Polynomial Optimization

Sums of Squares and Moment Generation

CHEATSHEET: DECEMBER 14, 2022

1 INTRODUCTION AND NOTATION

Let *n* be a fixed positive integer.

Let $(u_i)_{i=1}^{\infty}$ be a sequence containing all monomials of *n* variables, ordered in such a way that the degree of u_i is nondecreasing with *i*. For every $v \in \mathbb{N}$, let s(v) be the number of monomials of *n* variables with degree smaller than or equal to *v*, and let $\mathbf{v}_v = [u_1, \ldots, u_{s(v)}]^{\top}$.

For every $v \in \mathbb{N}$ and $i \in \{1, \dots, s(2v)\}$, let $B_i^v \in \mathbb{R}^{s(v) \times s(n)}$ be defined by $[B_i^v]_{j_1, j_2} = 1$ if $u_{j_1}u_{j_2} = u_i$ and $[B_i^v]_{j_1, j_2} = 0$ otherwise.

With the above definitions, it holds that if $p = \sum_{i=1}^{s(2\nu)} c_i u_i$, then $p = \mathbf{v}_{\nu}^{\top} X \mathbf{v}_{\nu}$ for any $X \in \mathbb{R}^{s(\nu) \times s(\nu)}$ satisfying $\langle B_i^{\nu}, X \rangle = c_i$ for all $i \in \{1, \ldots, s(2\nu)\}$.

Definition 1.1 (Sum-of-squares polynomial). A polynomial $p = \sum_{i=1}^{s(2\nu)} c_i u_i$ is said to be sum of squares if there is $X \ge 0$ such that $\langle B_i^{\nu}, X \rangle = c_i$ for all $i \in \{1, \dots, s(2\nu)\}$.

2 UNCONSTRAINED OPTIMIZATION

Fix $v \in \mathbb{N}$ and $p = \sum_{i=1}^{s(2v)} c_i u_i$, where for each $i \in \{1, \dots, s(2v)\}, c_i \in \mathbb{R}$.

The goal is to find the minimum of $p: p^* := \min_{x \in \mathbb{R}^n} p(x)$. Computing p^* is in general difficult. A relaxation consists in finding a value $t \in \mathbb{R}$ such that p - t is sum of squares. Any such value t will then be a lower bound on p^* .

Hence, we can formulate the following optimization problem to optimize on such *t*:

$$\mathbb{P}(p) : \sup_{X,t} t \\
s.t. \quad X \ge 0, \\
\langle B_1^{\nu}, X \rangle = c_1 - t, \\
\langle B_i^{\nu}, X \rangle = c_i, \quad \forall i \in \{2, \dots, s(2\nu)\},$$
(1)

with variables $X = X^{\top} \in \mathbb{R}^{s(m) \times s(m)}$ and $t \in \mathbb{R}$. The dual of (1) is the problem:

$$\mathbb{D}(p) : \inf_{\substack{(y_i)_{i=1}^{s(2\nu)}}} \sum_{i=1}^{s(2\nu)} c_i y_i$$

s.t. $\sum_{i=1}^{s(2\nu)} B_i^{\nu} y_i \ge 0,$ (2)
 $y_1 = 1,$

with variables $\{y_i\}_{i=1}^{s(2\nu)} \subseteq \mathbb{R}$.

PROPOSITION 2.1 (SEE, E.G., 1, PROPOSITION 3.1). $\mathbb{D}(p)$ is always strictly feasible. Consequently, by strong duality, if $\mathbb{P}(p)$ is feasible, then it has an optimal solution, and there is no duality gap, i.e., $\max \mathbb{P}(p) = \inf \mathbb{D}(p)$.

PROOF. Take any finite measure μ on \mathbb{R}^n , and for each $i \in \{1, \ldots, s(2\nu)\}$, let $y_i = \int_{\mathbb{R}^n} u_i \, d\mu$. Then, for any $z \in \mathbb{R}^{s(2\nu)} \setminus \{0\}$, it holds that $z^\top (\sum_{i=1}^{s(2\nu)} B_i^\nu y_i) z = \int_{\mathbb{R}^n} (z^\top \mathbf{v}_\nu)^2 \, d\mu > 0$. \Box

Тнеогем 2.2 (see, e.g., 1, Theorem 3.2).

• If $p - p^*$ is sum of squares, then $\mathbb{P}(p)$ and $\mathbb{D}(p)$ have an optimal solution and $p^* = \max \mathbb{P}(p) = \min \mathbb{D}(p)$. Moreover, for any $x \in \mathbb{R}^n$ such that $p(x) = p^*$, $(y_i)_{i=1}^{s(2\nu)} = (u_i(x))_{i=1}^{s(2\nu)}$ is an optimal solution of $\mathbb{D}(p)$.

Conversely, if P(p) is feasible and D(p) has an optimal solution (y_i)^{s(2v)}_{i=1} = (u_i(x))^{s(2v)}_{i=1} for some x ∈ Rⁿ, then p − p^{*} is sum of squares and p^{*} = max P(p) = min D(p).

Proof.

- The first part is obvious by definition of sum-of-squares polynomials and $\mathbb{P}(p)$. The second part follows directly from the fact that $\sum_{i=1}^{s(2\nu)} c_i y_i = p(x) = p^*$. Since, by weak duality inf $\mathbb{D}(p) \ge \max \mathbb{P}(p) \ge p^*$, it follows that $(y_i)_{i=1}^{s(2\nu)}$ is optimal for $\mathbb{D}(p)$.
- It holds that $p^* \le p(x) = \sum_{i=1}^{s(2\nu)} c_i y_i = \min \mathbb{D}(p) = \max \mathbb{P}(p) \le p^*$, where the third equality follows from Proposition 2.1. Hence, $p^* = \max \mathbb{P}(p)$, and thus $p p^*$ is sum of squares.

Definition 2.3. A sequence $(y_i)_{i=1}^{s(2\nu)} \in \mathbb{R}^{s(2\nu)}$ is said to be *atomic* if there is $x \in \mathbb{R}^n$ such that for all $i \in \{1, \ldots, s(2\nu)\}, y_i = u_i(x)$.

COROLLARY 2.4. Assume $\mathbb{P}(p)$ is feasible. Then $p - p^*$ is sum of squares if and only if $\mathbb{D}(p)$ has an atomic optimal solution.

3 CONSTRAINED OPTIMIZATION

Fix $v \in \mathbb{N}$, $H \in \mathbb{N}_{>0}$ and $\{v_h\}_{h=1}^H \subseteq \mathbb{N}_{>0}$. Let $p = \sum_{i=1}^{s(2v)} c_i u_i$, where for each $i \in \{1, \ldots, s(2v)\}$, $c_i \in \mathbb{R}$, and for each $h \in \{1, \ldots, H\}$, let $q_h = \sum_{i=1}^{s(2v_h)} c_{h,i} u_i$, where for each $i \in \{1, \ldots, s(2v_h)\}$, $c_{h,i} \in \mathbb{R}$. Denote $Q = (q_h)_{h=1}^H$.

The goal is to find the minimum of p over the set $S(Q) = \bigcap_{h=1}^{H} \{x \in \mathbb{R}^n : q_h(x) \ge 0\}$: $p_Q^* := \min_{x \in S(Q)} p(x)$. Computing p_Q^* is in general difficult. A relaxation consists in finding a value $t \in \mathbb{R}$ such that $p - t = s_0 + \sum_{h=1}^{H} q_h s_h$ for some sum-of-squares polynomials s_0, \ldots, s_H , of respective degrees $2\pi_0, \ldots, 2\pi_H$, with $\{\pi_h\}_{h=0}^H \subseteq \mathbb{N}$. Any such value t will then be a lower bound on p_Q^* .

Hence, we can formulate the following optimization problem to optimize on such t:

$$\mathbb{P}(p,Q) : \sup_{(X_{h})_{h=0}^{H},t} t \\
\text{s.t.} \quad X_{h} \ge 0, \quad \forall h \in \{0,\ldots,H\} \\
\langle B_{1}^{\pi_{0}}, X_{0} \rangle + \sum_{h=1}^{H} c_{h,1} \langle B_{1}^{\pi_{h}}, X_{h} \rangle = c_{1} - t, \qquad (3) \\
\langle B_{i}^{\pi_{0}}, X_{0} \rangle + \sum_{h=1}^{H} \sum_{(i_{1},i_{2})\sim(i,\nu_{h},\pi_{h})} c_{h,i_{1}} \langle B_{i_{2}}^{\pi_{h}}, X_{h} \rangle = c_{i}, \\
\forall i \in \{2,\ldots,s(2\nu)\},$$

with variables $X_h = X_h^{\top} \in \mathbb{R}^{s(\pi_h) \times s(\pi_h)}$ for all $h \in \{0, \ldots, H\}$, and $t \in \mathbb{R}$, and where for each $h \in \{0, \ldots, H\}$, $(i_1, i_2) \sim (i, v_h, \pi_h)$ means that $i_1 \in \{1, \ldots, v_h\}$, $i_2 \in \{1, \ldots, \pi_h\}$ and $u_{i_1}u_{i_2} = u_i$. The dual of (1) is the problem:

$$\mathbb{D}(p,Q) : \inf_{(y_i)_{i=1}^{s(2\nu)}} \sum_{i=1}^{s(2\nu)} c_i y_i \\
\text{s.t.} \qquad \sum_{i=1}^{s(2\nu)} B_i^{\pi_0} y_i \ge 0, \\
\sum_{i=1}^{s(2\nu)} \sum_{(i_1,i_2)\sim(i,\nu_h,\pi_h)} c_{h,i_1} B_{i_2}^{\pi_h} y_i \ge 0, \quad \forall h \in \{1,\ldots,H\}, \\
y_1 = 1,$$
(4)

with variables $\{y_i\}_{i=1}^{s(2\nu)} \subseteq \mathbb{R}$.

Assumption 3.1. S(Q) has nonempty interior, and for all $h \in \{1, ..., H\}$, $q_h \neq 0$.

PROPOSITION 3.2. Under Assumption 3.1, $\mathbb{D}(p, Q)$ is always strictly feasible. Consequently, by strong duality, if $\mathbb{P}(p, Q)$ is feasible, then it has an optimal solution, and there is no duality gap, i.e., $\max \mathbb{P}(p, Q) = \inf \mathbb{D}(p, Q)$.

Polynomial Optimization

PROOF. Take any finite measure μ on S(Q), and for each $i \in \{1, \dots, s(2\nu)\}$, let $y_i = \int_{\mathbb{R}^n} u_i \, d\mu$. Then, for any $z \in \mathbb{R}^{s(2\nu)} \setminus \{0\}$, it holds that $z^\top (\sum_{i=1}^{s(2\nu)} B_i^\nu y_i) z = \int_{\mathbb{R}^n} (z^\top \mathbf{v}_\nu)^2 \, d\mu > 0$, and for every $h \in \{1, \dots, H\}, z^\top (\sum_{i=1}^{s(2\nu)} \sum_{(i_1, i_2) \sim (i, \nu_h, \pi_h)} c_{h, i_1} B_{i_2}^{\pi_h} y_i) z = \int_{\mathbb{R}^n} q_h \cdot (z^\top \mathbf{v}_\nu)^2 \, d\mu > 0$. \Box

THEOREM 3.3. Let Assumption 3.1 hold.

- If $p p_Q^* = s_0 + \sum_{h=1}^H q_h s_h$ for some sum-of-squares polynomials s_0, \ldots, s_H , of respective degrees $2\pi_0, \ldots, 2\pi_H$, then $\mathbb{P}(p)$ and $\mathbb{D}(p)$ have an optimal solution and $p_Q^* = \max \mathbb{P}(p, Q) = \min \mathbb{D}(p, Q)$. Moreover, for any $x \in S(Q)$ such that $p(x) = p_Q^*$, $(y_i)_{i=1}^{s(2\nu)} = (u_i(x))_{i=1}^{s(2\nu)}$ is an optimal solution of $\mathbb{D}(p, Q)$.
- Conversely, if $\mathbb{P}(p, Q)$ is feasible and $\mathbb{D}(p, Q)$ has an optimal solution $(y_i)_{i=1}^{s(2\nu)} = (u_i(x))_{i=1}^{s(2\nu)}$ for some $x \in S(Q)$, then $p - p_Q^* = s_0 + \sum_{h=1}^{H} q_h s_h$ for some sum-of-squares polynomials s_0, \ldots, s_H , of respective degrees $2\pi_0, \ldots, 2\pi_H$, and $p_Q^* = \max \mathbb{P}(p, Q) = \min \mathbb{D}(p, Q)$.

PROOF. Same as the proof of Theorem 2.2.

REFERENCES

 Jean B Lasserre. 2001. Global optimization with polynomials and the problem of moments. SIAM Journal on Optimization 11, 3 (2001), 796–817. https://doi.org/10.1137/S1052623400366802