Formal methods for computing hyperbolic invariant sets of nonlinear systems

<u>Guillaume O. Berger[§] and Raphaël M. Jungers[§]</u>

[§] UCLouvain, Belgium

HSCC, April 2019, Montreal

nis

What & Why

UCLouvain

Given

Dynamical system: $x_{t+1} = f(x_t)$ $f: M \to M - C^1$ diffeomorphism compact Riemannian manifold of dimension d

Definition (informal): The invariant set $\Lambda \subseteq M$ is hyperbolic if for every $x \in \Lambda$ there exists a splitting $T_x M = E_x^u \oplus E_x^s$ with dim $(E_x^u) = p$ and dim $(E_x^s) = d - d$ p such that f is infinitesimally expanding along E_x^u (unstable) direction) and *infinitesimally* contracting along E_x^s (stable direction).

Applications

→ Structural stability: **robustness** to system perturbation and computation errors \rightarrow Ergodic properties: e.g., mixing application: e.g., statistical physics

Compute a hyperbolic invariant set for f

 $(\Lambda \subseteq M \text{ invariant set} \Leftrightarrow f(\Lambda) = \Lambda)$

Two main ingredients of our algorithmic framework: Lyapunov-like criterion and abstraction of the system How

Problem? There is an infinite number of symmetric matrices S_{γ} to find...

for every edge $R_i \rightarrow R_j$ in the abstraction, and with $\varepsilon > 2\delta + \delta^2$

iff Finite set of LMIs: Can be solved efficiently with SDP solvers

Implementation

(Illustration on a numerical example)

Solution

The modified Ikeda map:

$$f(x,y) = (r + a(x\cos(\tau) - y\sin(\tau)), b(x\sin(\tau) + y\cos(\tau))$$

where
$$\tau = A - \frac{B}{1+x^2+y^2}$$
, $r = 2$, $A = 0.4$, $B = 6$, $a = -b = 0.9$

Image of the domain $M = [1.1, 3.4] \times [1.5, 1.8]$ by the Ikeda map f

Objective: find a hyperbolic invariant set in this domain

Step 1: Discretize the state space and

Step 2: Find the recurrent regions

<u>Step 3</u>: For a desired accuracy δ , find A_{ii} for each

build an abstraction of the system

(i.e., that are in a nontrivial cycle)

Fig. 2. Directed graph. The vertices 1, 2, 3, 5 are recurrent.

→ This gives an over-approximation of the largest invariant set in M

Refine the discretization to have a better over-approximation

edge (i, j) such that it is a δ -approximation of Df

Refine the discretization if necessary...

Step 4: Solve the SDP feasibility problem (*)

