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1 INTRODUCTION AND NOTATION
Let 𝑛 be a fixed positive integer.

Let (𝑢𝑖 )∞𝑖=1 be a sequence containing all monomials of 𝑛 variables, ordered in such a way that the

degree of 𝑢𝑖 is nondecreasing with 𝑖 . For every 𝜈 ∈ N, let 𝑠 (𝜈) be the number of monomials of 𝑛

variables with degree smaller than or equal to 𝜈 , and let v𝜈 = [𝑢1, . . . , 𝑢𝑠 (𝜈 ) ]⊤.
For every 𝜈 ∈ N and 𝑖 ∈ {1, . . . , 𝑠 (2𝜈)}, let 𝐵𝜈

𝑖
∈ R𝑠 (𝜈 )×𝑠 (𝑛) be defined by [𝐵𝜈

𝑖
] 𝑗1, 𝑗2 = 1 if𝑢 𝑗1𝑢 𝑗2 = 𝑢𝑖

and [𝐵𝜈
𝑖
] 𝑗1, 𝑗2 = 0 otherwise.

With the above definitions, it holds that if 𝑝 =
∑𝑠 (2𝜈 )

𝑖=1
𝑐𝑖𝑢𝑖 , then 𝑝 = v𝜈⊤𝑋v𝜈 for any𝑋 ∈ R𝑠 (𝜈 )×𝑠 (𝜈 )

satisfying ⟨𝐵𝜈
𝑖
, 𝑋 ⟩ = 𝑐𝑖 for all 𝑖 ∈ {1, . . . , 𝑠 (2𝜈)}.

Definition 1.1 (Sum-of-squares polynomial). A polynomial 𝑝 =
∑𝑠 (2𝜈 )

𝑖=1
𝑐𝑖𝑢𝑖 is said to be sum of

squares if there is 𝑋 ⪰ 0 such that ⟨𝐵𝜈
𝑖
, 𝑋 ⟩ = 𝑐𝑖 for all 𝑖 ∈ {1, . . . , 𝑠 (2𝜈)}.

2 UNCONSTRAINED OPTIMIZATION
Fix 𝜈 ∈ N and 𝑝 =

∑𝑠 (2𝜈 )
𝑖=1

𝑐𝑖𝑢𝑖 , where for each 𝑖 ∈ {1, . . . , 𝑠 (2𝜈)}, 𝑐𝑖 ∈ R.
The goal is to find the minimum of 𝑝: 𝑝∗ B min𝑥∈R𝑛 𝑝 (𝑥). Computing 𝑝∗ is in general difficult.

A relaxation consists in finding a value 𝑡 ∈ R such that 𝑝 − 𝑡 is sum of squares. Any such value 𝑡

will then be a lower bound on 𝑝∗.
Hence, we can formulate the following optimization problem to optimize on such 𝑡 :

P(𝑝) : sup𝑋,𝑡 𝑡

s.t. 𝑋 ⪰ 0,

⟨𝐵𝜈
1
, 𝑋 ⟩ = 𝑐1 − 𝑡,

⟨𝐵𝜈
𝑖
, 𝑋 ⟩ = 𝑐𝑖 , ∀ 𝑖 ∈ {2, . . . , 𝑠 (2𝜈)},

(1)

with variables 𝑋 = 𝑋⊤ ∈ R𝑠 (𝑚)×𝑠 (𝑚)
and 𝑡 ∈ R. The dual of (1) is the problem:

D(𝑝) : inf (𝑦𝑖 )𝑠 (2𝜈 )𝑖=1

∑𝑠 (2𝜈 )
𝑖=1

𝑐𝑖𝑦𝑖

s.t.

∑𝑠 (2𝜈 )
𝑖=1

𝐵𝜈
𝑖
𝑦𝑖 ⪰ 0,

𝑦1 = 1,

(2)

with variables {𝑦𝑖 }𝑠 (2𝜈 )𝑖=1
⊆ R.

Proposition 2.1 (see, e.g., 1, Proposition 3.1). D(𝑝) is always strictly feasible. Consequently,
by strong duality, if P(𝑝) is feasible, then it has an optimal solution, and there is no duality gap, i.e.,
maxP(𝑝) = inf D(𝑝).

Proof. Take any finite measure 𝜇 on R𝑛 , and for each 𝑖 ∈ {1, . . . , 𝑠 (2𝜈)}, let 𝑦𝑖 =
∫
R𝑛

𝑢𝑖 d𝜇. Then,

for any 𝑧 ∈ R𝑠 (2𝜈 ) \ {0}, it holds that 𝑧⊤ (∑𝑠 (2𝜈 )
𝑖=1

𝐵𝜈
𝑖
𝑦𝑖 )𝑧 =

∫
R𝑛
(𝑧⊤v𝜈 )2 d𝜇 > 0. □

Theorem 2.2 (see, e.g., 1, Theorem 3.2).

• If 𝑝 −𝑝∗ is sum of squares, then P(𝑝) and D(𝑝) have an optimal solution and 𝑝∗ = maxP(𝑝) =
minD(𝑝). Moreover, for any 𝑥 ∈ R𝑛 such that 𝑝 (𝑥) = 𝑝∗, (𝑦𝑖 )𝑠 (2𝜈 )𝑖=1

= (𝑢𝑖 (𝑥))𝑠 (2𝜈 )𝑖=1
is an

optimal solution of D(𝑝).
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• Conversely, if P(𝑝) is feasible and D(𝑝) has an optimal solution (𝑦𝑖 )𝑠 (2𝜈 )𝑖=1
= (𝑢𝑖 (𝑥))𝑠 (2𝜈 )𝑖=1

for
some 𝑥 ∈ R𝑛 , then 𝑝 − 𝑝∗ is sum of squares and 𝑝∗ = maxP(𝑝) = minD(𝑝).

Proof.

• The first part is obvious by definition of sum-of-squares polynomials and P(𝑝). The second
part follows directly from the fact that

∑𝑠 (2𝜈 )
𝑖=1

𝑐𝑖𝑦𝑖 = 𝑝 (𝑥) = 𝑝∗. Since, by weak duality

inf D(𝑝) ≥ maxP(𝑝) ≥ 𝑝∗, it follows that (𝑦𝑖 )𝑠 (2𝜈 )𝑖=1
is optimal for D(𝑝).

• It holds that 𝑝∗ ≤ 𝑝 (𝑥) = ∑𝑠 (2𝜈 )
𝑖=1

𝑐𝑖𝑦𝑖 = minD(𝑝) = maxP(𝑝) ≤ 𝑝∗, where the third equality
follows from Proposition 2.1. Hence, 𝑝∗ = maxP(𝑝), and thus 𝑝 − 𝑝∗ is sum of squares.

□

Definition 2.3. A sequence (𝑦𝑖 )𝑠 (2𝜈 )𝑖=1
∈ R𝑠 (2𝜈 ) is said to be atomic if there is 𝑥 ∈ R𝑛 such that for

all 𝑖 ∈ {1, . . . , 𝑠 (2𝜈)}, 𝑦𝑖 = 𝑢𝑖 (𝑥).

Corollary 2.4. Assume P(𝑝) is feasible. Then 𝑝 − 𝑝∗ is sum of squares if and only if D(𝑝) has an
atomic optimal solution.

3 CONSTRAINED OPTIMIZATION
Fix 𝜈 ∈ N, 𝐻 ∈ N>0 and {𝜈ℎ}𝐻ℎ=1 ⊆ N>0. Let 𝑝 =

∑𝑠 (2𝜈 )
𝑖=1

𝑐𝑖𝑢𝑖 , where for each 𝑖 ∈ {1, . . . , 𝑠 (2𝜈)},
𝑐𝑖 ∈ R, and for each ℎ ∈ {1, . . . , 𝐻 }, let 𝑞ℎ =

∑𝑠 (2𝜈ℎ )
𝑖=1

𝑐ℎ,𝑖𝑢𝑖 , where for each 𝑖 ∈ {1, . . . , 𝑠 (2𝜈ℎ)},
𝑐ℎ,𝑖 ∈ R. Denote Q = (𝑞ℎ)𝐻ℎ=1.

The goal is to find the minimum of 𝑝 over the set 𝑆 (Q) = ⋂𝐻
ℎ=1

{𝑥 ∈ R𝑛 : 𝑞ℎ (𝑥) ≥ 0}: 𝑝∗Q B
min𝑥∈𝑆 (Q) 𝑝 (𝑥). Computing 𝑝∗Q is in general difficult. A relaxation consists in finding a value 𝑡 ∈ R
such that 𝑝 − 𝑡 = 𝑠0 +

∑𝐻
ℎ=1

𝑞ℎ𝑠ℎ for some sum-of-squares polynomials 𝑠0, . . . , 𝑠𝐻 , of respective

degrees 2𝜋0, . . . , 2𝜋𝐻 , with {𝜋ℎ}𝐻ℎ=0 ⊆ N. Any such value 𝑡 will then be a lower bound on 𝑝∗Q .
Hence, we can formulate the following optimization problem to optimize on such 𝑡 :

P(𝑝,Q) : sup(𝑋ℎ )𝐻ℎ=0,𝑡
𝑡

s.t. 𝑋ℎ ⪰ 0, ∀ℎ ∈ {0, . . . , 𝐻 }
⟨𝐵𝜋0

1
, 𝑋0⟩ +

∑𝐻
ℎ=1

𝑐ℎ,1⟨𝐵𝜋ℎ
1
, 𝑋ℎ⟩ = 𝑐1 − 𝑡,

⟨𝐵𝜋0

𝑖
, 𝑋0⟩ +

∑𝐻
ℎ=1

∑
(𝑖1,𝑖2 )∼(𝑖,𝜈ℎ,𝜋ℎ ) 𝑐ℎ,𝑖1 ⟨𝐵

𝜋ℎ
𝑖2
, 𝑋ℎ⟩ = 𝑐𝑖 ,

∀ 𝑖 ∈ {2, . . . , 𝑠 (2𝜈)},

(3)

with variables 𝑋ℎ = 𝑋ℎ
⊤ ∈ R𝑠 (𝜋ℎ )×𝑠 (𝜋ℎ ) for all ℎ ∈ {0, . . . , 𝐻 }, and 𝑡 ∈ R, and where for each

ℎ ∈ {0, . . . , 𝐻 }, (𝑖1, 𝑖2) ∼ (𝑖, 𝜈ℎ, 𝜋ℎ) means that 𝑖1 ∈ {1, . . . , 𝜈ℎ}, 𝑖2 ∈ {1, . . . , 𝜋ℎ} and 𝑢𝑖1𝑢𝑖2 = 𝑢𝑖 . The

dual of (1) is the problem:

D(𝑝,Q) : inf (𝑦𝑖 )𝑠 (2𝜈 )𝑖=1

∑𝑠 (2𝜈 )
𝑖=1

𝑐𝑖𝑦𝑖

s.t.

∑𝑠 (2𝜈 )
𝑖=1

𝐵
𝜋0

𝑖
𝑦𝑖 ⪰ 0,∑𝑠 (2𝜈 )

𝑖=1

∑
(𝑖1,𝑖2 )∼(𝑖,𝜈ℎ,𝜋ℎ ) 𝑐ℎ,𝑖1𝐵

𝜋ℎ
𝑖2
𝑦𝑖 ⪰ 0, ∀ℎ ∈ {1, . . . , 𝐻 },

𝑦1 = 1,

(4)

with variables {𝑦𝑖 }𝑠 (2𝜈 )𝑖=1
⊆ R.

Assumption 3.1. 𝑆 (Q) has nonempty interior, and for all ℎ ∈ {1, . . . , 𝐻 }, 𝑞ℎ ≠ 0.

Proposition 3.2. Under Assumption 3.1, D(𝑝,Q) is always strictly feasible. Consequently, by
strong duality, if P(𝑝,Q) is feasible, then it has an optimal solution, and there is no duality gap, i.e.,
maxP(𝑝,Q) = inf D(𝑝,Q).
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Proof. Take any finite measure 𝜇 on 𝑆 (Q), and for each 𝑖 ∈ {1, . . . , 𝑠 (2𝜈)}, let 𝑦𝑖 =
∫
R𝑛

𝑢𝑖 d𝜇.

Then, for any 𝑧 ∈ R𝑠 (2𝜈 ) \ {0}, it holds that 𝑧⊤ (∑𝑠 (2𝜈 )
𝑖=1

𝐵𝜈
𝑖
𝑦𝑖 )𝑧 =

∫
R𝑛
(𝑧⊤v𝜈 )2 d𝜇 > 0, and for every

ℎ ∈ {1, . . . , 𝐻 }, 𝑧⊤ (∑𝑠 (2𝜈 )
𝑖=1

∑
(𝑖1,𝑖2 )∼(𝑖,𝜈ℎ,𝜋ℎ ) 𝑐ℎ,𝑖1𝐵

𝜋ℎ
𝑖2
𝑦𝑖 )𝑧 =

∫
R𝑛

𝑞ℎ · (𝑧⊤v𝜈 )2 d𝜇 > 0. □

Theorem 3.3. Let Assumption 3.1 hold.
• If 𝑝 − 𝑝∗Q = 𝑠0 +

∑𝐻
ℎ=1

𝑞ℎ𝑠ℎ for some sum-of-squares polynomials 𝑠0, . . . , 𝑠𝐻 , of respective
degrees 2𝜋0, . . . , 2𝜋𝐻 , then P(𝑝) and D(𝑝) have an optimal solution and 𝑝∗Q = maxP(𝑝,Q) =
minD(𝑝,Q). Moreover, for any 𝑥 ∈ 𝑆 (Q) such that 𝑝 (𝑥) = 𝑝∗Q , (𝑦𝑖 )

𝑠 (2𝜈 )
𝑖=1

= (𝑢𝑖 (𝑥))𝑠 (2𝜈 )𝑖=1
is an

optimal solution of D(𝑝,Q).
• Conversely, if P(𝑝,Q) is feasible and D(𝑝,Q) has an optimal solution (𝑦𝑖 )𝑠 (2𝜈 )𝑖=1

= (𝑢𝑖 (𝑥))𝑠 (2𝜈 )𝑖=1

for some 𝑥 ∈ 𝑆 (Q), then 𝑝 − 𝑝∗Q = 𝑠0 +
∑𝐻

ℎ=1
𝑞ℎ𝑠ℎ for some sum-of-squares polynomials

𝑠0, . . . , 𝑠𝐻 , of respective degrees 2𝜋0, . . . , 2𝜋𝐻 , and 𝑝∗Q = maxP(𝑝,Q) = minD(𝑝,Q).

Proof. Same as the proof of Theorem 2.2. □
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