Template-Based Piecewise Affine Regression

Guillaume Berger and Sriram Sankaranarayanan

University of Colorado Boulder

Problem of Interest

Given N data points (x_k, y_k) , find q regions H_i and matrices A_i such that $x_k \in H_i \Rightarrow ||A_i x_k - y_k|| \le \epsilon$

Additional constraints on regions H_i :

- cover all points x_k
- belong to a template: $H_i = \{x : p(x) \le c_i\}$

Optimization form: minimize *q* (# regions)

Applications

- Model identification
- Template: adjust the complexity:
 - Tractable models
 - Avoid overfitting •

Computational Complexity

NP-hard with respect to dimension of x_k

Proof: Reduction of Switched Linear Regression to **Template-Based Linear Regression**

Polynomial with respect to N (# data): $O(N^{qh})$

Proof: Enumerate all template-compatible sets of points and check for "linear fit"

Highly data-inefficient!

Top-Down Approach

Starts from "large subsets" of data points (x_k, y_k)

- Pick a set S
- Check *S* for "linear fit"
- If *S* is not "fitting", split *S* into smaller templatecompatible sets S_1, \ldots, S_h
- Repeat until all sets fit

Insulin–Glucose Regulation Model

PWA approximation using rectangle regions

Split using Infeasibility Certificates

If *S* is not fitting, then there is a **certificate** $C \subseteq S$, $|C| \leq d$, that is not fitting

Computation: using Linear Programming

Split *S* into all **maximal template-compatible** subsets that do not include *C*

Computation: refine each component of the template $p(x) \le c$ to exclude at least one point of C

Theorem: This computes all maximal templatecompatible linear-fitting subsets of data points

Double Pendulum with Soft Contacts

N = 100Computation times: 1, 22, 112 secs

Switched Affine Regression: <10 secs, but not able to simple regions

Comparison with MILP for SAR