Formal methods for computing hyperbolic invariant sets of nonlinear systems

Guillaume O. Berger ${ }^{\S}$ and Raphaël M. Jungers ${ }^{\S}$
§ UCLouvain, Belgium HSCC, April 2019, Montreal

Applications

\rightarrow Structural stability: robustness to system perturbation and computation errors
\rightarrow Ergodic properties: e.g., mixing
application: e.g., statistical physics

Definition (informal): The invariant set $\Lambda \subseteq M$ is hyperbolic if for every $x \in \Lambda$ there exists a splitting $T_{x} M=E_{x}^{u} \oplus E_{x}^{s}$ with $\operatorname{dim}\left(E_{x}^{u}\right)=p$ and $\operatorname{dim}\left(E_{x}^{S}\right)=d-$ p such that f is infinitesimally expanding along E_{x}^{u} (unstable direction) and infinitesimally contracting along E_{x}^{s} (stable direction).

What \& Why

Given

Dynamical system: $x_{t+1}=f\left(x_{t}\right)$ $f: M \rightarrow M-C^{1}$ diffeomorphism compact Riemannian manifold of dimension d

Objective

Compute a hyperbolic invariant set for f
$(\Lambda \subseteq M$ invariant set $\Leftrightarrow f(\Lambda)=\Lambda)$

How Two main ingredients of our algorithmic framework: Lyapunov-like criterion and abstraction of the system
$\begin{aligned} & \text { Jacobian } \\ & \text { matrix of } f\end{aligned} \underbrace{D f_{x}^{T}} S_{f(x)} D f_{x}-\underbrace{S_{x}}<0$
Symmetric matrix with p eigenvalues <0 and $d-p$ eigenvalues >0
Theorem: Given $\Lambda \subseteq M$ invariant
$\forall x \in \Lambda, \exists S_{x}$ satisfying (*)
Λ is hyperbolic
Advantage: (*) is a LMI and thus can be checked with SDP solvers

Problem? There is an infinite number of
Solution symmetric matrices S_{x} to find...

Discretization of the state space:

Assume S_{x} constant on each region: $S_{x}=\hat{S}_{i}$ on region R_{i}
Algorithm: Given abstraction and $A_{i j}$ as above, find \hat{S}_{i} such that
(*) $\quad A_{i j}^{T} \hat{S}_{j} A_{i j}-\hat{S}_{i} \leqslant-\varepsilon I$
for every edge $R_{i} \rightarrow R_{j}$ in the abstraction, and with $\varepsilon>2 \delta+\delta^{2}$
$\uparrow \uparrow \uparrow$ Finite set of LMIs: Can be solved efficiently with SDP solvers

Implementation

The modified Ikeda map:

$$
f(x, y)=(r+a(x \cos (\tau)-y \sin (\tau)), b(x \sin (\tau)+y \cos (\tau))
$$

where $\tau=A-\frac{B}{1+x^{2}+y^{2}}, \quad r=2, A=0.4, B=6, a=-b=0.9$

Image of the domain
$M=[1.1,3.4] \times[1.5,1.8]$
by the Ikeda $\operatorname{map} f$
Objective: find a hyperbolic invariant set in this domain

Step 1: Discretize the state space and build an abstraction of the system

Step 2: Find the recurrent regions (i.e., that are in a nontrivial cycle)

Fig. 2. Directed graph. The vertices $1,2,3,5$ are recurrent.
\rightarrow This gives an over-approximation of the largest invariant set in M

Refine the discretization to have a better over-approximation

Step 3: For a desired accuracy δ, find $A_{i j}$ for each edge (i, j) such that it is a δ-approximation of $D f$ Refine the discretization if necessary...

Step 4: Solve the SDP feasibility problem (\star)

Output of solver: \hat{S}_{i}
Green cones: set of vectors v such that $v^{T} \hat{S}_{i} v \leq 0$

Red cones: image of green cone by $D f_{x}$

