ∈ Λ, there is a
subspace Es(x) ⊆ Rn of dimension n− p such that for all v ∈ Es(x) and t ∈ N,
‖∂χ∂x (t, x)v‖ ≤ ‖v‖D1ρ

t
1. Since Sys is invertible, and Λ is invariant, we obtain,

with the same argument applied on the inverted system (Rn, f−1), that there
is D2 ≥ 1 and ρ2 ∈ (0, 1), and for each x ∈ Λ, there is a subspace Eu(x) ⊆ Rn

of dimension p such that for all v ∈ Eu(x) and t ∈ N, ‖∂χ∂x (−t, x)v‖ ≤ ‖v‖D2ρ
t
2.

To prove that Λ is hyperbolic for Sys, it remains to show that for all x ∈ Λ,
t ∈ N and � ∈ {s,u}, ∂χ

∂x (t, x)E�(x) = E�(χ(t, x)). We proceed by contra-
diction. Therefore, fix t ∈ N and x ∈ Λ, and assume that ∂χ

∂x (t, x)Es(x) 6=
Es(χ(t, x)), so that dim (∂χ∂x (t, x)Es(x) +Es(χ(t, x))) > n− p. Then, fix t′ ∈ N
and let v be a nonzero vector in ∂χ

∂x (t′, χ(t, x))(∂χ∂x (t, x)Es(x) + Es(χ(t, x))) ∩
Eu(χ(t′ + t, x)). On the one hand, it holds that ‖∂χ∂x (−t′, χ(t + t′, x))v‖ ≤
‖v‖D2ρ

t′

2 , and on the other hand, it holds that ‖v‖ ≤ ‖∂χ∂x (−t′, χ(t+t′, x))v‖D̃D1ρ
t′

1 ,
for some D̃ ≥ 1 is independent from t′. The two inequalities are not compatible
when t′ is sufficiently large. Since t′ was arbitrary, we obtain a contradiction.
This shows that ∂χ

∂x (t, x)Es(x) = Es(χ(t, x)). Using the exact same argument
in backward time, we obtain that ∂χ

∂x (t, x)Eu(x) = Eu(χ(t, x)). Since x and t

were arbitrary, this proves the claim at the beginning of the paragraph, which
concludes the proof that Λ is hyperbolic for Sys.

Part 2: 2⇒ 1

Assume that Λ is a bounded, connected, hyperbolic invariant set for Sys, and
let Es : Λ⇒ Rn and Eu : Λ⇒ Rn be as in Definition 1.31 for the hyperbolicity
of Λ. By Remark 1.5, it holds that there is p ∈ {0, . . . , n} such that for all
x ∈ Λ, dimEs(x) = n− p and dimEu(x) = p. The rest of the proof is exactly
the same as the proof of 2 ⇒ 1 in Theorem 2.11. We just want to make the
following observations regarding the adaptation of this proof:

• Lemma A.44 holds trivially since Λ is bounded and Sys is invertible, so
that inf

x∈Λ

∥∥∂f−1

∂x (x)
∥∥ <∞;
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• By the hypothesis of hyperbolicity, we can choose γθ = 1 for all θ ∈ Θ.

This concludes the proof that 2⇒ 1.

A.2.10 Proof of Proposition 2.28

The proof of the upper bound relies on the following result.

Theorem A.46 (Matveev and Pogromsky, 2019, Theorem 11). Consider a
dynamical system Sys = (Rn, f) and let Λ ⊆ Rn be a bounded forward invariant
set for Sys. Let htop(Sys,Λ) be the topological entropy of Sys restricted to Λ
with cost function (x1, x2) 7→ ‖x1 − x2‖. It holds that

htop(Sys,Λ) ≤ lim sup
T→∞

1
T

(
supx∈Λ

∑n

i=1
max

{
0, log2 ρi

(
∂χ
∂x (T, x)

)})
,

where ρ1(A), . . . , ρn(A) denote the singular values of A ∈ Rn×n.

Assume that Sys is p-dominant on Λ with automaton Aut = (Q,Σ,Θ) and
set of rates {γθ}θ∈Θ, and let γ̂max = max { (γθ0 · · · γθT−1)1/T : (θt)T−1

t=0 is a cycle in Aut }.
We show that, for T ∈ N sufficiently large, ∂χ

∂x (T, x) has n − p singular values
smaller than (γ̂max)T . Indeed, by the same argument as in the proof of 1⇒ 2
in Proposition 2.27, it follows that there is C ≥ 1 and µ ∈ (0, 1), and for
each x ∈ Λ, there is a subspace Es(x) ⊆ Rn of dimension n − p such that
for all v ∈ Es(x) and t ∈ Z≥0, ‖∂χ∂x (t, x)v‖ ≤ ‖v‖Dµt(γ̂max)t. Hence, if we
take T ∈ N such DµT < 1, it holds that for any x ∈ Λ and v ∈ Es(x),
‖∂χ∂x (T, x)v‖ ≤ ‖v‖(γ̂max)T . Then, by Theorem A.41 applied on the symmetric
matrix ∂χ

∂x (T, x)T ∂χ
∂x (T, x) − (γ̂max)2T I, it follows that ∂χ

∂x (T, x)T ∂χ
∂x (T, x) has

n − p eigenvalues smaller than (γ̂max)2T , so that ∂χ
∂x (T, x) has n − p singular

values smaller than (γ̂max)T , proving the claim at the beginning of the para-
graph.

Now, let pk and γ̂(k)
max, for each k ∈ {1, . . . , n}, be as in the proposition, and

let T ∈ N be large enough. Then, it follows from the above that for any x ∈ Λ
and k ∈ {1, . . . , n}, ∂χ

∂x (T, x) has n − pk singular values smaller than (γ̂(k)
max)T .

Hence, for every x ∈ Λ, the singular values of ∂χ
∂x (T, x) can be indexed in such

a way that for each k ∈ {1, . . . , n}, the kth singular value of ∂χ∂x (T, x) is smaller
than (γ̂(k)

max)T . Since T and x were arbitrary (provided T is sufficiently large),
we obtain the desired upper bound on htop(Sys,Λ) by using Theorem A.46.

The proof of the lower bound is along the same lines, and thus omitted.
This concludes the proof of the theorem.

A.3 Proofs of Chapter 3
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A.3.1 Proof of Lemma 3.6

Let Λ = BSys,T (a, cε), and let F ⊆ Λ be a set with maximal cardinality such
that {χ(·, x)|[0,T )∩T}x∈F is (ε, T )-separated for Sys starting from Λ. We derive
an upper bound on the cardinality of F , as follows. Since {χ(·, x)|[0,T )∩T}x∈F is
(ε, T )-separated for Sys, it holds that for any distinct x1, x2 ∈ F , BSys,T (x1, ε/2)∩
BSys,T (x2, ε/2) = ∅. It follows that vol(

⋃
x∈F BSys,T (x, ε/2)) = |F | vol(BSys,T (x, ε/2)),

where “vol” stands for the Lebesgue measure (or “volume”); note that BSys,T (b, r)
is Lebesgue measurable for any b ∈ Rn and r ≥ 0, since it is the unit ball of a
norm and thus a convex set in Rn (see, e.g., Lang, 1986). On the other hand,
since F ⊆ Λ, it holds that

⋃
x∈F BSys,T (x, ε/2)) ⊆ BSys,T (a, (c+1/2)ε). Putting

things together, we get that

|F | ≤ vol(BSys,T (a, (c+ 1/2)ε))
vol(BSys,T (0, ε/2)) = (2c+ 1)n.

The latter comes from vol(BSys,T (b, r)) = rnvol(BSys,T (0, 1)) 6= 0 for any b ∈ Rn

and r > 0, which follows from BSys,T (b, r) = b+ rBSys,T (0, 1), so that

vol(BSys,T (b, r)) =
w
BSys,T (b,r)

dλ(x) =
w
Rn

1BSys,T (b,r)(x) dλ(x)

=
w
Rn

1BSys,T (0,1)(r−1(x− b)) dλ(x)

=
w
Rn

1BSys,T (0,1)(y)rn dλ(y) = rnvol(BSys,T (0, 1)) 6= 0,

where λ is the Lebesgue measure, 1 is the indicator function, and the penulti-
mate step follows from the change of variable formula for the Lebesgue integral
(see, e.g., Teschl, 2021, Theorem 2.17).

The proof is then complete by using Lemma 3.5, which implies that F is
an (ε, T )-cover of Λ.

A.3.2 Proof of Lemma 3.7

We will need the following result.

Lemma A.47. Consider a LTV system Sys = (Rn, Â) and a set Λ ⊆ Rn. Let
ε > 0 and T ∈ T>0. Let E be a minimal (ε, T )-cover of Λ. Then, there exists
a subset F ⊆ E, with cardinality |F | ≥ 11−n|E|, such that for any distinct
x1, x2 ∈ F , ‖x1 − x2‖Sys,T > 4ε.

Proof of Lemma A.47. Fix x ∈ E, and let Ex = BSys,T (x, 4ε)∩E. We first show
that |Ex| ≤ 11n. Indeed, it holds that

⋃
x′∈Ex BSys,T (x′, ε) ⊆ BSys,T (x, 5ε), and

we have seen in Lemma 3.6 that there exists an (ε, T )-cover E∗ of BSys,T (x, 5ε)
with |E∗| ≤ 11n. Thus, from the minimality of E, it follows that |Ex| ≤ 11n.
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Now, using the above, we build the set F inductively as follows. Let F0 = ∅
and G0 = E. Then, for i = 0, 1, 2, . . . and while Gi 6= ∅, pick xi ∈ Gi and let
Fi+1 = Fi ∪ {xi} and Gi+1 = Gi \Exi , where Ex is defined as above. Let k be
the first integer such that Gk = ∅ and define F = Fk. Because |Exi | ≤ 11n for
each 0 ≤ i ≤ k− 1, we have that k ≥ 11−n|E|. This concludes the proof of the
lemma.

We proceed with the proof of Lemma 3.7. Note that since E1 is a minimal
(ε, T1)-cover of Λ, it holds that for all x ∈ E1, BSys,T1(x, ε)∩Λ 6= ∅, which implies
that BSys,T1(x, ε) ⊆ Λ +BSys,T1(0, 2ε). Using Lemma A.47, let F1 ⊆ E1 be such
that |F1| ≥ 11−n|E1| and for every distinct x1, x2 ∈ F1, ‖x1 − x2‖Sys,T1 >

4ε. Then, for each x ∈ F1, let E∗x ⊆ E2 be an (ε, T2)-cover of BSys,T1(x, ε)
and without loss of generality, assume that for all x′ ∈ E∗x, BSys,T2(x′, ε) ∩
BSys,T1(x, ε) 6= ∅.

By hypothesis on F1 and since T2 ≥ T1, it holds that for any x ∈ Rn, the
ball BSys,T2(x, ε) cannot intersect simultaneously BSys,T1(x1, ε) and BSys,T1(x2, ε)
if x1, x2 ∈ F1 and x1 6= x2. Thus, the subsets {E∗x}x∈F1 defined above are
pairwise disjoint. This implies that

∑
x∈F1
|E∗x| ≤ |E2|, which in turn implies

that minx∈F1 |E∗x| ≤ |E2|/|F1| ≤ 11n|E2|/|E1|. Now, it is not difficult to see
that if E∗x is an (ε, T2)-cover of BSys,T1(x, ε), then E∗x − x is an (ε, T2)-cover of
BSys,T1(0, ε). This concludes the proof of the lemma.

A.3.3 Proof of Lemma 3.8

Let T∗ ∈ (T∗,∞) be such that ‖χ̊(T ′, T )‖ ≤ c
.= 3

2 for all T ′ ∈ [T, T∗], where
χ̊ is the fundamental matrix solution of Sys. By definition of c, it holds that
for every x ∈ Rn, ‖x‖Sys,T∗ ≤ c‖x‖Sys,T , so that BSys,T (0, ε) ⊆ BSys,T∗(0, cε).
Thus, by Lemma 3.6, there is an (ε, T∗)-cover E′ of BSys,T (0, ε) with cardinality
|E′| ≤ (2c + 1)n. Finally, let E be a minimal (ε, T )-cover of Λ, and define
E∗ = E + E′. Clearly, E∗ is an (ε, T∗)-cover of Λ and its cardinality satisfies
|E∗| ≤ (2c+1)n|E| = 4nscov(ε, T ; Λ). This concludes the proof of the lemma.

A.3.4 Proof of Theorem 3.11

The proof of the upper bound relies on the following result.

Theorem A.48 (Vicinansa and Liberzon, 2019, Theorem 3.1). Consider a
LTV system Sys = (Rn, Â). Let {vi}ni=1 ⊆ Rn be a basis for Rn, and for each
i ∈ {1, . . . , n}, let λi be the Lyapunov exponent (in base 2) of vi with respect
to Sys, defined by λi = lim supT→∞ 1

T log2 ‖χ(T, 0, vi)‖. Then, it holds that
htop(Sys) ≤

∑n
i=1 max{λi, 0}.
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We proceed with the proof of the upper bound in Theorem 3.11. Since
the system is p-dominant, by Theorem 2.11, there is a dominated p-splitting
(Es

σ, E
u
σ) associated to σ. Let {vi}ni=1 ⊆ Rn be a basis of Rn satisfying vi ∈ Eu

σ

for all i ∈ {1, . . . , p} and vi ∈ Es
σ for all i ∈ {p+ 1, . . . , n}. By (A.16), it holds

that for all i ∈ {p + 1, . . . , n}, λi ≤ lim supT→∞ 1
T log2(γθ0 · · · γθT−1). On the

other hand, there is C ≥ 0 such that, for any v ∈ Rn and T ∈ N, it holds that
‖χ(T, 0, v)‖ ≤ C

∏
i∈Σ‖Ai‖

Tρi(T )
∗ ‖v‖. It follows that for each i ∈ {1, . . . , n},

λi ≤ lim supT→∞
∑
i∈Σ ρi(T ) log2 ‖Ai‖∗. This proves the upper bound.

The proof of the lower bound is along the same lines, and thus omitted.
This concludes the proof of the theorem.

A.3.5 Proof of Theorem 3.23

Part 1: hwc-top(SwS) ≤ log2(e)%̂(SwS∧)

In the following, we let B be the centered unit Euclidean ball in Rn. We will
need the following lemma.

Lemma A.49. Consider a switched linear system SwS ∼ (Rn, {Ai}i∈Σ) under
arbitrary switching, and let R > log2(e)%̂(SwS). There is T ∈ T>0 and for
every σ ∈ S, there is E ⊆ Rn such that (i) |E| ≤ 2RT and (ii) for every x ∈ B,
there is x̂ ∈ E satisfying ‖χ(T, 0, x, σ)− x̂‖ ≤ 1.

Proof. The proof relies on the finite-points quantizer described in Figure 3.5
(in Subsection 3.3.3). Indeed, by Lemma 3.31, there is T ∈ T>0 such that for
all σ ∈ S, the quantizer Q1,χ̊(T,0,σ) : Rn → Ξ1,χ̊(T,0,σ) (see Definition 3.29)
satisfies that |Ξ1,χ̊(T,0,σ)| ≤ 2RT . Moreover, by Item 1 in Lemma 3.30, it holds
that for all σ ∈ S and T ∈ T≥0, the set Ξ1,χ̊(T,0,σ) satisfies that for every x ∈ B,
there is x̂ ∈ Ξ1,χ̊(T,0,σ) such that ‖χ(T, 0, x, σ) − x̂‖ ≤ 1. This concludes the
proof of the lemma.

To prove that hwc-top(SwS) ≤ log2(e)%̂(SwS∧), let σ ∈ S and X0 ⊆ Rn be
a bounded set. We will show that htop(SwS;σ,X0) ≤ log2(e)%̂(SwS∧), where
htop(SwS;σ,X0) is the topological entropy of SwS with switching signal σ and
starting from X0. Therefore, fix ε > 0 and R > log2(e)%̂(SwS∧). Using Lemma
A.49, let T ∈ T>0 be such that for each k ∈ N, there is a set Ek ⊆ Rn

such that (i) |Ek| ≤ 2RT and (ii) for every x ∈ B, there is x̂ ∈ Ek satisfying
‖χ((k + 1)T, kT, x, σ) − x̂‖ ≤ 1. For each k ∈ N, let the elements of Ek be
indexed as follows: Ek = {x̂k,j}mkj=1, where mk ≤ 2RT . Also, let α > 0 be such
that for all k ∈ N and t ∈ [kT, (k + 1)T ) ∩ T, ‖χ̊(t, kT, σ)‖ ≤ ε/α, and let
E−1 ⊆ Rn be a finite set such that for every x ∈ X0, there is x̂ ∈ E−1 such
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that ‖x/α− x̂‖ ≤ 1 (which is always possible by boundedness of X0). Let the
elements of E−1 be indexed as follows: E−1 = {x̂−1,j}m−1

j=1 .
We will use the above defined sets {Ek}∞k=−1 to construct spanning sets for

SwS with switching signal σ and starting from X0. Therefore, fix k ∈ N and
define the following set of functions from [0, kT ) ∩ T to Rn:

E = { ξ̂j−1,...,jk−2 }j`∈{1,...,m`}, `∈{−1,...,k−2},

where for every (j−1, . . . , jk−2) ∈ {1, . . . ,m−1}× · · ·×{1, . . . ,mk−2}, the func-
tion ξ̂j−1,...,jk−2 : [0, kT )∩T→ Rn is defined by ξ̂j−1,...,jk−2(t) =

∑k−2
`=−1 αχ(t, (`+

1)T, x̂`,j` , σ), with the convention that for any t0, t1 ∈ T and x ∈ Rn, χ(t1, t0, x, σ) =
0 if t1 < t0. We show that E is (ε, kT )-spanning for SwS with switching signal
σ and starting from X0.

To do this this, let x ∈ X0, and define the indices j−1, . . . , jk−2 inductively
as follows. For each ` = −1, . . . , k − 2, let j` ∈ {1, . . . ,m`} be such that

∥∥χ((`+ 1)T, 0, x, σ)−
∑`−1
`′=−1 αχ((`+ 1)T, (`′ + 1)T, x̂`′,j`′ , σ)− α x̂`,j`

∥∥ ≤ α.
(A.20)

We show, by induction on `, that for each ` ∈ {−1, . . . , k−2}, there is an index
j` ∈ {1, . . . ,m`} satisfying (A.20). Indeed, this is trivially true for ` = −1,
by definition of E−1. Now, assume that it holds for some ` ∈ {−1, . . . , k − 3}.
Then, χ((` + 1)T, 0, x, σ) −

∑`
`′=−1 αχ((` + 1)T, (`′ + 1)T, x̂`′,j`′ , σ) ∈ αB, so

that, by definition of E`+1 there is j`+1 ∈ {1, . . . ,m`+1} such that (A.20) is
satisfied with ` replaced by ` + 1. This shows the induction step, concluding
the proof by induction that for each ` ∈ {−1, . . . , k − 2}, there is an index
j` ∈ {1, . . . ,m`} satisfying (A.20). Finally, we show that ξ̂j−1,...,jk−2 satisfies
that for all t ∈ [0, kT ) ∩ T, ‖χ(t, 0, x, σ) − ξ̂j−1,...,jk−2(t)‖ ≤ ε. Indeed, let
` ∈ {0, . . . , k − 1} and t ∈ [`T, (` + 1)T ) ∩ T. Then, by (A.20), it holds that
‖χ(`T, 0, x, σ)− ξ̂j−1,...,jk−2(`T )‖ ≤ α, and thus, by definition of α, it holds that
‖χ(t, 0, x, σ) − ξ̂j−1,...,jk−2(t)‖ ≤ ε. Since ` and t were arbitrary, this holds for
all t ∈ [0, kT )∩T. Since x was arbitrary, this shows that E is (ε, kT )-spanning
for SwS with switching signal σ and starting from X0.

The cardinality of E satisfies |E| ≤ |E−1|2(k−1)RT . Since k was arbitrary, it
follows that for every k ∈ N, sspan(ε, kT ;X0) ≤ |E−1|2(k−1)RT , and thus for all
T ′ ∈ T≥0, sspan(ε, T ′;X0) ≤ |E−1|2T

′R. Hence, lim supT ′→∞ 1
T ′ log2 sspan(ε, T ′;X0) ≤

R. Since ε was arbitrary, this holds for all ε > 0. Thus, by definition of
htop(SwS;σ,X0), it follows that htop(SwS;σ,X0) ≤ R. Since σ and R were ar-
bitrary, this shows that hwc-top(SwS) ≤ log2(e)%̂(SwS∧), concluding the proof
of Part 1.



A.3. PROOFS OF CHAPTER 3 189

Part 2: hwc-top(SwS) ≥ log2(e)%̂(SwS∧)

Let R < log2(e)%̂(SwS∧). By Proposition 1.52 in Subsection 1.3.2, there is σ ∈
S and T ∈ T>0 such that ρ(χ̊(T, 0, σ; SwS∧)) ≥ 2RT , where ρ(χ̊(T, 0, σ; SwS∧))
is the spectral radius of χ̊(T, 0, σ; SwS∧). Let Ā = χ̊(T, 0, σ; SwS). By Proposi-
tion 3.22, it holds that χ̊(T, 0, σ; SwS∧) = Ā∧, so that ρ(Ā∧) ≥ 2RT . Hence, by
Item 3 in Proposition 3.20, the eigenvalues λ1(Ā), . . . , λn(Ā) of Ā satisfy that∏n
j=1 max{|λj(Ā)|, 1} ≥ 2RT . Hence, by (3.5), the discrete-time LTI system

defined by Ā satisfies that htop(Ā) = log2
(∏n

j=1 max{|λj(Ā)|, 1}
)
≥ RT .

Now, let σ′ : T≥0 → Σ be the switching signal defined by σ′(t) = σ(t −
bt/T cT ) for all t ∈ T≥0, i.e., σ′ is the repetition of σ|[0,T )∩T with period T . It
follows that for every k ∈ N, χ̊(kT, 0, σ′) = Āk. Thus, the topological entropy
of SwS with switching signal σ′ satisfies htop(SwS;σ′) ≥ htop(Ā)/T ≥ R. Since
σ′ ∈ S, it follows that hwc-top(SwS) ≥ R. Since R was arbitrary, this shows
that hwc-top(SwS) ≥ log2(e)%̂(SwS∧), concluding the proof of Part 2.

A.3.6 Proof of Corollary 3.25

We prove the corollary for the discrete-time case, as the continuous-time case
is identical. From Item 1 in Proposition 3.20, it holds that for each i ∈ Σ, A∧i
is normal. Hence, by classical results on the joint spectral radius (see, e.g.,
Jungers, 2009, Proposition 2.2), %̂(SwS∧) = maxi∈Σ log(ρ(A∧i )), where for each
i ∈ Σ, ρ(A∧i ) is the spectral radius of A∧i . Hence, we get the conclusion of the
corollary by using Item 3 in Proposition 3.20. The proof for switched linear
systems with upper-/lower-triangular matrices is identical (see also Jungers,
2009, Proposition 2.3).

A.3.7 Counter-example for Remark 3.3

Consider the discrete-time switched linear system system SwS ∼ (R2, {Ai}i∈Σ),
with Σ = {1, 2}, and A1 = [ 1

2 ] and A2 =
[ 4

1/2
]
. Let s : N→ N>0 be defined

by s(r) = 2r2 , and for each m ∈ N, let I(m) =
∑m−1
r=0 2s(r). Define the switch-

ing signal σ : N→ Σ as follows: for all t ∈ N, σ(t) = 1 if I(m) ≤ t < I(m)+s(m)
for some m ∈ N, and σ(t) = 2 if I(m) + s(m) ≤ t < I(m+ 1) for some m ∈ N.
We will show that htop(SwS;σ) 6= lim supT→∞ 1

T log2 ‖χ̊(T, 0, σ)∧‖.

Norm of the exterior powers: We claim that lim supT→∞ 1
T log2 ‖χ̊(T, 0, σ)∧‖ =

1. To see this, we use that for any A ∈ Rn×n, ‖A∧‖ = maxk∈{0,...,n}‖A∧k‖ (by
definition of A∧). First, we consider the case k = 0. For all T ∈ N, it holds
that χ̊(T, 0, σ)∧0 = 1 (see Definition 3.18), whence ‖χ̊(T, 0, σ)∧0‖ = 1. Hence,
it follows that lim supT→∞ 1

T log2 ‖χ̊(T, 0, σ)∧0‖ = 0 ≤ 1.
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Then, we consider the case k = 2. By Remark 3.1, it holds that for every T ∈
N, ‖χ̊(T, 0, σ)∧2‖ = |det(χ̊(T, 0, σ))|. Since det(A1) = det(A2) = 2, it follows
that for every T ∈ N, det(χ̊(T, 0, σ)) = 2T , so that lim supT→∞ 1

T log2 ‖χ̊(T, 0, σ)∧2‖ =
1.

Finally, we consider the case k = 1. Since A1 and A2 are diagonal, we may
analyze the two components separately since lim supT→∞ 1

T log2 ‖χ̊(T, 0, σ)∧1‖ =
maxj∈{1,2} lim supT→∞ 1

T log2 āj(T ), where for each T ∈ N and j ∈ {1, 2},
āj(T ) is the jth diagonal entry of χ̊(T, 0, σ). Let us analyze ā1 first. It is
not difficult to see that T−1 log2 ā1(T ) is maximal when T = I(m) for some
m ∈ N, and that the maximal value of T−1 log2 ā1(T ) is equal to 2−1 log2 4 = 1.
As for the analysis of ā2, observe that for all T ∈ N, ā2(T ) ≤ 2T , so that
T−1 log2 ā2(T ) ≤ 1. This shows that lim supT→∞ 1

T log2 ‖χ̊(T, 0, σ)∧1‖ = 1.
Putting things together, this proves that lim supT→∞ 1

T log2 ‖χ̊(T, 0, σ)∧‖ = 1.

Lower bound on the entropy: We show that htop(SwS;σ) ≥ 3/2. Therefore,
let X0 = [0, 1]×[0, 1] and fix ε ∈ (0, 1). Let m ∈ N and define Tm = I(m+1)+1.
We build an (ε, Tm)-separated set F for SwS with switching signal σ and initial
set X0, such that |F| ≥ 8s(m), as follows: for each p ∈ {0, . . . , 4s(m)} and
q ∈ {0, . . . , 2s(m)}, let xpq = [ p4−s(m) q2−s(m) ]T ∈ X0, and let

F = {χ(·, 0, xpq, σ)|{0,...,Tm−1} }p∈{0,...,4s(m)}, q∈{0,...,2s(m)}.

We show that F is (ε, Tm)-separated for SwS with switching signal σ. Therefore,
let (p1, q1) 6= (p2, q2) and we show show that there is t ∈ {0, . . . , Tm − 1} such
that ‖χ(t, 0, xp1q1) − χ(t, 0, xp2q2)‖ > ε. First, assume that p1 6= p2. Then,
|x(1)
p1q1 − x

(1)
p2q2 | ≥ 4−s(m). Hence, we have that

|χ(1)(Tm−1, 0, xp1q1)−χ(1)(Tm−1, 0, xp2q2)| = 4I(m+1)/2|x(1)
p1q1
−x(1)

p2q2
| ≥ 4s(m)4−s(m) > ε.

Now, assume q1 6= q2. Then, |x(2)
p1q1 − x

(2)
p2q2 | ≥ 2−s(m). Hence, we have that

|χ(2)(Tm − s(m)− 1, 0, xp1q1)− χ(2)(Tm − s(m)− 1, 0, xp2q2)| =
2s(m)|x(2)

p1q1
− x(2)

p2q2
| ≥ 2s(m)2−s(m) > ε.

This shows that F is (ε, Tm)-separated for SwS with switching signal σ. Also,
it is clear that |F| > 8s(m). Since m was arbitrary, it follows that for all m ∈ N,
ssep(ε, I(m + 1) + 1; SwS, σ,X0) ≥ 8s(m). Finally, by definition of I, it holds
that for all m ∈ N, 2s(m) ≤ I(m + 1) ≤ 2s(m) + 2ms(m − 1). The definition
of s then implies that limm→∞(I(m + 1) + 1)/s(m) = 2. Hence, by injecting
in (3.2), it follows that htop(SwS;σ) ≥ 1

2 log2 8 = 3/2.

Thus, we have shown that htop(SwS;σ) ≥ 3/2 > 1 = lim supT→∞ 1
T log2 ‖χ̊(T, 0, σ)∧‖,

concluding the counter-example.
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A.3.8 Proof of Rstab-md(SwS) ≥ hwc-top(SwS◦) in Theorem
3.28

Let R < hwc-top(SwS◦). Fix ε > 0 and let B be the centered unit Euclidean
ball in Rn. Assume that SwS is stabilizable with a mode-dependent coder–
decoder CoDec with data rate smaller than or equal to R. Then, there is
T∗ ∈ T≥0 such that for all x ∈ B, σ ∈ S and t ∈ T, t ≥ T∗, it holds that
‖χ(t, 0, x, σ; SwS‖CoDec)‖ ≤ ε/2, where SwS‖CoDec is the closed-loop system
obtained from the feedback composition of SwS and CoDec.

On the other hand, by definition of the worst-case topological entropy, there
is σ ∈ S such that htop(SwS;σ◦) > R. Hence, by Proposition 1.79 in Subsection
1.5.2, there is T ∈ T, T ≥ T∗, and a set F ⊆ B such that |F | > 2R(T+1) and for
any distinct x1, x2 ∈ F , there is t ∈ [T∗, T )∩T satisfying ‖χ(t, 0, x1, σ; SwS◦)−
χ(t, 0, x2, σ; SwS◦)‖ > ε.

By the assumption on its data rate, CoDec cannot output, for a fixed
switching signal, more than 2R(T+1) different control inputs during the in-
terval [0, T ) ∩ T. This implies that there are at least two distinct x1, x2 ∈ F
for which the control input produced by CoDec will be the same for the tra-
jectories starting from x1 and x2, and with switching signal σ. Denote this
control input by u. By definition of T∗, it follows that for all t ∈ [T∗, T )∩T and
j ∈ {1, 2}, ‖χ(t, 0, xj , σ, u; SwS)‖ ≤ ε/2. Also, by the linearity of the system,
it holds that for all t ∈ [0, T ) ∩ T, χ(t, 0, x1, σ, u; SwS)− χ(t, 0, x2, σ, u; SwS) =
χ(t, 0, x1, σ; SwS◦) − χ(t, 0, x2, σ; SwS◦). It follows that ‖χ(t, 0, x1, σ; SwS◦) −
χ(t, 0, x2, σ; SwS◦)‖ ≤ ε. This is a contradiction with the definition of F ,
which implies that ‖χ(t, 0, x1, σ; SwS◦)− χ(t, 0, x2, σ; SwS◦)‖ > ε. Thus, there
cannot exist a mode-dependent coder–decoder, with data rate smaller than
or equal to R, that stabilizes SwS. Since R was arbitrary, this shows that
Rstab-md(SwS) ≥ hwc-top(SwS◦), which concludes the proof.

A.3.9 Proof of Lemma 3.31

First, we derive, for any A ∈ Rn×n, an upper bound on m̂(α,A) as a function
of A∧. Therefore, fix A ∈ Rn×n and let c = n1/2/(2α). Note that for any
r ∈ R, it holds that JrK ≤ r + 1

2 . Hence, by Item 2 in Lemma 3.30, m̂(α,A) ≤∏n
i=1(2c + 2) max {ρi, 1}, where ρ1, . . . , ρn are the singular values of A. It

follows, by Item 4 in Proposition 3.20, that m̂(α,A) ≤ (2c+ 2)n‖A∧‖.
Now, using the above result, we prove the lemma. Therefore, let λ ∈ R

be such that %̂(SwS∧) < λ < R/ log2(e). Then, by the definition of the joint
spectral radius (see Definition 1.50 in Subsection 1.3.2), there is C ≥ 0 such
that for all σ ∈ S and T ∈ T≥0, ‖χ̊(T, 0, σ)∧‖ ≤ CeλT . Thus, there is T ∈ T≥0
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such that for all σ ∈ S and T ′ ∈ T, T ′ ≥ T , it holds that m̂(α, χ̊(T ′, 0, σ)) ≤
(2c+ 2)n‖χ̊(T ′, 0, σ)∧‖ ≤ 2bRT ′c, which concludes the proof.

A.3.10 Proof of the correctness of the coder–decoder in
Figure 3.7

Let CoDec be the coder–decoder described in Figure 3.7, with the parameters
defined in the paragraph “Parameters”. First, we show that R(CoDec) ≤ R.
From the definition of the period T of CoDec, it holds that for every k ∈ N,
m̂(α, Āk) ≤ 2bRTc. Hence, for each k ∈ N, ŷk can be encoded as a symbol e(k)
of at most bRT c bits. It follows, by the definition of R(CoDec) (see Definition
1.73 in Subsection 1.5.1), that R(CoDec) = bRT c/T ≤ R bits per unit of time.

Now, we show that CoDec satisfies (3.6). Therefore, let (ξ, σ) : T≥0 →
Rn × Σ be a trajectory of the closed-loop system SwS‖CoDec. First, we show
by induction on k that for every k ∈ N, it holds that ‖ξ(kT ) − x̂k‖ ≤ αk.
Indeed, this holds trivially for k = 0, since ξ(0) ∈ B. Now, assume that it
is true for some k ∈ N, and observe that, by definition of yk+1 and Āk+1

and by the linearity of the system, yk+1 = Āk+1(ξ(kT ) − x̂k), and thus, by
the induction hypothesis, yk+1 ∈ αkĀk+1B. Hence, by definition of ŷk+1, it
holds that ‖ŷk+1 − yk+1/α

k‖ ≤ α. By definition of x̂k+1, it then follows that
‖ξ((k + 1)T )− x̂k+1‖ ≤ αk+1, concluding the proof of the induction step.

Secondly, we show that x̂k → 0 exponentially as k → ∞. Therefore, let
L = maxi∈Σ ‖Ai‖, and note that for all k ∈ N, ‖Āk‖ ≤ eLT so that ‖ŷk‖ ≤
eLT + α (by definition of ŷk and since yk ∈ αk−1ĀkB). Thus, it holds that for
each k ∈ N,

nk+1
.= ‖x̂k+1‖ = ‖nk χ((k + 1)T, kT, x̂k/nk, σ; SwS‖κ) + αkŷk+1‖

≤ ‖nk χ((k + 1)T, kT, x̂k/nk, σ; SwS‖κ)‖+ αk(eLT + α)
≤ αnk + αk(eLT + α),

where the last inequality follows from the definition of T . It follows that there
is C ≥ 0 and θ ∈ (α, 1) such that for all k ∈ N, nk ≤ Cθk, showing that x̂k → 0
exponentially as k →∞.

Finally, using the above results, we show that ξ(t)→ 0 exponentially as t→
∞. To see this, note that since κ is a stabilizing controller, there is M ≥ 0 such
that for all x ∈ B, σ ∈ S and t ∈ T≥0, it holds that ‖χ(t, 0, x, σ; SwS‖κ)‖ ≤M .
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Hence, it follows that for all k ∈ N and t ∈ [kT, (k + 1)T ) ∩ T,

‖ξ(t)‖ = ‖nk χ(t, kT, x̂k/nk, σ; SwS‖κ) + χ̊(t, kT, σ)(ξ(kT )− x̂k)‖

≤Mnk + eL(t−kT )αk ≤ CMθk + eLTαk ≤ 1
θ

(CM + eLT )θk+1 ≤ C ′e−γt,

(A.21)

where C ′ = 1
θ (CM + eLT ) and γ = − 1

T log θ > 0.
To prove that CoDec satisfies (3.6), it remains to show that the closed-

loop system SwS‖CoDec is Lyapunov stable, meaning that there is a class-K
function h such that every trajectory (ξ, σ) : T≥0 → Rn × Σ of SwS‖CoDec
satisfies ‖ξ(t)‖ ≤ h(‖ξ(0)‖) for all t ∈ T≥0. The proof of this claim is along
the same lines as the proof of Liberzon and Hespanha (2005, Theorem 1), and
thus omitted here.19

Finally, we combine the above Lyapunov stability property with the expo-
nential decay property (A.21), to show that the CoDec satisfies (3.6). Therefore,
let µ ∈ (0, γ). It is readily seen that for all t ∈ T≥0, ‖ξ(t)‖ = ‖ξ(t)‖1−µ/γ‖ξ(t)‖µ/γ ≤
h(‖ξ(0)‖)1−µ/γ(C ′e−γt)µ/γ . Hence, we get the desired property, by letting
g : R≥0 → R≥0 be defined by g(r) = h(r)1−µ/γC ′

µ/γ which is clearly a class-K
function. This concludes the proof that CoDec satisfies (3.6).

A.3.11 Proof of Theorem 3.35

We present a sketch of proof with the help of an example. Indeed, a complete
proof of the theorem would require many technical and cumbersome develop-
ments, while we believe that the main ideas of the proof can be deduced from
the example.

Example A.9. Consider the switched linear system SwS ∼ (R1, {Ai}i∈Σ) with
Σ = {1, 2}, and A1 = 0 and A2 = 1. Let τa > 0 and assume that S contains all
switching signals from R≥0 to Σ with absolute dwell time τa. Let X0 = [0, 1].
We will show that htop(SwS, X0) =∞.

Therefore, let R > 0 and let S ⊆ [1, 2] be a finite set with cardinality
|S| ≥ 23Rτa . Let ε > 0 be such that for any distinct s1, s2 ∈ S, it holds that
|e(3−s1)τa − e(3−s2)τa | > ε. We show that for all k ∈ N, ssep(ε, 3kτa;X0) ≥
23Rkτa .

To show this, fix k ∈ N, and for each sequence v̄ .= (vj)k−1
j=0 ∈ Sk, let σv̄ :

R≥0 → Σ be defined as follows: for every t ∈ R≥0, σv̄(t) = 1 if 3jτa ≤ t < (3j+
19In fact, Liberzon and Hespanha (2005, Theorem 1) shows Lyapunov stability in terms

of the “ε–δ definition”. The equivalence of the “ε–δ definition” with the “class-K function
definition” can be found, e.g., in Khalil (2002, Lemma 4.5), or Clarke et al. (1998, Lemma
2.5).
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vj)τa for some j ∈ {0, . . . , k − 1}, and σv̄(t) = 2 otherwise. It is clear that, for
each v̄ ∈ Sk, σv̄ has absolute dwell time τa. Also, for any v̄ .= (vj)k−1

j=0 ∈ Sk, x ∈
R1 and j ∈ {0, . . . , k − 1}, it holds that χ(3(j + 1)τa, 3jτa, x, σv̄) = e(3−vj)τax.
Let F = {φv̄|[0,3kτa)}v̄∈Sk , where for each v̄ ∈ Sk, φv̄ = (ξv̄, σv̄) : R≥0 → R1×Σ
is the trajectory of SwS with switching signal σv̄ and with ξv̄(0) = 1. We show
that F is (ε, 3kτa)-separated for SwS starting from X0.

Therefore, let v̄1
.= (v1,j)j∈N ∈ Sk and v̄2

.= (v2,j)j∈N ∈ Sk be such that
v̄1 6= v̄2 and let j ∈ {0, . . . , k − 1} be the smallest index such that v1,j 6= v2,j .
Then, it holds that ξv̄1(t) = ξv̄2(t) for all t ∈ [0, 3jτa]. However, ξv̄1(3(j +
1)τa) = e(3−v1,j)τaξv̄1(3jτa) 6= ξv̄2(3(j + 1)τa) = e(3−v2,j)τaξv̄2(3jτa). Since
for all t ∈ R≥0, ξv̄1(t) ≥ ξv̄1(0) = 1 and ξv̄2(t) ≥ ξv̄2(0) = 1, it follows, by
definition of ε, that |ξv̄1(3(j + 1)τa) − ξv̄2(3(j + 1)τa)| > ε, which implies that
F is (ε, 3kτa)-separated for SwS starting from X0.

Finally, the cardinality of F is equal to |S|k, so that ssep(ε, 3kτa;X0) ≥
|S|k ≥ 23Rkτa . Since k was arbitrary, this shows that for every k ∈ N,
ssep(ε, 3kτa;X0) ≥ |S|k ≥ 23Rkτa . Hence, by (3.8), it follows that htop(SwS, X0) ≥
R. Since R was arbitrary, this shows that htop(SwS, X0) =∞, concluding the
example.

A.3.12 Proof of the correctness of the coder–decoder in
Figure 3.11

Let CoDec be the coder–decoder described in Figure 3.11, with the parameters
defined in the paragraph “Parameters”. First, we show that R(CoDec) satisfies
(3.12). For each k ∈ N, it holds that (ŷk, vk) ∈ Ξα × {0, . . . , p}. Hence, for
each k ∈ N, (ŷk, vk) can be encoded with dlog2(|Ξα|(p+1))e bits, which implies
that d 1

pdlog2(|Ξα|(p + 1))ee bits per symbol e(kp + j), j ∈ {0, . . . , p − 1}, is
sufficient to encode (ŷk, vk). On the other hand, for each j ∈ N, σ((kp + j)T )
can be encoded with dlog2(|Σ|)e bits. Hence, the coder needs to send at most
d 1
pdlog2(|Ξα|(p+ 1))ee+ dlog2(|Σ|)e bits at each time t = (kp+ j)T , k ∈ N and
j ∈ {0, . . . , p− 1}. This shows that R(CoDec) satisfies (3.12).

Now, we show that CoDec satisfies (3.10). Therefore, let (ξ, σ) : T≥0 →
Rn × Σ be a trajectory of the closed-loop system SwS‖CoDec. First, we show
by induction on k that for all k ∈ N, it holds that ‖ξ(kpT )‖ ≤ rk, ‖x̂k‖ ≤ rk

and ‖ξ(kpT ) − x̂k‖ ≤ sk. Indeed, this holds trivially true for k = 0. Now,
assume that it it true for some k ∈ N. Then, by Eq. (11) in Berger and Jungers
(2020b) and by definition of b̄, x̃k+1 and vk, it follows that

‖ξ((k + 1)pT )− x̃k+1‖ ≤ eνpT sk + b̄(vk)rk. (A.22)
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Also, by assumption on κ and by definition of ā and vk, it holds that

‖x̃k+1‖ ≤ ā(vk)‖x̂k‖ ≤ ā(vk)rk. (A.23)

Putting things together and by definition of rk+1, this shows that ‖ξ((k +
1)pT )‖ ≤ rk+1. Furthermore, by definition of yk and ŷk, it holds that ‖ξ(kpT )−
x̂k − skŷk‖ ≤ αsk. Then, by a reasoning similar as above, it follows that
‖ξ((k+ 1)pT )− x̂k+1‖ ≤ eνpTαsk + b̄(vk)rk = sk+1 and ‖x̂k+1‖ ≤ ā(vk)‖x̂k‖ ≤
rk+1, concluding the proof of the induction step.

Now, we show that ξ(kpT ) → 0 exponentially as k → ∞. By the above
result, it suffices to show that rk → 0 exponentially as k →∞. Therefore, for
each k ∈ N, let ωk = max {rk, 1

αsk}. Then, by definition of rk and sk, it holds
that for all k ∈ N, ωk+1 ≤ βkωk, where

βk = ā(vk+1) + (1 + 1
α )b̄(vk+1) + eνpTα.

Thus, for all k ∈ N, ωk ≤ ω0
∏k−1
j=0 βj . We show that lim supk→∞(

∏k−1
j=0 βj)1/k <

θ < 1. Therefore, fix k ∈ N, and note that( k−1∏
j=0

βj

)1/k
≤ eµ1

1
k

∑k−1
j=0

vj+1
k−1∏
j=0

(
De−µ2pT+(1+ 1

α )eνpT vj+1TD(∆A+∆BL)+eνpTα
)1/k

.

From the arithmetic–geometric mean inequality, it follows that( k−1∏
j=0

βj

)1/k
≤ eµ1

1
k

∑k−1
j=0

vj+1 1
k

k−1∑
j=0

(
De−µ2pT+(1+ 1

α )eνpT vj+1TD(∆A+∆BL)+eνpTα
)
,

and since for all j ∈ N, vj+1 ≤ Nσ((j + 1)T, jT ), we get that( k−1∏
j=0

βj

)1/k
≤ eµ1

1
kNσ(kT,0)(De−µ2pT+(1+ 1

α )eνpT 1
kNσ(kT, 0)TD(∆A+∆BL)+eνpTα

)
,

Since k was arbitrary, the above holds for every t ∈ N. Now, by assumption on
σ having average dwell time τa and definition of T , α and p satisfying (3.11),
it follows that lim supk→∞(

∏k−1
j=0 βj)1/k < θ. Thus, there is C ≥ 0 such that

for all k ∈ N, rk ≤ Cθk, showing that ξ(kpT )→ 0 exponentially as k →∞.
Finally, from the above, it follows that ξ(t) → 0 exponentially as t → ∞.

Indeed, by using an argument similar to the one used in (A.22)–(A.23) (or
simply by using the continuity of the trajectories of switched systems, but this
was not proved formally), it follows that there is M ≥ 0 such that for all k ∈ N
and t ∈ [kpT, (k+ 1)pT ), ‖ξ(t)‖ ≤M‖ξ(kpT )‖. Hence, for all t ∈ R≥0, it holds
that

‖ξ(t)‖ ≤ 1
θ
MCθk+1 ≤ C ′e−γt, (A.24)
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where C ′ = 1
θMC and γ = − 1

pT log θ > 0.
To prove that CoDec satisfies (3.10), it remains to show that the closed-

loop system SwS‖CoDec is Lyapunov stable, meaning that there is a class-K
function h such that every trajectory (ξ, σ) : T≥0 → Rn × Σ of SwS‖CoDec
satisfies ‖ξ(t)‖ ≤ h(‖ξ(0)‖) for all t ∈ T≥0. The proof of this claim is along
the same lines as the proof of Liberzon and Hespanha (2005, Theorem 1), and
thus omitted here.20

Finally, we combine the above Lyapunov stability property with the expo-
nential decay property (A.24), to show that the CoDec satisfies (3.10). There-
fore, let µ ∈ (0, γ). In other words, µ can be real satisfying

0 < µ < − 1
pT

log θ. (A.25)

It is readily seen that for all t ∈ T≥0, ‖ξ(t)‖ = ‖ξ(t)‖1−µ/γ‖ξ(t)‖µ/γ ≤
h(‖ξ(0)‖)1−µ/γ(C ′e−γt)µ/γ . Hence, we get the desired property, by letting
g : R≥0 → R≥0 be defined by g(r) = h(r)1−µ/γC ′

µ/γ which is clearly a class-K
function. This concludes the proof that CoDec satisfies (3.10).

20In fact, Liberzon and Hespanha (2005, Theorem 1) shows Lyapunov stability in terms
of the “ε–δ definition”. The equivalence of the “ε–δ definition” with the “class-K function
definition” can be found, e.g., in Khalil (2002, Lemma 4.5), or Clarke et al. (1998, Lemma
2.5).
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Lúıs Barreira and Claudia Valls. Lyapunov sequences for exponential di-
chotomies. Journal of Differential Equations, 246(1):183–215, 2009. doi:
10.1016/j.jde.2008.06.009.

Aharon Ben-Tal and Arkadi Nemirovski. Lectures on modern convex optimiza-
tion: analysis, algorithms, and engineering applications. SIAM, Philadelphia,
PA, 2001. doi: 10.1137/1.9780898718829.
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Guillaume O Berger and Raphaël M Jungers. Finite data-rate feedback stabi-
lization of continuous-time switched linear systems with unknown switching
signal, 2020b. arXiv preprint: 2009.04715 (v1: 10th September 2020).
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Guillaume O Berger and Raphaël M Jungers. Worst-case topological entropy
and minimal data rate for state observation of switched linear systems. In
Proceedings of the 23rd International Conference on Hybrid Systems: Com-
putation and Control, pages 1–11. ACM, 2020e. doi: 10.1145/3365365.
3382195.

Guillaume O Berger and Raphaël M Jungers. Complexity of the LTI system
trajectory boundedness problem. In 2021 60th IEEE Conference on Decision
and Control (CDC). IEEE, 2021a. To appear (see also: arXiv preprint:
2108.00728 – v1: 2nd August 2021).
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Manfred Broy, Maŕıa Victoria Cengarle, and Eva Geisberger. Cyber-physical
systems: imminent challenges. In Radu Calinescu and David Garlan, editors,
Large-Scale Complex IT Systems. Development, Operation and Management,
volume 7539 of Lecture Notes in Computer Science, pages 1–28. Springer,
Berlin, 2012. doi: 10.1007/978-3-642-34059-8 1.

Michela Brundu and Marino Zennaro. Invariant multicones for families of
matrices. Annali di Matematica Pura ed Applicata (1923–), 198(2):571–614,
2019. doi: 10.1007/s10231-018-0790-4.

https://doi.org/10.1016/0024-3795(92)90267-E
https://doi.org/10.1016/0024-3795(92)90267-E
https://doi.org/10.1016/j.anihpc.2012.10.001
https://doi.org/10.1007/s00209-009-0494-y
https://doi.org/10.1007/s00209-009-0494-y
https://doi.org/10.1090/S0002-9947-1971-0274707-X
https://doi.org/10.1017/CBO9780511804441
https://doi.org/10.1137/1.9781611970777
https://doi.org/10.1109/9.664150
https://doi.org/10.1070/IM1974v008n01ABEH002101
https://doi.org/10.1070/IM1974v008n01ABEH002101
https://doi.org/10.1007/978-3-642-34059-8_1
https://doi.org/10.1007/s10231-018-0790-4


BIBLIOGRAPHY 201

Marie Lucy Cartwright and John Edensor Littlewood. On non-linear differen-
tial equations of the second order: I. the equation y′′ − k(1 − y2)y′ + y =
bλk cos(λl + α), k large. Journal of the London Mathematical Society, 1(3):
180–189, 1945. doi: 10.1112/jlms/s1-20.3.180.

Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. Flow∗: an analyzer
for non-linear hybrid systems. In Natasha Sharygina and Helmut Veith,
editors, Computer Aided Verification. CAV 2013., volume 8044 of Lecture
Notes in Computer Science, pages 258–263. Springer, 2013. doi: 10.1007/
978-3-642-39799-8 18.

Francis H Clarke, Yu S Ledyaev, and Ronald J Stern. Asymptotic stability
and smooth Lyapunov functions. Journal of Differential Equations, 149(1):
69–114, 1998. doi: 10.1006/jdeq.1998.3476.

Fritz Colonius. Minimal bit rates and entropy for exponential stabilization.
SIAM Journal on Control and Optimization, 50(5):2988–3010, 2012. doi:
10.1137/110829271.

Fritz Colonius and Weihua Du. Hyperbolic control sets and chain control sets.
Journal of Dynamical and Control Systems, 7:49–59, 2001. doi: 10.1023/A:
1026645605711.

Fritz Colonius and Wolfgang Kliemann. Dynamical systems and linear algebra.
American Mathematical Society, Providence, RI, 2014. doi: 10.1090/gsm/
158.

Fritz Colonius, Christoph Kawan, and Girish Nair. A note on topological
feedback entropy and invariance entropy. Systems & Control Letters, 62(5):
377–381, 2013. doi: 10.1016/j.sysconle.2013.01.008.

Peter E Crouch and Arjan J van der Schaft. Variational and Hamiltonian
control systems. Springer, Berlin, 1987.

Ingrid Daubechies and Jeffrey C Lagarias. Sets of matrices all infinite products
of which converge. Linear Algebra and its Applications, 161:227–263, 1992.
doi: 10.1016/0024-3795(92)90012-Y.

Jean-Charles Delvenne and Vincent D Blondel. Quasi-periodic configurations
and undecidable dynamics for tilings, infinite words and Turing machines.
Theoretical Computer Science, 319(1–3):127–143, 2004. doi: 10.1016/j.tcs.
2004.02.018.

Efim I Dinaburg. A correlation between topological entropy and metric entropy.
Doklady Akademii Nauk, 190(1):19–22, 1970. In Russian.

https://doi.org/10.1112/jlms/s1-20.3.180
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1006/jdeq.1998.3476
https://doi.org/10.1137/110829271
https://doi.org/10.1023/A:1026645605711
https://doi.org/10.1023/A:1026645605711
https://doi.org/10.1090/gsm/158
https://doi.org/10.1090/gsm/158
https://doi.org/10.1016/j.sysconle.2013.01.008
https://doi.org/10.1016/0024-3795(92)90012-Y
https://doi.org/10.1016/j.tcs.2004.02.018
https://doi.org/10.1016/j.tcs.2004.02.018


202 BIBLIOGRAPHY

Ludwig Elsner. The generalized spectral-radius theorem: an analytic-geometric
proof. Linear Algebra and its Applications, 220:151–159, 1995. doi: 10.1016/
0024-3795(93)00320-Y.

Lorenzo Farina and Sergio Rinaldi. Positive linear systems: theory and ap-
plications. John Wiley & Sons, New York, NY, 2000. doi: 10.1002/
9781118033029.

Fulvio Forni and Rodolphe Sepulchre. A differential Lyapunov framework for
contraction analysis. IEEE Transactions on Automatic Control, 59(3):614–
628, 2014. doi: 10.1109/TAC.2013.2285771.

Fulvio Forni and Rodolphe Sepulchre. Differentially positive systems. IEEE
Transactions on Automatic Control, 61(2):346–359, 2016. doi: 10.1109/TAC.
2015.2437523.

Fulvio Forni and Rodolphe Sepulchre. Differential dissipativity theory for dom-
inance analysis. IEEE Transactions on Automatic Control, 64(6):2340–2351,
2019. doi: 10.1109/TAC.2018.2867920.
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