Polynomial Optimization

Sums of Squares and Moment Generation
CHEATSHEET: DECEMBER 14, 2022

1 INTRODUCTION AND NOTATION

Let n be a fixed positive integer.
Let $\left(u_{i}\right)_{i=1}^{\infty}$ be a sequence containing all monomials of n variables, ordered in such a way that the degree of u_{i} is nondecreasing with i. For every $v \in \mathbb{N}$, let $s(v)$ be the number of monomials of n variables with degree smaller than or equal to v, and let $\mathbf{v}_{v}=\left[u_{1}, \ldots, u_{s(v)}\right]^{\top}$.

For every $v \in \mathbb{N}$ and $i \in\{1, \ldots, s(2 v)\}$, let $B_{i}^{v} \in \mathbb{R}^{s(v) \times s(n)}$ be defined by $\left[B_{i}^{v}\right]_{j_{1}, j_{2}}=1$ if $u_{j_{1}} u_{j_{2}}=u_{i}$ and $\left[B_{i}^{V}\right]_{j_{1}, j_{2}}=0$ otherwise.
With the above definitions, it holds that if $p=\sum_{i=1}^{s(2 v)} c_{i} u_{i}$, then $p=\mathbf{v}_{v}{ }^{\top} X \mathbf{v}_{v}$ for any $X \in \mathbb{R}^{s(v) \times s(v)}$ satisfying $\left\langle B_{i}^{\nu}, X\right\rangle=c_{i}$ for all $i \in\{1, \ldots, s(2 v)\}$.

Definition 1.1 (Sum-of-squares polynomial). A polynomial $p=\sum_{i=1}^{s(2 v)} c_{i} u_{i}$ is said to be sum of squares if there is $X \geq 0$ such that $\left\langle B_{i}^{v}, X\right\rangle=c_{i}$ for all $i \in\{1, \ldots, s(2 v)\}$.

2 UNCONSTRAINED OPTIMIZATION

Fix $v \in \mathbb{N}$ and $p=\sum_{i=1}^{s(2 v)} c_{i} u_{i}$, where for each $i \in\{1, \ldots, s(2 v)\}, c_{i} \in \mathbb{R}$.
The goal is to find the minimum of $p: p^{*}:=\min _{x \in \mathbb{R}^{n}} p(x)$. Computing p^{*} is in general difficult. A relaxation consists in finding a value $t \in \mathbb{R}$ such that $p-t$ is sum of squares. Any such value t will then be a lower bound on p^{*}.

Hence, we can formulate the following optimization problem to optimize on such t :

$$
\begin{array}{lll}
\mathbb{P}(p): & \sup _{X, t} & t \\
& \text { s.t. } & X \geq 0, \\
& \left\langle B_{1}^{v}, X\right\rangle=c_{1}-t, \tag{1}\\
& \left\langle B_{i}^{v}, X\right\rangle=c_{i}, \quad \forall i \in\{2, \ldots, s(2 v)\},
\end{array}
$$

with variables $X=X^{\top} \in \mathbb{R}^{s(m) \times s(m)}$ and $t \in \mathbb{R}$. The dual of (1) is the problem:

$$
\begin{array}{lll}
\mathbb{D}(p): & \inf _{\left(y_{i}\right)_{i=1}^{s(2 v)}} & \sum_{i=1}^{s(2 v)} c_{i} y_{i} \\
& \text { s.t. } & \sum_{i=1}^{s(2 v)} B_{i}^{v} y_{i} \geq 0, \tag{2}\\
& y_{1}=1,
\end{array}
$$

with variables $\left\{y_{i}\right\}_{i=1}^{s(2 v)} \subseteq \mathbb{R}$.
Proposition 2.1 (see, e.g., 1, Proposition 3.1). $\mathbb{D}(p)$ is always strictly feasible. Consequently, by strong duality, if $\mathbb{P}(p)$ is feasible, then it has an optimal solution, and there is no duality gap, i.e., $\max \mathbb{P}(p)=\inf \mathbb{D}(p)$.

Proof. Take any finite measure μ on \mathbb{R}^{n}, and for each $i \in\{1, \ldots, s(2 v)\}$, let $y_{i}=\int_{\mathbb{R}^{n}} u_{i} \mathrm{~d} \mu$. Then, for any $z \in \mathbb{R}^{s(2 v)} \backslash\{0\}$, it holds that $z^{\top}\left(\sum_{i=1}^{s(2 v)} B_{i}^{v} y_{i}\right) z=\int_{\mathbb{R}^{n}}\left(z^{\top} \mathbf{v}_{v}\right)^{2} \mathrm{~d} \mu>0$.

Theorem 2.2 (see, e.g., 1, Theorem 3.2).

- If $p-p^{*}$ is sum of squares, then $\mathbb{P}(p)$ and $\mathbb{D}(p)$ have an optimal solution and $p^{*}=\max \mathbb{P}(p)=$ $\min \mathbb{D}(p)$. Moreover, for any $x \in \mathbb{R}^{n}$ such that $p(x)=p^{*},\left(y_{i}\right)_{i=1}^{s(2 v)}=\left(u_{i}(x)\right)_{i=1}^{s(2 v)}$ is an optimal solution of $\mathbb{D}(p)$.
- Conversely, if $\mathbb{P}(p)$ is feasible and $\mathbb{D}(p)$ has an optimal solution $\left(y_{i}\right)_{i=1}^{s(2 v)}=\left(u_{i}(x)\right)_{i=1}^{s(2 v)}$ for some $x \in \mathbb{R}^{n}$, then $p-p^{*}$ is sum of squares and $p^{*}=\max \mathbb{P}(p)=\min \mathbb{D}(p)$.

Proof.

- The first part is obvious by definition of sum-of-squares polynomials and $\mathbb{P}(p)$. The second part follows directly from the fact that $\sum_{i=1}^{s(2 v)} c_{i} y_{i}=p(x)=p^{*}$. Since, by weak duality $\inf \mathbb{D}(p) \geq \max \mathbb{P}(p) \geq p^{*}$, it follows that $\left(y_{i}\right)_{i=1}^{s(2 v)}$ is optimal for $\mathbb{D}(p)$.
- It holds that $p^{*} \leq p(x)=\sum_{i=1}^{s(2 v)} c_{i} y_{i}=\min \mathbb{D}(p)=\max \mathbb{P}(p) \leq p^{*}$, where the third equality follows from Proposition 2.1. Hence, $p^{*}=\max \mathbb{P}(p)$, and thus $p-p^{*}$ is sum of squares.

Definition 2.3. A sequence $\left(y_{i}\right)_{i=1}^{s(2 v)} \in \mathbb{R}^{s(2 v)}$ is said to be atomic if there is $x \in \mathbb{R}^{n}$ such that for all $i \in\{1, \ldots, s(2 v)\}, y_{i}=u_{i}(x)$.

Corollary 2.4. Assume $\mathbb{P}(p)$ is feasible. Then $p-p^{*}$ is sum of squares if and only if $\mathbb{D}(p)$ has an atomic optimal solution.

3 CONSTRAINED OPTIMIZATION

Fix $v \in \mathbb{N}, H \in \mathbb{N}_{>0}$ and $\left\{v_{h}\right\}_{h=1}^{H} \subseteq \mathbb{N}_{>0}$. Let $p=\sum_{i=1}^{s(2 v)} c_{i} u_{i}$, where for each $i \in\{1, \ldots, s(2 v)\}$, $c_{i} \in \mathbb{R}$, and for each $h \in\{1, \ldots, H\}$, let $q_{h}=\sum_{i=1}^{s\left(2 v_{h}\right)} c_{h, i} u_{i}$, where for each $i \in\left\{1, \ldots, s\left(2 v_{h}\right)\right\}$, $c_{h, i} \in \mathbb{R}$. Denote $Q=\left(q_{h}\right)_{h=1}^{H}$.

The goal is to find the minimum of p over the set $S(Q)=\bigcap_{h=1}^{H}\left\{x \in \mathbb{R}^{n}: q_{h}(x) \geq 0\right\}: p_{Q}^{*}:=$ $\min _{x \in S(Q)} p(x)$. Computing p_{Q}^{*} is in general difficult. A relaxation consists in finding a value $t \in \mathbb{R}$ such that $p-t=s_{0}+\sum_{h=1}^{H} q_{h} s_{h}$ for some sum-of-squares polynomials s_{0}, \ldots, s_{H}, of respective degrees $2 \pi_{0}, \ldots, 2 \pi_{H}$, with $\left\{\pi_{h}\right\}_{h=0}^{H} \subseteq \mathbb{N}$. Any such value t will then be a lower bound on p_{Q}^{*}.

Hence, we can formulate the following optimization problem to optimize on such t :

$$
\begin{array}{lll}
\mathbb{P}(p, Q): & \sup _{\left(X_{h}\right)_{h=0}^{H}, t}^{H} & t \\
& X_{h} \geq 0, \quad \forall h \in\{0, \ldots, H\} \\
& & \left\langle B_{1}^{\pi_{0}}, X_{0}\right\rangle+\sum_{h=1}^{H} c_{h, 1}\left\langle B_{1}^{\pi_{h}}, X_{h}\right\rangle=c_{1}-t, \tag{3}\\
& \left\langle B_{i}^{\pi_{0}}, X_{0}\right\rangle+\sum_{h=1}^{H} \sum_{\left(i_{1}, i_{2}\right) \sim\left(i, v_{h}, \pi_{h}\right)} c_{h, i_{1}}\left\langle B_{i_{2}}^{\pi_{h}}, X_{h}\right\rangle=c_{i}, \\
& & \forall i \in\{2, \ldots, s(2 v)\},
\end{array}
$$

with variables $X_{h}=X_{h}^{\top} \in \mathbb{R}^{s\left(\pi_{h}\right) \times s\left(\pi_{h}\right)}$ for all $h \in\{0, \ldots, H\}$, and $t \in \mathbb{R}$, and where for each $h \in\{0, \ldots, H\},\left(i_{1}, i_{2}\right) \sim\left(i, v_{h}, \pi_{h}\right)$ means that $i_{1} \in\left\{1, \ldots, v_{h}\right\}, i_{2} \in\left\{1, \ldots, \pi_{h}\right\}$ and $u_{i_{1}} u_{i_{2}}=u_{i}$. The dual of (1) is the problem:

$$
\begin{array}{lll}
\mathbb{D}(p, Q): \quad \inf _{\left(y_{i}\right)_{i=1}^{s(2 v)}} & \sum_{i=1}^{s(2 v)} c_{i} y_{i} \\
& \sum_{i=1}^{s(2 v)} B_{i}^{\pi_{0}} y_{i} \geq 0, \tag{4}\\
& \text { s.t. } & \sum_{i=1}^{s(2 v)} \sum_{\left(i_{1}, i_{2}\right) \sim\left(i, v_{h}, \pi_{h}\right)} c_{h, i_{1}} B_{i_{2}}^{\pi_{h}} y_{i} \geq 0, \quad \forall h \in\{1, \ldots, H\}, \\
& y_{1}=1,
\end{array}
$$

with variables $\left\{y_{i}\right\}_{i=1}^{s(2 v)} \subseteq \mathbb{R}$.
Assumption 3.1. $S(Q)$ has nonempty interior, and for all $h \in\{1, \ldots, H\}, q_{h} \neq 0$.
Proposition 3.2. Under Assumption 3.1, $\mathbb{D}(p, Q)$ is always strictly feasible. Consequently, by strong duality, if $\mathbb{P}(p, Q)$ is feasible, then it has an optimal solution, and there is no duality gap, i.e., $\max \mathbb{P}(p, Q)=\inf \mathbb{D}(p, Q)$.

Proof. Take any finite measure μ on $S(Q)$, and for each $i \in\{1, \ldots, s(2 v)\}$, let $y_{i}=\int_{\mathbb{R}^{n}} u_{i} \mathrm{~d} \mu$. Then, for any $z \in \mathbb{R}^{s(2 v)} \backslash\{0\}$, it holds that $z^{\top}\left(\sum_{i=1}^{s(2 v)} B_{i}^{v} y_{i}\right) z=\int_{\mathbb{R}^{n}}\left(z^{\top} \mathbf{v}_{v}\right)^{2} \mathrm{~d} \mu>0$, and for every $h \in\{1, \ldots, H\}, z^{\top}\left(\sum_{i=1}^{s(2 v)} \sum_{\left(i_{1}, i_{2}\right) \sim\left(i, v_{h}, \pi_{h}\right)} c_{h, i_{1}} B_{i_{2}}^{\pi_{h}} y_{i}\right) z=\int_{\mathbb{R}^{n}} q_{h} \cdot\left(z^{\top} \mathbf{v}_{v}\right)^{2} \mathrm{~d} \mu>0$.

Theorem 3.3. Let Assumption 3.1 hold.

- If $p-p_{Q}^{*}=s_{0}+\sum_{h=1}^{H} q_{h} s_{h}$ for some sum-of-squares polynomials s_{0}, \ldots, s_{H}, of respective degrees $2 \pi_{0}, \ldots, 2 \pi_{H}$, then $\mathbb{P}(p)$ and $\mathbb{D}(p)$ have an optimal solution and $p_{Q}^{*}=\max \mathbb{P}(p, Q)=$ $\min \mathbb{D}(p, Q)$. Moreover, for any $x \in S(Q)$ such that $p(x)=p_{Q}^{*},\left(y_{i}\right)_{i=1}^{s(2 v)}=\left(u_{i}(x)\right)_{i=1}^{s(2 v)}$ is an optimal solution of $\mathbb{D}(p, Q)$.
- Conversely, if $\mathbb{P}(p, Q)$ is feasible and $\mathbb{D}(p, Q)$ has an optimal solution $\left(y_{i}\right)_{i=1}^{s(2 v)}=\left(u_{i}(x)\right)_{i=1}^{s(2 v)}$ for some $x \in S(Q)$, then $p-p_{Q}^{*}=s_{0}+\sum_{h=1}^{H} q_{h} s_{h}$ for some sum-of-squares polynomials s_{0}, \ldots, s_{H}, of respective degrees $2 \pi_{0}, \ldots, 2 \pi_{H}$, and $p_{Q}^{*}=\max \mathbb{P}(p, Q)=\min \mathbb{D}(p, Q)$.

Proof. Same as the proof of Theorem 2.2.

REFERENCES

[1] Jean B Lasserre. 2001. Global optimization with polynomials and the problem of moments. SIAM fournal on Optimization 11, 3 (2001), 796-817. https://doi.org/10.1137/S1052623400366802

